Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = eco-friendly cements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 (registering DOI) - 2 Aug 2025
Viewed by 176
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 5156 KiB  
Article
Enhancing the Mechanical Properties of Sulfur-Modified Fly Ash/Metakaolin Geopolymers with Polypropylene Fibers
by Sergey A. Stel’makh, Evgenii M. Shcherban’, Alexey N. Beskopylny, Levon R. Mailyan, Alexandr A. Shilov, Irina Razveeva, Samson Oganesyan, Anastasia Pogrebnyak, Andrei Chernil’nik and Diana Elshaeva
Polymers 2025, 17(15), 2119; https://doi.org/10.3390/polym17152119 - 31 Jul 2025
Viewed by 305
Abstract
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur [...] Read more.
High demand for sustainable solutions in the construction industry determines the significant relevance of developing new eco-friendly composites with a reduced carbon impact on the environment. The main aim of this study is to investigate the possibility and efficiency of using technical sulfur (TS) as a modifying additive for geopolymer composites and to select the optimal content of polypropylene fiber (PF). To assess the potential of TS, experimental samples of geopolymer solutions based on metakaolin and fly ash were prepared. The TS content varied from 0% to 9% by weight of binder in 3% increments. In the first stage, the density, compressive and flexural strength, capillary water absorption and microstructure of hardened geopolymer composites were tested. The TS additive in an amount of 3% was the most effective and provided an increase in compressive strength by 12.6%, flexural strength by 12.8% and a decrease in capillary water absorption by 18.2%. At the second stage, the optimal PF content was selected, which was 0.75%. The maximum increases in strength properties were recorded for the composition with 3% TS and 0.75% PF: 8% for compression and 32.6% for bending. Capillary water absorption decreased by 12.9%. The geopolymer composition developed in this work, modified with TP and PF, has sufficient mechanical and physical properties and can be considered for further study in order to determine its competitiveness with cement composites in real construction practice. Full article
(This article belongs to the Special Issue Challenges and Trends in Polymer Composites—2nd Edition)
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 119
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 208
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 247
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

27 pages, 19505 KiB  
Article
Analysis on the Ductility of One-Part Geopolymer-Stabilized Soil with PET Fibers: A Deep Learning Neural Network Approach
by Guo Hu, Junyi Zhang, Ying Tang and Jun Wu
Buildings 2025, 15(15), 2645; https://doi.org/10.3390/buildings15152645 - 27 Jul 2025
Viewed by 269
Abstract
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance [...] Read more.
Geopolymers, as an eco-friendly alternative construction material to ordinary Portland cement (OPC), exhibit superior performance in soil stabilization. However, their inherent brittleness limits engineering applications. To address this, polyethylene terephthalate (PET) fibers can be incorporated into a one-part geopolymer (OPG) binder to enhance ductility while promoting plastic waste recycling. However, the evaluation of ductile behavior of OPG-stabilized soil with PET fiber normally demands extensive laboratory and field experiments. Leveraging artificial intelligence, a predictive model can be developed for this purpose. In this study, data were collected from compressive and tensile tests performed on the OPG-stabilized soil with PET fiber. Four deep learning neural network models, namely ANN, BPNN, CNN, and LSTM, were then used to construct prediction models. The input parameters in the model included the fly ash (FA) dosage, dosage and length of the PET fiber, and the Curing Time. Results revealed that the LSTM model had the best performance in predicting the three ductile properties (i.e., the compressive strength index [UCS], strain energy index [CSE], and tensile strength index [TES]). The SHAP and 2D-PDP methods were further used to verify the rationality of the LSTM model. It is found that the Curing Time was the most important factor for the strength and ductile behavior. The appropriate addition of PET fiber of a certain length had a positive impact on the ductility index. Thus, for the OPG-stabilized soil, the optimal dosage and length of PET fiber were found to be 1.5% and 9 mm, respectively. Additionally, there was a synergistic effect between FA and PET on the ductility metric. This research provides theoretical support for the application of geopolymer and PET fiber in enhancing the ductility of the stabilized soil. Full article
Show Figures

Figure 1

27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Viewed by 294
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

23 pages, 2548 KiB  
Review
Incorporation of Waste Glass Powder in the Sustainable Development of Concrete
by Arvindan Sivasuriyan and Eugeniusz Koda
Materials 2025, 18(14), 3223; https://doi.org/10.3390/ma18143223 - 8 Jul 2025
Viewed by 382
Abstract
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review [...] Read more.
The steep incline in the rising need for sustainable construction materials has marked the emerging trend of comprehensive research on utilizing waste glass powder (WGP) as a partial substitute for fine aggregates, such as cement, and coarse aggregates in concrete preparation. This review thoroughly examines WGP-incorporated concrete in terms of its mechanical and durability properties. It explores compressive, tensile, and flexural strength, as well as its resistance to freeze–thaw cycles, sulfate attack, and chloride ion penetration. The characteristic microstructure densification, strength development, and durability performance can be attributed to the pozzolanic activity of WGP that forms additional calcium silicate hydrate (C-S-H). The review also highlights the optimal replacement levels of WGP to balance mechanical performance and long-term stability while addressing potential challenges, such as alkali–silica reaction (ASR) and reduced workability at high replacement ratios. By consolidating recent research findings, this study highlights the feasibility of WGP as a sustainable supplementary cementitious material (SCM), promoting eco-friendly construction while mitigating environmental concerns associated with glass waste disposal. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

18 pages, 1437 KiB  
Article
Exploration of Microbially Induced Carbonate Precipitation Technology for the Protection of Soil on Agricultural Drainage Ditch Slopes
by Xinran Huang, Jiang Li, Mingxiao Su, Xiyun Jiao, Qiuming Wu and Zhe Gu
Water 2025, 17(13), 2010; https://doi.org/10.3390/w17132010 - 4 Jul 2025
Viewed by 379
Abstract
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), [...] Read more.
Microbially induced carbonate precipitation (MICP) offers an eco-friendly approach to stabilize porous materials. This study evaluates its feasibility for protecting agricultural drainage ditch slopes through laboratory tests. Liquid experiments assessed calcium carbonate (CaCO3) precipitation rates under varying bacteria–cementation solution ratios (BCR), cementation solution concentrations (1–2 mol/L), and urease inhibitor (NBPT) contents (0–0.3%). Soil experiments further analyzed the effects of solidified layer thickness (4 cm vs. 8 cm) and curing cycles on soil stabilization. The results showed that CaCO3 precipitation peaked at a BCR of 4:5 and declined when NBPT exceeded 0.1%. Optimal parameters (0.1% NBPT, 1 mol/L cementation solution, BCR 4:5) were applied to soil tests, revealing that multi-cycle treatments enhanced soil water retention and CaCO3 content (up to 7.6%) and reduced disintegration rates (by 70%) and permeability (by 83%). A 4 cm solidified layer achieved higher Ca2+ utilization, while an 8 cm layer matched or exceeded 4 cm performance with shorter curing. Calcite crystals dominated CaCO3 formation. Crucially, reagent dosage should approximate four times the target layer’s requirement to ensure efficacy. These findings demonstrate that MICP, when optimized, effectively stabilizes ditch slopes using minimal reagents, providing a sustainable strategy for agricultural soil conservation. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

24 pages, 6001 KiB  
Review
A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications
by Xiaohuan Jing, Daqiang Cang, Mohammed Ramadan, Alaa Mohsen and Lingling Zhang
Recycling 2025, 10(4), 132; https://doi.org/10.3390/recycling10040132 - 2 Jul 2025
Viewed by 469
Abstract
Recyclable aluminum-containing industrial solid waste can be used as supplementary cementitious materials (SCMs) to replace cement (30–50%), thereby reducing CO2 emissions during cement production and improving the mechanical properties and durability of concrete. Therefore, the use of SCMs in building materials presents [...] Read more.
Recyclable aluminum-containing industrial solid waste can be used as supplementary cementitious materials (SCMs) to replace cement (30–50%), thereby reducing CO2 emissions during cement production and improving the mechanical properties and durability of concrete. Therefore, the use of SCMs in building materials presents significant potential. Due to the presence of the aluminum phase in the SCMs, the hydration products of cements blended with SCMs are changed. Compared to the primary hydration product of conventional cement, calcium silicate hydrate (CSH), the main hydration product of cement blended with SCMs is calcium aluminosilicate hydrate (CASH), which exhibits a more complex molecular structure. Understanding the role of Al in C-A-S-H at the atomic scale facilitates mechanistic insights and promotes the sustainable utilization of SCMs in eco-friendly construction. Molecular dynamics enables the rapid and accurate structural analysis and property prediction of materials. Therefore, this paper presents a systematic review of molecular dynamics simulations of CASH and discusses the role of Al in the molecular structure, dynamic, and mechanical behavior of CASH. It also analyzes the interfacial properties of CASH composites, the immobilization and transport of ions in CASH, and the temperature effect on the structure and properties of CASH. Finally, the challenges and perspectives for molecular dynamics simulation of CASH are presented. Full article
Show Figures

Figure 1

21 pages, 3185 KiB  
Article
Sustainable Use of Gypsum Waste for Applications in Soil–Cement Bricks: Mechanical, Environmental, and Durability Performance
by Elvia Soraya Santos Nascimento, Herbet Alves de Oliveira, Cochiran Pereira dos Santos, Maria de Andrade Gomes, Mário Ernesto Giroldo Valerio and Zélia Soares Macedo
Ceramics 2025, 8(3), 83; https://doi.org/10.3390/ceramics8030083 - 1 Jul 2025
Viewed by 484
Abstract
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in [...] Read more.
This study investigates the use of gypsum waste from civil construction as a partial substitute for cement in soil–cement formulations, aiming to produce eco-friendly bricks aligned with circular economy principles. Formulations were prepared using a 1:8 cement–soil ratio, with gypsum replacing cement in proportions ranging from 5% to 40%. The raw materials were characterized in terms of chemical composition, crystalline phases, plasticity, and thermal behavior. Specimens, molded by uniaxial pressing into cylindrical bodies and cured for either 7 or 28 days, were evaluated for compressive strength, water absorption, durability, and microstructure. Water absorption remained below 20% in all samples, with an average value of 16.20%. Compressive strength after 7 days exhibited a slight reduction with increasing gypsum content, ranging from 16.36 MPa (standard formulation) to 13.74 MPa (40% gypsum), all meeting the quality standards. After 28 days of curing, the formulation containing 10% gypsum achieved the highest compressive strength (26.7 MPa), surpassing the reference sample (25.2 MPa). Mass loss during wetting–drying cycles remained within acceptable limits for formulations incorporating up to 20% gypsum. Notably, samples with 5% and 10% gypsum demonstrated superior mechanical performance, while the 20% formulation showed performance comparable to the standard formulation. These findings indicate that replacing up to 20% of cement with gypsum waste is a technically and environmentally viable approach, supporting sustainable development, circular economy, and reduction of construction-related environmental impacts. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 729
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 6793 KiB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 318
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

21 pages, 5254 KiB  
Article
Performance of Concrete Incorporating Waste Glass Cullet and Snail Shell Powder: Workability and Strength Characteristics
by Udeme Udo Imoh, Akindele Christopher Apata and Majid Movahedi Rad
Buildings 2025, 15(13), 2161; https://doi.org/10.3390/buildings15132161 - 21 Jun 2025
Viewed by 687
Abstract
This study investigates the combined use of waste glass cullet (WGC) and snail shell powder (SSP) as a sustainable binary cementitious system to enhance the mechanical performance and durability of concrete, particularly for rigid pavement applications. Nine concrete mixes were formulated: a control [...] Read more.
This study investigates the combined use of waste glass cullet (WGC) and snail shell powder (SSP) as a sustainable binary cementitious system to enhance the mechanical performance and durability of concrete, particularly for rigid pavement applications. Nine concrete mixes were formulated: a control mix, four mixes with 5%, 10%, 15%, and 20% WGC as partial cement replacement, and four corresponding mixes with 1% SSP addition. Slump, compressive strength, and flexural strength were evaluated at various curing ages. Results showed that while WGC reduced workability due to its angular morphology (slump decreased from 30 mm to 20 mm at 20% WGC), the inclusion of SSP slightly mitigated this reduction (21 mm at 20% WGC + 1% SSP). At 28 days, compressive strength increased from 40.0 MPa (control) to 45.0 MPa with 20% WGC and further to 48.0 MPa with the addition of SSP. Flexural strength also improved from 7.0 MPa (control) to 7.8 MPa with both WGC and SSP. These improvements were statistically significant (p < 0.05) and supported by correlation analysis, which revealed a strong inverse relationship between WGC content and slump (r = −0.97) and strong positive correlations between early and later-age strength. Microstructural analyses (SEM/EDX) confirmed enhanced matrix densification and pozzolanic activity. The findings demonstrate that up to 20% WGC with 1% SSP not only enhances strength development but also provides a viable, low-cost, and eco-friendly alternative for producing durable, load-bearing, and sustainable concrete for rigid pavements and infrastructure applications. This approach supports circular economic principles by valorizing industrial and biogenic waste streams in civil construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 6813 KiB  
Article
Development of Geopolymeric Mortar from Metakaolin and Ignimbrite from the Añashuayco Quarries, Peru, for Civil Construction
by Alan Ícaro Sousa Morais, Daniela Krisbéll Ortega Palmeira, Ariane Maria Da Silva Santos Nascimento, Josy Anteveli Osajima, Ramón Raudel Peña Garcia and Fredy Alberto Huamán-Mamani
Sustainability 2025, 17(13), 5714; https://doi.org/10.3390/su17135714 - 21 Jun 2025
Viewed by 629
Abstract
The construction industry generates large amounts of waste and high CO2 emissions, especially from cement production. Sustainable alternatives, such as geopolymers, help reduce these impacts by promoting eco-friendly materials. This study aimed to develop geopolymer mortar using ignimbrite (IG) residues from the [...] Read more.
The construction industry generates large amounts of waste and high CO2 emissions, especially from cement production. Sustainable alternatives, such as geopolymers, help reduce these impacts by promoting eco-friendly materials. This study aimed to develop geopolymer mortar using ignimbrite (IG) residues from the Arequipa region, Peru, combined with metakaolin (MK). The raw materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) to assess the chemical composition, structure, and morphology. Geopolymeric mortars were synthesized with varying MK/IG ratios while maintaining a fixed fine sand proportion. An activating solution of 9 mol/L NaOH was used with different liquid-to-solid ratios. Geopolymers cured at room temperature for 28 days exhibited lower compressive strength than those dried at 50 °C for 48 h or sequentially at 50 °C for 48 h followed by 90 °C for 12 h. The highest IG-content mixture achieved a compressive strength of 18 MPa, while the MK-based geopolymer reached 12 MPa, both under high-temperature curing. An increase in the SiO2/Al2O3 molar ratio was also associated with improved mechanical performance, reinforcing the influence of precursor composition on geopolymerization. These results highlight the potential of regional ignimbrite for the production of geopolymer mortar, promoting sustainable and innovative building materials. Full article
Show Figures

Graphical abstract

Back to TopTop