Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ecotype conversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1844 KiB  
Article
Analysis of Domestic Sewage Treatment Technology for Converter Stations and Pumped Storage Power Stations Based on the Analytic Hierarchy Process
by Xiaoxuan Bai, Junqi Yang, Jiahao Ren, Peng Li and Hezhong Tian
Sustainability 2025, 17(13), 5775; https://doi.org/10.3390/su17135775 - 23 Jun 2025
Viewed by 241
Abstract
This study investigates sewage treatment technologies at manned and unmanned converter stations and pumped storage power stations across various regions of China, considering the regional differences in water availability, infrastructure, and ecological conditions. Using a multi-criteria evaluation approach, this study analyzes key factors, [...] Read more.
This study investigates sewage treatment technologies at manned and unmanned converter stations and pumped storage power stations across various regions of China, considering the regional differences in water availability, infrastructure, and ecological conditions. Using a multi-criteria evaluation approach, this study analyzes key factors, such as economic characteristics, technical characteristics, and efficiency, to assess the most suitable sewage treatment solutions. Powered Eco-type Sewage Treatment Units and Powered Underground Units perform best in southern and eastern China, where advanced infrastructure supports high treatment demands. Conversely, Septic Tanks show the lowest performance across all the regions, particularly in remote and water-scarce areas like northeast and northwest China. For pumped storage power stations, AAO+MBR and Multi-stage A/O processes are most effective in regions with high water reuse needs. This study highlights the necessity of region-specific water management strategies and technological upgrades to ensure efficient sewage treatment and sustainable water use across China’s power grid infrastructure. Full article
(This article belongs to the Special Issue Water Treatment, Waste Valorization and Environment Sustainability)
Show Figures

Graphical abstract

28 pages, 2448 KiB  
Article
Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest
by Simon D. Baker, Kristen M. Waring, David Auty and Nicholas Wilhelmi
Forests 2025, 16(6), 967; https://doi.org/10.3390/f16060967 - 7 Jun 2025
Viewed by 595
Abstract
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) [...] Read more.
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) The purpose of this study was to examine post-fire stand dynamics over a 10-year period, using a network of permanent plots established prior to wildfire events across Arizona and New Mexico. We assessed changes in overstory composition, regeneration, and fuel loading across different fire severities. (3) High severity fire caused near-total overstory mortality, with little to no conifer regeneration and abundant sprouting hardwood regeneration. Lower severity fire was more favorable to fire-tolerant conifer species; however, mortality among mature trees was high, and fire-intolerant conifers were either diminished or extirpated completely. (4) In high severity fires, changes in overstory and understory structure and composition may be long-lasting. Additionally, increased fuel loads following high severity fire suggests a heightened risk of reburns, potentially perpetuating ecotype conversion. Our findings highlight the need for active management strategies, including reforestation and fuel reduction treatments, to support forest resilience for mixed conifer ecosystems in the US Southwest and similar forest types in other regions in the face of ongoing climate and fire regime changes. Full article
Show Figures

Figure 1

21 pages, 3620 KiB  
Article
Immune Gene Expression and Locomotor Activity in Response to Vairimorpha ceranae Infection Across Five Honey Bee Subspecies
by Cansu Özge Tozkar and Jay D. Evans
Insects 2025, 16(6), 593; https://doi.org/10.3390/insects16060593 - 5 Jun 2025
Viewed by 2697
Abstract
This study evaluated immune gene expression and locomotor behavior across five Apis mellifera subspecies (Carniolan, Caucasian, Syrian, Muğla ecotype, and Yığılca ecotype) following controlled Vairimorpha ceranae infection. Six days post-infection, Caucasian, Carniolan, and Yığılca bees exhibited a significant upregulation of antimicrobial peptide (AMP) [...] Read more.
This study evaluated immune gene expression and locomotor behavior across five Apis mellifera subspecies (Carniolan, Caucasian, Syrian, Muğla ecotype, and Yığılca ecotype) following controlled Vairimorpha ceranae infection. Six days post-infection, Caucasian, Carniolan, and Yığılca bees exhibited a significant upregulation of antimicrobial peptide (AMP) transcripts—hymenoptaecin, abaecin, defensin, and apidaecin—indicating a robust humoral response. Conversely, Syrian and Muğla bees showed weaker AMP expression and higher V. ceranae mRNA levels, indicating lower immunity and higher susceptibility. Positive correlations among AMP transcripts, especially in Caucasian, Carniolan, and Yığılca bees, suggested a coordinated response. Eater gene expression, critical for cellular immunity, decreased in infected Caucasian and Yığılca bees, coinciding with AMP upregulation. Vitellogenin expression, linked to immunity and longevity, increased in Carniolan and Syrian bees, correlating with higher early locomotor activity. Locomotor analysis revealed subspecies-specific behavioral responses. Syrian bees maintained the highest activity despite elevated V. ceranae mRNA and minimal AMP expression, suggesting unique resilience possibly mediated by vitellogenin. Muğla bees, despite high pathogen loads, exhibited decreased activity. Caucasian bees showed strong immune responses but reduced activity post-infection, reflecting potential physiological trade-offs. Overall, these findings underscore the role of genetic variability in shaping honey bee immune and behavioral responses to Vairimorpha and support subspecies-targeted breeding and disease management strategies to enhance resilience. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Figure 1

16 pages, 4317 KiB  
Article
In Vitro Seed Germination and RAPD Variation in Three Populations of Cerastium candidissimum Correns, a Promising Ornamental Species
by Konstantinos Bertsouklis, Stella Tsopela, Apostolos-Emmanouil Bazanis and Epameinondas Kartsonas
Horticulturae 2025, 11(4), 443; https://doi.org/10.3390/horticulturae11040443 - 21 Apr 2025
Viewed by 974
Abstract
This study investigated the germination characteristics and genetic variability of Cerastium candidissimum, a Greek endemic species with potential for ornamental horticulture. The seeds were collected from three populations of Mount Hymettus, M. Parnitha, and M. Parnassos. The cardinal temperatures for germination, the [...] Read more.
This study investigated the germination characteristics and genetic variability of Cerastium candidissimum, a Greek endemic species with potential for ornamental horticulture. The seeds were collected from three populations of Mount Hymettus, M. Parnitha, and M. Parnassos. The cardinal temperatures for germination, the effect of seed storage duration, and population-specific germination responses were examined. Germination trials were conducted in vitro on half-strength Murashige and Skoog medium, with seeds tested after dark and dry room storage periods of 6, 18, and 30 months. Seeds from Mount Parnitha exhibited high germination rates (81–94%) within a temperature range of 10–20 °C after 6 and 18 months of storage. Similarly, seeds from Mount Parnassos demonstrated optimal germination (81.3–94.0%) at 10–20 °C after 6 months of storage, though an 18-month storage period shifted the optimal range to 15–20 °C (67–71%). In contrast, the Mount Hymettus population exhibited the lowest germination percentages, with 6-month-old seeds reaching only 47.3% germination at 20 °C, declining to 34% at 15 °C after 18 months, and near-zero germination after 30 months. The time required for 50% germination (T50) ranged from 4 to 8 days at 20 °C across all populations but increased as incubation temperature decreased (4–18 days at 15 °C; 8–18 days at 10 °C). The molecular analysis revealed that the primers used presented high polymorphism (49.0%), and a total of 136 amplified markers were produced. Individuals from different populations were grouped in three different branches. These findings indicate population-level variability in germination traits, likely reflecting genetic and ecological differences. The high germination rates of Parnitha and Parnassos’ populations support their potential use in floriculture. Conversely, the low germination success of the Hymettus population suggests higher environmental stress or genetic constraints, warranting further investigation into its possible classification as a distinct ecotype. Full article
Show Figures

Graphical abstract

19 pages, 2720 KiB  
Article
Exploring the Flavonoid Biosynthesis Pathway of Two Ecotypes of Leymus chinensis Using Transcriptomic and Metabolomic Analysis
by Haiyan Wu, Gaowa Naren, Chenxu Han, Nabil I. Elsheery and Lingang Zhang
Agronomy 2024, 14(8), 1839; https://doi.org/10.3390/agronomy14081839 - 20 Aug 2024
Cited by 1 | Viewed by 1377
Abstract
This research investigates the flavonoid biosynthesis pathways of two ecotypes of Leymus chinensis, distinguished by their gray-green (GG) and yellow-green (YG) leaf colors, to uncover the molecular bases of their adaptability to different environmental conditions. By integrating comprehensive transcriptomic and metabolomic analyses, [...] Read more.
This research investigates the flavonoid biosynthesis pathways of two ecotypes of Leymus chinensis, distinguished by their gray-green (GG) and yellow-green (YG) leaf colors, to uncover the molecular bases of their adaptability to different environmental conditions. By integrating comprehensive transcriptomic and metabolomic analyses, we identified 338 metabolites, with 161 showing differential expression—124 upregulated and 37 downregulated. The transcriptomic data revealed substantial variation, with 50,065 genes differentially expressed between the ecotypes, suggesting complex genetic regulation of the flavonoid biosynthesis pathways involving 20 enzyme-coding genes. KEGG pathway enrichment analysis further highlighted the involvement of 26 genes in the synthesis of four distinct types of flavonoid metabolites, indicating the sophisticated modulation of these pathways. Our results demonstrate that the GG and YG ecotypes of Leymus chinensis exhibit distinct flavonoid profiles and gene expression patterns, with the GG ecotype showing a higher accumulation of quercetin and kaempferol (increased by 25% and 33%, respectively, compared to YG), suggesting enhanced antioxidant capacity. Conversely, the YG ecotype displayed a broader spectrum of flavonoid metabolites, possibly indicating an adaptive strategy favoring diverse ecological interactions. Our results show that the GG and YG ecotypes of Leymus chinensis exhibit distinct flavonoid profiles and gene expression patterns, suggesting divergent adaptive strategies to environmental stress. This study highlights the crucial role of flavonoid metabolites in plant adaptation strategies, enhancing our understanding of plant resilience and adaptability. The distinct metabolic profiles observed suggest that the GG ecotype may be better equipped to handle oxidative stress, while the YG ecotype could be predisposed to broader ecological interactions. This emphasizes the value of applying machine learning in predicting plant adaptability, providing a new perspective for the future exploration of how plants adapt to environmental challenges. Meanwhile, the information gleaned from this nuanced study offers a foundation for future investigations into the genetic and environmental factors involved in plant adaptation. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 4373 KiB  
Article
Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina
by Pedro Beca-Carretero, Clara Marín, Tomás Azcárate-García, Claudia L. Cara, Fernando Brun and Dagmar B. Stengel
Plants 2024, 13(3), 396; https://doi.org/10.3390/plants13030396 - 29 Jan 2024
Cited by 4 | Viewed by 1920
Abstract
Seagrasses, which are marine flowering plants, provide numerous ecological services and goods. Zostera marina is the most widely distributed seagrass in temperate regions of the northern hemisphere, tolerant of a wide range of environmental conditions. This study aimed to (i) examine seasonal trends [...] Read more.
Seagrasses, which are marine flowering plants, provide numerous ecological services and goods. Zostera marina is the most widely distributed seagrass in temperate regions of the northern hemisphere, tolerant of a wide range of environmental conditions. This study aimed to (i) examine seasonal trends and correlations between key seagrass traits such as biomass production and biochemical composition, and (ii) compare seasonal adaptation of two ecotypes of Z. marina exposed to similar environmental conditions on the west coast of Ireland. During summer, plants accumulated higher levels of energetic compounds and levels of unsaturated fatty acids (FAs) decreased. Conversely, the opposite trend was observed during colder months. These findings indicate a positive seasonal correlation between the production of non-structural carbohydrates and saturated fatty acids (SFAs), suggesting that seagrasses accumulate and utilize both energetic compounds simultaneously during favorable and unfavorable environmental conditions. The two ecotypes displayed differential seasonal responses by adjusting plant morphology and production, the utilization of energetic reserves, and modulating unsaturation levels of fatty acids in seagrass leaves. These results underscore the correlated seasonal responses of key compounds, capturing ecotype-specific environmental adaptations and ecological strategies, emphasizing the robust utility of these traits as a valuable eco-physiological tool. Full article
(This article belongs to the Special Issue Aquatic Plant Biology 2023)
Show Figures

Figure 1

26 pages, 4722 KiB  
Article
Comparative Analysis of Bioactive Compounds in Two Globe Artichoke Ecotypes Sanitized and Non-Sanitized from Viral Infections
by Roberta Spanò, Stefania Fortunato, Vito Linsalata, Isabella D’Antuono, Angela Cardinali, Maria Concetta de Pinto and Tiziana Mascia
Plants 2023, 12(8), 1600; https://doi.org/10.3390/plants12081600 - 10 Apr 2023
Cited by 3 | Viewed by 2183
Abstract
Globe artichoke ecotypes sanitized from plant pathogen infections are characterized by high vegetative vigor, productivity, and quality of capitula. The recent availability on the market of these plants has renewed the interest of farmers and pharmaceutical industries in the crop. Globe artichoke exhibits [...] Read more.
Globe artichoke ecotypes sanitized from plant pathogen infections are characterized by high vegetative vigor, productivity, and quality of capitula. The recent availability on the market of these plants has renewed the interest of farmers and pharmaceutical industries in the crop. Globe artichoke exhibits interesting nutraceutical properties due to the high content of health-promoting bioactive compounds (BACs), such as polyphenols, that could be extracted from waste biomass. The production of BACs depends on several factors including the plant portion considered, the globe artichoke variety/ecotype, and the physiological status of the plants, linked to biotic and abiotic stresses. We investigated the influence of viral infections on polyphenol accumulation in two Apulian late-flowering ecotypes “Locale di Mola tardivo” and “Troianella”, comparing sanitized virus-free material (S) vs. naturally virus-infected (non-sanitized, NS) plants. Transcriptome analysis of the two ecotypes highlighted that differentially expressed genes (DEGs), in the two tested conditions, were mainly involved in primary metabolism and processing of genetic/environmental information. The up-regulation of the genes related to the biosynthesis of secondary metabolites and the analysis of peroxidase activity suggested that their modulation is influenced by the phytosanitary status of the plant and is ecotype-dependent. Conversely, the phytochemical analysis showed a remarkable decrease in polyphenols and lignin accumulation in S artichokes compared to NS plants. This unique study analyzes the potential of growing vigorous, sanitized plants, in order to have high amounts of ‘soft and clean’ biomass, finalized for BAC extraction for nutraceutical purposes. This, in turn, opens new perspectives for a circular economy of sanitized artichokes, in line with the current phytosanitary standards and sustainable development goals. Full article
(This article belongs to the Special Issue Advances in Plant Viral Diseases)
Show Figures

Figure 1

30 pages, 9852 KiB  
Article
Morphological and Molecular Characterization Using Genitalia and CoxI Barcode Sequence Analysis of Afrotropical Mosquitoes with Arbovirus Vector Potential
by Eddyson Montalvo-Sabino, Ana Paula Abílio, Milehna Mara Guarido, Vera Valadas, Maria Teresa Novo, Ayubo Kampango, Carla Alexandra Sousa, José Fafetine, Marietjie Venter, Peter N. Thompson, Leo Braack, Anthony John Cornel, Ricardo Parreira and António Paulo Gouveia de Almeida
Diversity 2022, 14(11), 940; https://doi.org/10.3390/d14110940 - 2 Nov 2022
Cited by 4 | Viewed by 4504
Abstract
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the [...] Read more.
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the characterization of Culicine mosquitoes from South Africa, Mozambique, and Angola and their classification using a complementary approach including a morphological analysis of specimens’ genitalia and phylogenetic study based on the analysis of CoxI barcode sequences using maximum likelihood and Bayesian phylogenetic inference methods, alongside Median-Joining Network and PCOORD analyses. Overall, 800 mosquitoes (652 males and 148 females) from 67 species, were analyzed. Genitalia from 663 specimens allowed the identification of 55 species of 10 genera. A total of 247 CoxI partial gene sequences corresponding to 65 species were obtained, 11 of which (Aedes capensis, Ae. mucidus, Culex andersoni, Cx. telesilla, Cx. inconspicuosus, Eretmapodites subsimplicipes, Er. quinquevittatus, Ficalbia uniformis, Mimomyia hispida, Uranotaenia alboabdominalis, and Ur. mashonaensis) are, to the best of our knowledge, provided here for the first time. The presence of Cx. pipiens ecotypes molestus and pipiens and their hybrids, as well as Cx. infula, is newly reported in the Afrotropical region. The rates of correct sequence identification using BOLD and BLASTn (≥95% identity) were 64% and 53%, respectively. Phylogenetic analysis revealed that, except for subgenus Eumelanomyia of Culex, there was support for tribes Aedini, Culicini, Ficalbiini, and Mansoniini. A divergence >2% was observed in conspecific sequences, e.g., Aedeomyia africana, Ae. cumminsii, Ae. unilineatus, Ae. metallicus, Ae. furcifer, Ae. caballus, and Mansonia uniformis. Conversely, sequences from groups and species complexes, namely, Ae. simpsoni, Ae. mcintoshi, Cx. bitaeniorhynchus, Cx. simpsoni, and Cx. pipiens were insufficiently separated. A contribution has been made to the barcode library of Afrotropical mosquitoes with associated genitalia morphological identifications. Full article
(This article belongs to the Special Issue Diversity, Distribution and Phylogeny of Vector Insects)
Show Figures

Graphical abstract

13 pages, 16091 KiB  
Article
Production of Virus-Free Garlic Plants through Somatic Embryogenesis
by Snježana Kereša, Katarina Kurtović, Smiljana Goreta Ban, Darko Vončina, Ivanka Habuš Jerčić, Snježana Bolarić, Boris Lazarević, Sara Godena, Dean Ban and Anita Bošnjak Mihovilović
Agronomy 2021, 11(5), 876; https://doi.org/10.3390/agronomy11050876 - 29 Apr 2021
Cited by 12 | Viewed by 5262
Abstract
The present study was conducted to establish a protocol for the regeneration of virus-free garlic plants through somatic embryogenesis of two Croatian garlic ecotypes. Basal parts of cloves from mother plants were cultured on a full Murashige and Skoog (MS) or modified MS [...] Read more.
The present study was conducted to establish a protocol for the regeneration of virus-free garlic plants through somatic embryogenesis of two Croatian garlic ecotypes. Basal parts of cloves from mother plants were cultured on a full Murashige and Skoog (MS) or modified MS medium (¼ of KNO3 and NH4NO3 and 2xMgSO4) containing 0.1 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) or 1 mg L−1 2,4-D + 0.5 mg L−1 kinetin (Kin) and representing four different treatments. Plants were regenerated in MS medium containing 0.1 mg L−1 2,4-D and rooted in a medium containing 0.05 mg L−1 1-naphthaleneacetic acid (NAA) + 0.005 mg L−1 6-(γ,γ-dimethylallylamino)purine (2iP). The presence of viruses (i.e., sanitary status) of the mother plants and regenerants was checked by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). The mother plants were infected with onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV). In addition, the presence of garlic common latent virus (GCLV) was confirmed in four mother plants. Embryogenic callus developed in all four treatments with success ranging from 55% to 81% depending on treatment and ecotype. Plant conversion was significantly higher in somatic embryos developed in media containing 0.1 mg L−1 2,4-D than those developed in media containing 1 mg L−1 2,4-D + 0.5 mg L−1 Kin. Virus elimination success ranged from 13.3% up to 62.5% depending on garlic ecotype and treatment. The overall rate of virus elimination by somatic embryogenesis for both treatments and ecotypes were 20.7%, 22.9%, and 30.5% for OYDV, GCLV, and LYSV, respectively. Based on these results, somatic embryogenesis has been shown to be equally or more successful in eliminating garlic viruses compared to other in vitro methods. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

19 pages, 3402 KiB  
Article
Compensation Mechanism of the Photosynthetic Apparatus in Arabidopsis thaliana ch1 Mutants
by Joanna Wójtowicz, Adam K. Jagielski, Agnieszka Mostowska and Katarzyna B. Gieczewska
Int. J. Mol. Sci. 2021, 22(1), 221; https://doi.org/10.3390/ijms22010221 - 28 Dec 2020
Cited by 8 | Viewed by 3269
Abstract
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the [...] Read more.
The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions. Full article
(This article belongs to the Special Issue Environmental Stress and Plants)
Show Figures

Figure 1

16 pages, 2398 KiB  
Article
Genetic Diversity and Population Structure of Brachiaria (syn. Urochloa) Ecotypes from Uganda
by Clementine Namazzi, Julius Pyton Sserumaga, Swidiq Mugerwa, Martina Kyalo, Collins Mutai, Robert Mwesigwa, Appolinaire Djikeng and Sita Ghimire
Agronomy 2020, 10(8), 1193; https://doi.org/10.3390/agronomy10081193 - 14 Aug 2020
Cited by 12 | Viewed by 4619
Abstract
Brachiaria (syn. Urochloa) grass is an important tropical forage of African origin that supports millions of livestock and wildlife in the tropics. Overgrazing, conversion of grasslands for crop production and non-agricultural uses, and the introduction of improved forages have threatened the natural [...] Read more.
Brachiaria (syn. Urochloa) grass is an important tropical forage of African origin that supports millions of livestock and wildlife in the tropics. Overgrazing, conversion of grasslands for crop production and non-agricultural uses, and the introduction of improved forages have threatened the natural diversity of Brachiaria grass in Uganda. This study established a national collection of Brachiaria ecotypes in Uganda and analyzed them for genetic diversity and population structure using 24 simple sequence repeats (SSR) markers. These markers had a high discriminating ability with an average polymorphism information content (PIC) of 0.89 and detected 584 alleles in 99 ecotypes. Analysis of molecular variance revealed a high within populations variance (98%) indicating a high gene exchange or low genetic differentiation (PhiPT = 00.016) among the ecotype populations. The Bayesian model based clustering algorithm showed three allelic pools in Ugandan ecotypes. The principal component analysis (PCA) of ecotypes, and Neighbor-joining (NJ) tree of ecotypes and six commercial cultivars showed three main groups with variable membership coefficients. About 95% of ecotype pairs had Rogers’ genetic distance above 0.75, suggesting most of them were distantly related. This study confirms the high value of these ecotypes in Brachiaria grass conservation and improvement programs in Uganda and elsewhere. Full article
Show Figures

Figure 1

Back to TopTop