Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = ecosystem respiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 208
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

21 pages, 1538 KiB  
Article
Soil Fungal Activity and Microbial Response to Wildfire in a Dry Tropical Forest of Northern Colombia
by Eliana Martínez Mera, Ana Carolina Torregroza-Espinosa, Ana Cristina De la Parra-Guerra, Marielena Durán-Castiblanco, William Zapata-Herazo, Juan Sebastián Rodríguez-Rebolledo, Fernán Zabala-Sierra and David Alejandro Blanco Alvarez
Diversity 2025, 17(8), 546; https://doi.org/10.3390/d17080546 - 1 Aug 2025
Viewed by 161
Abstract
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire [...] Read more.
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire in 2014. Twenty soil samples were collected for microbiological (10 cm depth) and physicochemical (30 cm) analysis. Basal respiration was measured using Stotzky’s method, nitrogen mineralization via Rawls’ method, and fungal diversity through culture-based identification and colony-forming unit (CFU) counts. Diversity was assessed using Simpson, Shannon–Weaver, and ACE indices. The soils presented low organic matter (0.70%) and nitrogen content (0.035%), with reduced biological activity as indicated by basal respiration (0.12 kg C ha−1 d−1) and mineralized nitrogen (5.61 kg ha−1). Four fungal morphotypes, likely from the genus Aspergillus, were identified. Simpson index indicated moderate dominance, while Shannon–Weaver values reflected low diversity. Correlation analysis showed Aspergillus-3 was positively associated with moisture, whereas Aspergillus-4 correlated negatively with pH and sand content. The species accumulation curve reached an asymptote, suggesting an adequate sampling effort. Although no control site was included, the findings provide a baseline characterization of post-fire soil microbial structure and function in a dry tropical ecosystem. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

13 pages, 1482 KiB  
Article
Effect of Surrounding Detritus on Phragmites australis Litter Decomposition: Evidence from Laboratory Aquatic Microcosms
by Franca Sangiorgio, Daniela Santagata, Fabio Vignes, Maurizio Pinna and Alberto Basset
Limnol. Rev. 2025, 25(3), 34; https://doi.org/10.3390/limnolrev25030034 - 1 Aug 2025
Viewed by 86
Abstract
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight [...] Read more.
The availability of detritus is a key factor influencing aquatic biota and can significantly affect decomposition processes. In this study, we investigated how varying quantities of surrounding detritus impact leaf litter decay rates. It was tested in flowing and still-water microcosms to highlight context-dependent effects of surrounding detritus on leaf litter decomposition. To isolate the effect of detritus amount, experiments were conducted in laboratory microcosms simulating lotic and lentic ecosystems, each containing leaf fragments for decomposition assessments. Four detritus quantities were tested, with invertebrates either allowed or restricted from moving among detritus patches. Leaf decomposition rates were influenced by the amount of surrounding detritus, with slower decay observed at higher detritus conditions, regardless of invertebrate mobility. Detritivore distribution responded to both detritus quantity and oxygen availability, showing a preference for high detritus conditions. Additionally, detritus quantity affected microbial activity with a quadratic response, as indicated by leaf respiration rates. Overall, our findings indicate that the amount of surrounding detritus modulates leaf litter decomposition independently of invertebrate density, by influencing oxygen dynamics and, consequently, the activity of biological decomposers. Full article
Show Figures

Graphical abstract

32 pages, 6657 KiB  
Article
Mechanisms of Ocean Acidification in Massachusetts Bay: Insights from Modeling and Observations
by Lu Wang, Changsheng Chen, Joseph Salisbury, Siqi Li, Robert C. Beardsley and Jackie Motyka
Remote Sens. 2025, 17(15), 2651; https://doi.org/10.3390/rs17152651 - 31 Jul 2025
Viewed by 283
Abstract
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, [...] Read more.
Massachusetts Bay in the northeastern United States is highly vulnerable to ocean acidification (OA) due to reduced buffering capacity from significant freshwater inputs. We hypothesize that acidification varies across temporal and spatial scales, with short-term variability driven by seasonal biological respiration, precipitation–evaporation balance, and river discharge, and long-term changes linked to global warming and river flux shifts. These patterns arise from complex nonlinear interactions between physical and biogeochemical processes. To investigate OA variability, we applied the Northeast Biogeochemistry and Ecosystem Model (NeBEM), a fully coupled three-dimensional physical–biogeochemical system, to Massachusetts Bay and Boston Harbor. Numerical simulation was performed for 2016. Assimilating satellite-derived sea surface temperature and sea surface height improved NeBEM’s ability to reproduce observed seasonal and spatial variability in stratification, mixing, and circulation. The model accurately simulated seasonal changes in nutrients, chlorophyll-a, dissolved oxygen, and pH. The model results suggest that nearshore areas were consistently more susceptible to OA, especially during winter and spring. Mechanistic analysis revealed contrasting processes between shallow inner and deeper outer bay waters. In the inner bay, partial pressure of pCO2 (pCO2) and aragonite saturation (Ωa) were influenced by sea temperature, dissolved inorganic carbon (DIC), and total alkalinity (TA). TA variability was driven by nitrification and denitrification, while DIC was shaped by advection and net community production (NCP). In the outer bay, pCO2 was controlled by temperature and DIC, and Ωa was primarily determined by DIC variability. TA changes were linked to NCP and nitrification–denitrification, with DIC also influenced by air–sea gas exchange. Full article
Show Figures

Figure 1

31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Cited by 1 | Viewed by 539
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

15 pages, 2201 KiB  
Article
Shading Effects on the Growth and Physiology of Endangered Hopea hainanensis Merr. & Chun Seedlings
by Chuanteng Huang, Ling Lin, Feifei Chen, Xuefeng Wang, Mengmeng Shi, Lin Chen, Xiaoli Yang, Xiaona Dong and Mengwen Zhang
Forests 2025, 16(7), 1193; https://doi.org/10.3390/f16071193 - 19 Jul 2025
Viewed by 259
Abstract
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As [...] Read more.
To determine optimal light conditions for Hopea hainanensis Merr. & Chun seedling growth, this study examined growth and physiological parameters under four shading treatments (0%, 30%, 60%, and 90% irradiance reduction) over 12 months. Shading significantly affected the growth adaptability of seedlings. As shading increased, height, leaf traits (area, length, width), and light saturation point all initially increased, peaked at 30% shading, and then decreased. Conversely, basal diameter, leaf thickness, the maximum net photosynthetic rate, net photosynthetic rate, photosynthetic quantum efficiency, transpiration rate, and stomatal conductance progressively declined as shading increased. Biomass accumulation (in stems and roots), dark respiration rate, and light compensation point exhibited a U-shaped response to shading, being minimized under low or moderate shading. All shading treatments significantly reduced biomass and photosynthetic performance compared to controls. Multivariate analysis identified 0%–30% shading as optimal for cultivation, with 30% shading enhancing photomorphogenic responses while maintaining photosynthetic efficiency. The study findings suggest a novel seedling cultivation protocol for nursery use, in which initial establishment occurs under 30% shading to maximize vertical elongation, followed by the progressive reduction in shading to stimulate radial growth and optimal biomass partitioning. This approach mimics natural canopy gap dynamics, effectively mimicking natural regeneration in tropical rainforest ecosystems. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

22 pages, 35931 KiB  
Article
Spatiotemporal Dynamics and Future Climate Change Response of Forest Carbon Sinks in an Ecologically Oriented County
by Jiale Lei, Caihong Chen, Jiyun She and Ye Xu
Sustainability 2025, 17(14), 6552; https://doi.org/10.3390/su17146552 - 17 Jul 2025
Viewed by 276
Abstract
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models [...] Read more.
Research on forest carbon sinks is crucial for mitigating global climate change and achieving carbon peaking and neutrality. However, studies at the county level remain relatively limited. This study utilized multi-source remote sensing data and the Carnegie–Ames-Stanford Approach (CASA) and soil respiration models to estimate the forest net ecosystem productivity (NEP) in Taoyuan County from 2000 to 2023. The spatiotemporal differentiation was analyzed using seasonal Mann–Kendall tests, Theil–Sen slope estimation, and standard deviation ellipses. The forest NEP for 2035 was predicted under multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) by applying a discrete coupling of the Patch-generating Land Use Simulation (PLUS) model, incorporating territorial spatial planning policy, and using the CASA model. The results indicated that the Taoyuan County forest NEP exhibited a fluctuating upward trend from 2000 to 2023, with higher (lower) values in the west/south (east/north). Under future warming and humidification, the overall forest NEP in Taoyuan County was projected to decrease by 2035, with predicted NEP values across scenarios ranking as SSP5-8.5 > SSP1-2.6 > SSP2-4.5. The findings offer practical insights for improving local forest management, optimizing forest configuration, and guiding county-level “dual-carbon” policies under future climate and land use change, thereby contributing to ecological sustainability. Full article
Show Figures

Figure 1

18 pages, 3571 KiB  
Article
Morphological and Metabolic Adaptations to Increasing Temperature: Insights from the In Vitro Model of Maraena Whitefish
by Katrin Tönißen, Julia Brenmoehl, Heike Wanka and Bianka Grunow
Fishes 2025, 10(7), 352; https://doi.org/10.3390/fishes10070352 - 16 Jul 2025
Viewed by 166
Abstract
Physiological changes in animals induced by environmental shifts in aquatic ecosystems can be studied using fish cell lines derived from vulnerable species. Therefore, we investigated how environmental shifts—specifically, an increase of 5 °C in temperature—impact the physiology of the cell line CMAfin1 derived [...] Read more.
Physiological changes in animals induced by environmental shifts in aquatic ecosystems can be studied using fish cell lines derived from vulnerable species. Therefore, we investigated how environmental shifts—specifically, an increase of 5 °C in temperature—impact the physiology of the cell line CMAfin1 derived from maraena whitefish (Coregonus maraena). Cellular growth, morphology, and metabolic responses were examined under two growth conditions: a control temperature of 20 °C and an elevated temperature of 25 °C. Using trypan blue staining, automated cell counting, phase contrast microscopy, and actin staining, we observed morphological changes in the cells. Metabolic functions were assessed using a Seahorse XFe96 Flux Analyzer, focusing on the bioenergetic capacities of mitochondrial respiration and glycolytic activity. Hyperthermia resulted in faster growth rates but reduced cell size in the CMAfin1 cell line. The cells’ metabolic activity (mitochondrial respiration and glycolytic activity) was inhibited, leading to a quiescent energy state. Our findings indicate reduced motility and altered intercellular communication at higher temperatures. The results highlight the potential of in vitro models to study environmental stress on fish physiology and emphasize the value of fish cell lines for understanding metabolic responses. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Graphical abstract

15 pages, 5342 KiB  
Systematic Review
Bibliometrics and Visualization Analysis of Three Obligate Organohalide Respiring Bacteria Genera: A Systematic Review
by Lisi Jiang, Zirui Yu, Jiaqi Qu, Xiaohan Xu, Zirui Liu, Wenyuan Li and Yang Zhang
Microorganisms 2025, 13(7), 1668; https://doi.org/10.3390/microorganisms13071668 - 16 Jul 2025
Viewed by 293
Abstract
Organohalide-respiring bacteria (OHRB) facilitate the reductive dehalogenation of toxic halogenated compounds in the environment, which supports their growth and proliferation. Research conducted on OHRB has achieved notable advancements. However, given the intricacy of the ecosystem and the methodologies employed for microbial isolation, numerous [...] Read more.
Organohalide-respiring bacteria (OHRB) facilitate the reductive dehalogenation of toxic halogenated compounds in the environment, which supports their growth and proliferation. Research conducted on OHRB has achieved notable advancements. However, given the intricacy of the ecosystem and the methodologies employed for microbial isolation, numerous constraints persist. Further exploration is imperative to elucidate the physiological characteristics, ecological functions, and technological applications of OHRB. This study aimed to evaluate the outcomes and insights of prior research via a bibliometric analysis of three obligate OHRB genera—Dehalococcoides, Dehalobacter, and Dehalogenimonas—over a three-decade period from 1994 to 2024, based on the Web of Science (WOS) database. The results show that research on these three bacterial genera has advanced in sequence since the initiation of studies in this field. The research area encompasses the identification and isolation of novel OHRB species, the gene sequencing of related enzymes, and the role of microorganisms in the remediation of environmental pollutants, reflecting a gradual transition from individual investigations of OHRB to the applications of microorganisms in remediating complex environmental pollution. This study systematically reviewed the past research history of this field and conducted an in-depth analysis of research hotspots. The integration of this analysis with technological development trends and practical application requirements provides a theoretical basis and innovative concepts for future research directions in the field of ecological environment restoration. Full article
Show Figures

Figure 1

21 pages, 2314 KiB  
Article
Urea Fertilization Buffered Acid-Inhibiting Effect on Litter Decomposition in Subtropical Plantation Forests of Southern China
by Yonghui Lin, Xiangshi Kong, Zaihua He and Xingbing He
Forests 2025, 16(7), 1110; https://doi.org/10.3390/f16071110 - 4 Jul 2025
Viewed by 210
Abstract
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using [...] Read more.
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using two common tree species, Cunninghamia lanceolata and Cinnamomum camphora, and applied three acid deposition levels (0, 0.25, and 0.50 g H+ m−2 month−1) and four N fertilization levels (0, 3, 6, and 9 g N m−2 year−1) in a factorial design. Our results showed that acid deposition alone significantly reduced litter decomposition rates, with maximum mass loss decreasing by 23.6% for Cunninghamia and 36.3% for Cinnamomum (p < 0.05). Urea fertilization alone also suppressed decomposition, reducing maximum mass loss by 27.3% for Cunninghamia and 37.3% for Cinnamomum (p < 0.05). However, when combined, urea fertilization mitigated the suppressive effect of acid deposition, particularly under severe acid conditions, where maximum mass loss increased by 18.5% for Cunninghamia and 43.1% for Cinnamomum (p < 0.05). Acid deposition reduced microbial respiration and enzyme activities related to carbon cycling, while urea fertilization showed both positive and negative effects depending on the acid levels (p < 0.05). Urea can enhance the litter layer’s acid-buffering capacity, offering potential management insights for acid deposition-affected forests. Further research on microbial mechanisms across ecosystems is recommended. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 460
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

18 pages, 3086 KiB  
Article
Contribution of Different Forest Strata on Energy and Carbon Fluxes over an Araucaria Forest in Southern Brazil
by Marcelo Bortoluzzi Diaz, Pablo Eli Soares de Oliveira, Vanessa de Arruda Souza, Claudio Alberto Teichrieb, Hans Rogério Zimermann, Gustavo Pujol Veeck, Alecsander Mergen, Maria Eduarda Oliveira Pinheiro, Michel Baptistella Stefanello, Osvaldo L. L. de Moraes, Gabriel de Oliveira, Celso Augusto Guimarães Santos and Débora Regina Roberti
Forests 2025, 16(6), 1008; https://doi.org/10.3390/f16061008 - 16 Jun 2025
Viewed by 609
Abstract
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each [...] Read more.
Forest–atmosphere interactions through mass and energy fluxes significantly influence climate processes. However, due to anthropogenic actions, native Araucaria forests in southern Brazil, part of the Atlantic Forest biome, have been drastically reduced. This study quantifies CO2 and energy flux contributions from each forest stratum to improve understanding of surface–atmosphere interactions. Eddy covariance data from November 2009 to April 2012 were used to assess fluxes in an Araucaria forest in Paraná, Brazil, across the ecosystem, understory, and overstory strata. On average, the ecosystem acts as a carbon sink of −298.96 g C m−2 yr−1, with absorption doubling in spring–summer compared to autumn–winter. The understory primarily acts as a source, while the overstory functions as a CO2 sink, driving carbon absorption. The overstory contributes 63% of the gross primary production (GPP) and 75% of the latent heat flux, while the understory accounts for 94% of the ecosystem respiration (RE). The energy fluxes exhibited marked seasonality, with higher latent and sensible heat fluxes in summer, with sensible heat predominantly originating from the overstory. Annual ecosystem evapotranspiration reaches 1010 mm yr−1: 60% of annual precipitation. Water-use efficiency is 2.85 g C kgH2O−1, with higher values in autumn–winter and in the understory. The influence of meteorological variables on the fluxes was analyzed across different scales and forest strata, showing that solar radiation is the main driver of daily fluxes, while air temperature and vapor pressure deficit are more relevant at monthly scales. This study highlights the overstory’s dominant role in carbon absorption and energy fluxes, reinforcing the need to preserve these ecosystems for their crucial contributions to climate regulation and water-use efficiency. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 3511 KiB  
Article
Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils
by Mario Flores Aroni, José Henrique Cattanio and Claudio José Reis de Carvalho
Forests 2025, 16(6), 944; https://doi.org/10.3390/f16060944 - 4 Jun 2025
Viewed by 1348
Abstract
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace [...] Read more.
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace gas fluxes in Euterpe oleracea (açaí) plantations in upland areas, contrasting them with floodplain areas managed for açaí production in the eastern Amazon. Flux measurements were conducted during both the rainy and dry seasons using the closed dynamic chamber technique. In upland areas, CO2 fluxes exhibited spatial (plateau vs. lowland) and temporal (hourly, daily, and seasonal) variations. During both the rainy and dry months, CH4 uptake in upland soils was higher in lowland areas compared to the plateau. When comparing the two ecosystems, upland areas emitted more CO2 during the rainy season, while floodplain areas released more CH4 into the atmosphere. Unexpectedly, during the dry season, floodplain soils produced more CO2 and captured more CH4 from the atmosphere compared to upland soils. In upland areas, CO2-equivalent production reached 59.1 Mg CO2-eq ha−1 yr−1, while in floodplain areas, it reached 49.3 Mg CO2-eq ha−1 yr−1. Soil organic matter plays a vital role in preserving water and microorganisms, enhancing ecosystem productivity in uniform açaí plantations and intensifying the transfer of CH4 from the atmosphere to the soil. However, excessive soil moisture can create anoxic conditions, block gas diffusion, reduce soil respiration, and potentially turn the soil from a sink into a source of CH4. Full article
(This article belongs to the Special Issue Forest Dynamics Under Climate and Land Use Change)
Show Figures

Figure 1

17 pages, 782 KiB  
Article
Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia
by Dmitry Schepaschenko, Liudmila Mukhortova and Anatoly Shvidenko
Forests 2025, 16(6), 925; https://doi.org/10.3390/f16060925 - 31 May 2025
Viewed by 483
Abstract
Soil respiration (Rs) is a significant contributor to the global carbon cycle, with its two main sources—microbial (heterotrophic, Rh) and plant root (autotrophic, Ra) respiration—being sensitive to various environmental factors. This study investigates the impact of ecosystem disturbances (Ds), including fire, biogenic (insects [...] Read more.
Soil respiration (Rs) is a significant contributor to the global carbon cycle, with its two main sources—microbial (heterotrophic, Rh) and plant root (autotrophic, Ra) respiration—being sensitive to various environmental factors. This study investigates the impact of ecosystem disturbances (Ds), including fire, biogenic (insects and pathogens), and harvesting, on soil respiration in Russia’s forest ecosystems. We introduced response factors to account for the effects of these disturbances on Rh over three distinct stages of ecosystem recovery. Our analysis, based on data from case studies, remote sensing data, and the national forest inventory, revealed that Ds increase Rh by an average of 2.1 ± 3.2% during the restoration period. Biogenic disturbances showed the highest impacts, with average increases of 16.5 ± 3.2%, while the contributions of clearcuts and wildfires were, on average, less pronounced—2.0 ± 3.1% and 0.8 ± 3.3%, respectively. These disturbances modify forest soil dynamics by affecting soil temperature, moisture, and nutrient availability, influencing carbon fluxes over varying timescales. This research underscores the role of ecosystem disturbances in altering soil carbon dynamics and highlights the need for improved data and monitoring of forest disturbances to reduce uncertainty in soil carbon flux estimates. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

32 pages, 4186 KiB  
Article
Analysis of Influencing Factors of Terrestrial Carbon Sinks in China Based on LightGBM Model and Bayesian Optimization Algorithm
by Yana Zou and Xiangrong Wang
Sustainability 2025, 17(11), 4836; https://doi.org/10.3390/su17114836 - 24 May 2025
Cited by 1 | Viewed by 480
Abstract
With accelerating climate change and urbanization, regional carbon balance faces increasing uncertainty. Terrestrial carbon sinks play a crucial role in advancing China’s sustainable development under the dual-carbon strategy. This study quantitatively modeled China’s terrestrial carbon sink capacity and analyzed the multidimensional relationships between [...] Read more.
With accelerating climate change and urbanization, regional carbon balance faces increasing uncertainty. Terrestrial carbon sinks play a crucial role in advancing China’s sustainable development under the dual-carbon strategy. This study quantitatively modeled China’s terrestrial carbon sink capacity and analyzed the multidimensional relationships between impact factors and carbon sinks. After preprocessing multi-source raster data, we introduced kernel normalized the difference vegetation index (kNDVI) to the Carnegie–Ames–Stanford approach (CASA) model, together with a heterotrophic respiration (Rh) empirical equation, to simulate pixel-level net ecosystem productivity (NEP) across China. A light gradient-boosting machine (LightGBM) model, optimized via Bayesian algorithms, was trained to regress NEP drivers, categorized into atmospheric components (O3, NO2, and SO2) and subsurface properties (a digital elevation model (DEM), enhanced vegetation index (EVI), soil moisture (SM)), and human activities (land use/cover change (LUCC), POP, gross domestic product (GDP)). Shapley Additive Explanation (SHAP) values were used for model interpretation. The results reveal significant spatial heterogeneity in NEP across geographic and climatic contexts. The pixel-level mean and total NEP in China were 268.588 gC/m2/yr and 2.541 PgC/yr, respectively. The north tropical zone (NRZ) exhibited the highest average NEP (828.631 gC/m2/yr), while the middle subtropical zone (MSZ) and south subtropical zone (SSZ) demonstrated the most stable NEP distributions. LightGBM achieved high simulation accuracy, further enhanced by Bayesian optimization. SHAP analysis identified EVI as the most influential factor, followed by SM, NO2, DEM, and POP. Additionally, LightGBM effectively captured nonlinear relationships and variable interactions. Full article
Show Figures

Figure 1

Back to TopTop