Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = eco-friendly cell disruption methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2569 KB  
Article
Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
by Gabriela N. Tenea, Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu and Roua Gabriela Popescu
Antibiotics 2025, 14(9), 851; https://doi.org/10.3390/antibiotics14090851 - 22 Aug 2025
Viewed by 153
Abstract
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied [...] Read more.
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied individually or in combination thereof, against MDR-Escherichia coli strain L1PEag1. Methods: Fourteen ExAFs were screened for inhibitory activity using time–kill assays, and structural damage to bacterial cells was assessed via scanning and transmission electron microscopy (SEM/TEM). The most potent formulation was further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) employing a Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) approach for untargeted metabolite profiling. Results: Among the tested formulations, E10, comprising CFS from Weissella cibaria UTNGt21O, exhibited the strongest inhibitory activity (zone of inhibition: 17.12 ± 0.22 mm), followed by E1 (CFS from Lactiplantibacillus plantarum Gt28L and Lactiplantibacillus plantarum Gt2, 3:1 v/v) and E2 (Gt28L CFS + EPS from Gt2, 3:1 v/v). Time–kill assays demonstrated rapid, dose-dependent bactericidal activity: E1 and E10 achieved >98% reduction in viable counts within 2–3 h, at 1× MIC, while E2 sustained 98.24% inhibition over 18 h, at 0.25× MIC. SEM and TEM revealed pronounced ultrastructural damage, including membrane disruption, cytoplasmic condensation, and intracellular disintegration, consistent with a membrane-targeting mode of action. Metabolomic profiling of E10 identified 22 bioactive metabolites, including lincomycin, the proline-rich peptide Val–Leu–Pro–Val–Pro–Gln, multiple flavonoids, and loperamide. Several compounds shared structural similarity with ribosomally synthesized and post-translationally modified peptides (RiPPs), including lanthipeptides and lassopeptides, suggesting a multifaceted antimicrobial mechanism. Conclusions: These findings position ExAFs, particularly E10, as promising, peptide-rich, bio-based antimicrobial candidates for food safety or therapeutic applications. The co-occurrence of RiPP analogs and secondary metabolites in the formulation suggests the potential for complementary or multi-modal bactericidal effects, positioning these compounds as promising eco-friendly alternatives for combating MDR pathogens. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

37 pages, 4016 KB  
Review
Recent Trends in Bioinspired Metal Nanoparticles for Targeting Drug-Resistant Biofilms
by Devaraj Bharathi and Jintae Lee
Pharmaceuticals 2025, 18(7), 1006; https://doi.org/10.3390/ph18071006 - 5 Jul 2025
Viewed by 848
Abstract
Multidrug-resistant (MDR) biofilm infections characterized by densely packed microbial communities encased in protective extracellular matrices pose a formidable challenge to conventional antimicrobial therapies and are a major contributor to chronic, recurrent and device-associated infections. These biofilms significantly reduce antibiotic penetration, facilitate the survival [...] Read more.
Multidrug-resistant (MDR) biofilm infections characterized by densely packed microbial communities encased in protective extracellular matrices pose a formidable challenge to conventional antimicrobial therapies and are a major contributor to chronic, recurrent and device-associated infections. These biofilms significantly reduce antibiotic penetration, facilitate the survival of dormant persister cells and promote horizontal gene transfer, all of which contribute to the emergence and persistence of MDR pathogens. Metal nanoparticles (MNPs) have emerged as promising alternatives due to their potent antibiofilm properties. However, conventional synthesis methods are associated with high costs, complexity, inefficiency and negative environmental impacts. To overcome these limitations there has been a global push toward the development of sustainable and eco-friendly synthesis approaches. Recent advancements have demonstrated the successful use of various plant extracts, microbial cultures, and biomolecules for the green synthesis of MNPs, which offers biocompatibility, scalability, and environmental safety. This review provides a comprehensive overview of recent trends and the latest progress in the green synthesis of MNPs including silver (Ag), gold (Au), platinum (Pt), and selenium (Se), and also explores the mechanistic pathways and characterization techniques. Furthermore, it highlights the antibiofilm applications of these MNPs emphasizing their roles in disrupting biofilms and restoring the efficacy of existing antimicrobial strategies. Full article
Show Figures

Figure 1

21 pages, 2743 KB  
Article
From Flower to Medicine: Green-Synthesized Silver Nanoparticles as Promising Antibacterial Agents
by Mohd Saeed, Reem Binsuwaidan, Nawaf Alshammari, Ahmed M. Alharbi, Nadiyah M. Alabdallahd, Nawaf A. Alotaibi, Samra Siddiqui and Safia Obaidur
Pharmaceuticals 2025, 18(5), 691; https://doi.org/10.3390/ph18050691 - 7 May 2025
Cited by 1 | Viewed by 919
Abstract
Background: Breast cancer and chronic bacterial infections are pressing global health issues, and traditional treatments are often hampered by resistance and adverse side effects. This study sought to create silver nanoparticles (AgNPs) through eco-friendly synthesis using Hibiscus rosa sinensis (HRS) flower extract and [...] Read more.
Background: Breast cancer and chronic bacterial infections are pressing global health issues, and traditional treatments are often hampered by resistance and adverse side effects. This study sought to create silver nanoparticles (AgNPs) through eco-friendly synthesis using Hibiscus rosa sinensis (HRS) flower extract and to assess their antibacterial, antibiofilm, and anticancer properties. Methods: HRS extract functioned as both a reducing and stabilizing agent in the synthesis of AgNPs. The nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Antibacterial and antibiofilm properties were evaluated against gram-positive (Staphylococcus aureus and Enterococcus faecalis) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria using agar well diffusion and XTT reduction assays. The cytotoxic effects on MDMB-231 breast cancer cells and normal splenocytes were measured using the MTT assay, whereas fluorescence microscopy was used to observe reactive oxygen species (ROS) production, changes in mitochondrial membrane potential, and caspase-3 activation. Results: The synthesized HRS-AgNPs, primarily ranging from 10 to 50 nm, displayed a distinct surface plasmon resonance (SPR) peak at 428 nm. They exhibit notable antibacterial activity, especially against gram-positive bacteria, and effectively disrupt bacterial biofilms. Cytotoxicity evaluations showed that HRS-AgNPs decreased the viability of MDMB-231 cells in a dose-dependent manner, with minimal toxicity observed in normal splenocytes. The increase in ROS levels, reduction in mitochondrial membrane potential, and heightened caspase-3 activity collectively suggest apoptosis-driven cell death in cancer cells. Conclusions: HRS-AgNPs demonstrated dual functionality, with strong antibacterial and selective anticancer effects. Their environmentally friendly synthesis, stability, and significant biological activities suggest their potential for further development, including in vivo safety and efficacy assessments for clinical applications in treating infections and breast cancer. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

19 pages, 8471 KB  
Article
Green Nanoparticle Synthesis in the Application of Non-Bacterial Mastitis in Cattle
by Michał Motrenko, Agata Lange, Aleksandra Kalińska, Marcin Gołębiewski, Małgorzata Kunowska-Slósarz, Barbara Nasiłowska, Joanna Czwartos, Wojciech Skrzeczanowski, Aleksandra Orzeszko-Rywka, Tomasz Jagielski, Anna Hotowy, Mateusz Wierzbicki and Sławomir Jaworski
Molecules 2025, 30(6), 1369; https://doi.org/10.3390/molecules30061369 - 18 Mar 2025
Viewed by 1013
Abstract
This study explores the potential of silver nanoparticles (AgNPs) synthesized through an eco-friendly method using coffee extract to combat non-bacterial mastitis in dairy cattle. Mastitis, often caused by pathogens such as yeasts and algae like Prototheca spp., poses a challenge due to the [...] Read more.
This study explores the potential of silver nanoparticles (AgNPs) synthesized through an eco-friendly method using coffee extract to combat non-bacterial mastitis in dairy cattle. Mastitis, often caused by pathogens such as yeasts and algae like Prototheca spp., poses a challenge due to the limited efficacy of traditional antibiotics. This research utilized strains isolated from mastitis milk and assessed the nanoparticles’ physicochemical properties, antimicrobial efficacy, and impact on biofilm formation and microorganism invasion. AgNPs demonstrated a spherical shape with a mean hydrodynamic diameter of ~87 nm and moderate colloidal stability. Antimicrobial tests revealed significant growth inhibition of yeast and Prototheca spp., with minimal inhibitory concentrations (MICs) as low as 10 mg/L for certain strains. Biofilm formation was notably disrupted, and microorganism invasion in bioprinted gels was significantly reduced, indicating the broad-spectrum potential of AgNPs. The study highlights the nanoparticles’ ability to damage cell membranes and inhibit metabolic activities, presenting a promising alternative for managing infections resistant to conventional treatments. These findings suggest that green-synthesized AgNPs could play a pivotal role in developing sustainable solutions for mastitis treatment, particularly for pathogens with limited treatment options. Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials in Medicine and Health Care)
Show Figures

Figure 1

17 pages, 2265 KB  
Article
Cold Plasma Technology: A Sustainable Approach to Milk Preservation by Reducing Pathogens and Enhancing Oxidative Stability
by Hayam M. Abbas, Ebtehal A. Altamim, Mohamed Salama, Mohamed T. Fouad and Hamdy A. Zahran
Sustainability 2024, 16(20), 8754; https://doi.org/10.3390/su16208754 - 10 Oct 2024
Cited by 6 | Viewed by 3378
Abstract
Pathogenic microorganisms and lipid oxidation are critical challenges in the dairy industry, influencing both food safety and quality. This study explores the potential of cold plasma (CP) technology as a sustainable alternative for milk preservation compared to conventional pasteurization. CP treatment utilizes ionized [...] Read more.
Pathogenic microorganisms and lipid oxidation are critical challenges in the dairy industry, influencing both food safety and quality. This study explores the potential of cold plasma (CP) technology as a sustainable alternative for milk preservation compared to conventional pasteurization. CP treatment utilizes ionized gas to generate reactive species, which effectively disrupt microbial cell membranes and inactivate pathogens, thereby sterilizing the milk. We assessed raw, pasteurized, and cold plasma-treated milk samples, focusing on microbial growth, lipid oxidation, and oxidative stability. Our findings indicate that CP treatment significantly reduced microbial contamination, effectively inhibiting the growth of pathogenic bacteria and delaying acidity development in milk. In contrast, pasteurized milk exhibited a notable increase in peroxide values, indicating lipid deterioration. Furthermore, the oxidative stability of cold plasma-treated milk was enhanced, with an induction period extending from approximately five to seven hours, demonstrating its superior resistance to oxidation. In conclusion, CP has emerged as a promising eco-friendly technology for prolonging the shelf life of milk by mitigating microbial growth and lipid oxidation. This method not only aligns with sustainability goals by reducing the need for chemical preservatives but also enhances the overall quality of milk products. Future research should focus on large-scale applications and the impacts of CP on other essential milk components, particularly fat-soluble vitamins, to fully understand its sustainability benefits in the dairy sector. Full article
(This article belongs to the Special Issue Sustainable Food Preservation)
Show Figures

Figure 1

15 pages, 4521 KB  
Article
Environmentally Friendly UV Absorbers: Synthetic Characterization and Biosecurity Studies of the Host–Guest Supramolecular Complex
by Luwei Tian, Yanan Wu, Yetong Hou, Yaru Dong, Kaijie Ni and Ming Guo
Int. J. Mol. Sci. 2024, 25(15), 8476; https://doi.org/10.3390/ijms25158476 - 3 Aug 2024
Viewed by 1220
Abstract
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host–guest supramolecule [...] Read more.
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host–guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the “saturated solution method”, and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field. Full article
Show Figures

Graphical abstract

24 pages, 4645 KB  
Article
Extraction of Protein and Bioactive Compounds from Mediterranean Red Algae (Sphaerococcus coronopifolius and Gelidium spinosum) Using Various Innovative Pretreatment Strategies
by Jihen Dhaouafi, Naima Nedjar, Mourad Jridi, Montassar Romdhani and Rafik Balti
Foods 2024, 13(9), 1362; https://doi.org/10.3390/foods13091362 - 28 Apr 2024
Cited by 15 | Viewed by 5638
Abstract
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with [...] Read more.
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with proteins were quantified. In addition, morphological changes at the cellular level in response to the different pretreatment methods were observed by an optical microscope. Finally, the antioxidant capacity of obtained protein extracts was evaluated using three in vitro tests. For both S. coronopifolius and G. spinosum, ultrasonication for 60 min proved to be the most effective technique for protein extraction, yielding values of 3.46 ± 0.06 mg/g DW and 9.73 ± 0.41 mg/g DW, respectively. Furthermore, the highest total contents of phenolic compounds, flavonoids, and carbohydrates were also recorded with the same method. However, the highest pigment contents were found with ultrasonication for 15 min. Interestingly, relatively high antioxidant activities like radical scavenging activity (31.57–65.16%), reducing power (0.51–1.70, OD at 700 nm), and ferrous iron-chelating activity (28.76–61.37%) were exerted by the different protein extracts whatever the pretreatment method applied. This antioxidant potency could be attributed to the presence of polyphenolic compounds, pigments, and/or other bioactive substances in these extracts. Among all the used techniques, ultrasonication pretreatment for 60 min appears to be the most efficient method in terms of destroying the macroalgae cell wall and extracting the molecules of interest, especially proteins. The protein fractions derived from the two red macroalgae under these conditions were precipitated with ammonium sulfate, lyophilized, and their molecular weight distribution was determined using SDS-PAGE. Our results showed that the major protein bands were observed between 25 kDa and 60 kDa for S. coronopifolius and ranged from 20 kDa to 150 kDa for G. spinosum. These findings indicated that ultrasonication for 60 min could be sufficient to disrupt the algae cells for obtaining protein-rich extracts with promising biological properties, especially antioxidant activity. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

26 pages, 3605 KB  
Review
Advancements in Biological Strategies for Controlling Harmful Algal Blooms (HABs)
by Hassan Mohamad Anabtawi, Woo Hyoung Lee, Abdulaziz Al-Anazi, Mohamed Mostafa Mohamed and Ashraf Aly Hassan
Water 2024, 16(2), 224; https://doi.org/10.3390/w16020224 - 9 Jan 2024
Cited by 24 | Viewed by 11671
Abstract
Harmful algal blooms (HABs) are a primary environmental concern, threatening freshwater ecosystems and public health and causing economic damages in the billions of dollars annually. These blooms, predominantly driven by phytoplankton species like cyanobacteria, thrive in nutrient-rich, warm, and low-wind environments. Because of [...] Read more.
Harmful algal blooms (HABs) are a primary environmental concern, threatening freshwater ecosystems and public health and causing economic damages in the billions of dollars annually. These blooms, predominantly driven by phytoplankton species like cyanobacteria, thrive in nutrient-rich, warm, and low-wind environments. Because of the adverse impacts of HABs, this review examines various control methods, focusing on biological strategies as sustainable solutions. While effective in disrupting algal populations, traditional chemical and physical interventions carry ecological risks and can be resource-intensive. Biological control methods, including biomanipulation and using algicidal microorganisms such as Streptococcus thermophiles, Myxobacteria, and Lopharia spadicea, emerge as eco-friendly alternatives offering long-term benefits. Additionally, barley and rice straw application has demonstrated efficacy in curbing HAB growth. These biological approaches work by inhibiting algal proliferation, disrupting cellular structures, and fostering algal cell aggregation. Despite their advantages over conventional methods, biological controls face challenges, including intricate ecological interactions. This article delves into the latest biological techniques aimed at eradicating HABs, intending to diminish their frequency and reduce toxin levels in aquatic environments. While most research to date has been confined to laboratory settings, scaling these methods to field applications presents hurdles due to the variability and complexity of natural ecosystems. The review underscores the need for further research and development in this critical area of environmental science. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

19 pages, 13925 KB  
Article
Antimildew Effect of Three Phenolic Compounds and the Efficacy of Antimildew Sliced Bamboo Veneer
by Shiqin Chen, Yingying Shan, Chunlin Liu, Chungui Du, Jiawei Zhu, Fei Yang, Yuran Shao, Qichao Bao, Yuting Wang, Ying Ran and Wenxiu Yin
Molecules 2023, 28(13), 4941; https://doi.org/10.3390/molecules28134941 - 23 Jun 2023
Cited by 9 | Viewed by 1615
Abstract
The development of the bamboo industry has been hindered by environmental issues caused by the application of bamboo preservatives. Chinese herbal phenolic compounds have been shown to possess broad-spectrum, potent antimildew properties, making them promising candidates for the development of new bamboo mildew [...] Read more.
The development of the bamboo industry has been hindered by environmental issues caused by the application of bamboo preservatives. Chinese herbal phenolic compounds have been shown to possess broad-spectrum, potent antimildew properties, making them promising candidates for the development of new bamboo mildew inhibitors. In this study, we investigated the antimildew properties of three phenolic compounds, eugenol, carvacrol, and paeonol, against common mildews in bamboo materials using the Oxford cup method and the double-dilution method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the antimildew mechanism and its effects on mildew cell morphology. Our results showed that carvacrol exhibited the strongest antimildew activity, with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 1.56 mg/mL and 1.76 mg/mL, respectively, followed by eugenol and paeonol. At a concentration of 25 mg/mL, eugenol and carvacrol had an inhibitory rate of over 50% against various mildews. Different concentrations of the three compounds significantly disrupted the morphology and structural integrity of mildew hyphae, with the extent of damage increasing with concentration and treatment duration. In the sliced bamboo mildew prevention experiment, carvacrol at a concentration of 29.25 mg/mL was found to be highly effective against all tested mildews. Our study provides new insights and a theoretical basis for the development of eco-friendly bamboo mildew inhibitors based on plant phenolic compounds. Full article
Show Figures

Graphical abstract

17 pages, 2197 KB  
Article
Synthesis of Chitosan-Based Gold Nanoparticles: Antimicrobial and Wound-Healing Activities
by Amr H. Hashem, Amr M. Shehabeldine, Omar M. Ali and Salem S. Salem
Polymers 2022, 14(11), 2293; https://doi.org/10.3390/polym14112293 - 5 Jun 2022
Cited by 97 | Viewed by 6000
Abstract
The global spread of multidrug-resistant bacteria has become a significant hazard to public health, and more effective antibacterial agents are required. Therefore, this study describes the preparation, characterization, and evaluation of gold nanoparticles modified with chitosan (Chi/AuNPs) as a reducing and stabilizing agent [...] Read more.
The global spread of multidrug-resistant bacteria has become a significant hazard to public health, and more effective antibacterial agents are required. Therefore, this study describes the preparation, characterization, and evaluation of gold nanoparticles modified with chitosan (Chi/AuNPs) as a reducing and stabilizing agent with efficient antimicrobial effects. In recent years, the development of an efficient and ecofriendly method for synthesizing metal nanoparticles has attracted a lot of interest in the field of nanotechnology. Colloidal gold nanoparticles (AuNPs) were prepared by the chemical reduction of gold ions in the presence of chitosan (Chi), giving Chi/AuNPs. The characterization of Chi/AuNPs was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). Chi/AuNPs appeared spherical and monodispersed, with a diameter ranging between 20 to 120 nm. The synergistic effects of AuNPs and Chi led to the disruption of bacterial membranes. The maximum inhibitory impact was seen against P. aeruginosa at 500 µg/mL, with a zone of inhibition diameter of 26 ± 1.8 mm, whereas the least inhibitory effect was reported for S. aureus, with a zone of inhibition diameter of 16 ± 2.1 mm at the highest dose tested. Moreover, Chi/AuNPs exhibited antifungal activity toward Candida albicans when the MIC was 62.5 µg/mL. Cell viability and proliferation of the developed nanocomposite were evaluated using a sulphorhodamine B (SRB) assay with a half inhibitory concentration (IC50) of 111.1 µg/mL. Moreover, the in vitro wound-healing model revealed that the Chi/AuNP dressing provides a relatively rapid and efficacious wound-healing ability, making the obtained nanocomposite a promising candidate for the development of improved bandage materials. Full article
(This article belongs to the Special Issue Advances in Smart Polymer Materials)
Show Figures

Figure 1

17 pages, 6396 KB  
Article
Customized Deep Eutectic Solvents as Green Extractants for Ultrasonic-Assisted Enhanced Extraction of Phenolic Antioxidants from Dogbane Leaf-Tea
by Ruimin Wang, Weimin Zhang, Ruiping He, Wu Li and Lu Wang
Foods 2021, 10(11), 2527; https://doi.org/10.3390/foods10112527 - 21 Oct 2021
Cited by 18 | Viewed by 3184
Abstract
This study evaluates the application of eco-friendly deep eutectic solvents (DESs) in the extraction of phenolic antioxidants from dogbane leaf-tea (DLT). The results showed DESs with lower viscosity allowed an efficient extraction of significantly higher contents of total phenolics or flavonoids. An innovative [...] Read more.
This study evaluates the application of eco-friendly deep eutectic solvents (DESs) in the extraction of phenolic antioxidants from dogbane leaf-tea (DLT). The results showed DESs with lower viscosity allowed an efficient extraction of significantly higher contents of total phenolics or flavonoids. An innovative and high-efficient solvent, choline chloride-levulinic acid (ChCl-LevA), was screened and used in ultrasonic-assisted extraction (UAE) of phenolic compounds from DLT. According to full factorial design experimental results, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and anti-α-glucosidase activity (α-GIA) of the DLT extracts were simultaneously optimized by response surface methodology. Sonication temperature and water content in ChCl-LevA were found to be the major factors affecting the TPC, TFC, antioxidant activity, and α-GIA of DLT extracts. Under the optimum parameters (water content in ChCl-LevA was 45%, sonication temperature was 50 °C, and extraction time was 30 min), the measured results for all the responses were obtained as follows: TPC-91.38 ± 7.20 mg GAE/g DW, TFC-84.12 ± 3.47 mg RE/g DW, ABTS+-492 ± 7.33 mmol TE/g DW, FRAP-6235 ± 121 μmol Fe(II)/g DW and α-GIA-230 ± 7.59 mmol AE/g DW, which were consistent with the predicted values. In addition, strongly significant positive correlations were observed between TPC/TFC and bio-activities of the DLT extracts. HPLC results indicated high contents of (-)-epigallocatechin (4272 ± 84.86 μg/g DW), catechin (5268 ± 24.53 μg/g DW), isoquercitrin (3500 ± 86.07 μg/g DW), kaempferol 3-O-rutinoside (3717 ± 97.71 μg/g DW), and protocatechuic acid (644 ± 1.65 μg/g DW) were observed in the DLT extracts. In contrast to other extraction methods, ChCl-LevA-based UAE yielded higher TPC, TFC, individual phenolic contents, stronger antioxidant activity, and α-GIA. Scanning electron microscope (SEM) analysis further confirmed that ChCl-LevA-based UAE enhanced the disruption of cell wall structure, thereby making more phenolic antioxidants released from DLT. In short, ChCl-LevA-based UAE was confirmed to be an innovative and high-efficient method for extraction of phenolic antioxidants from DLT. Dogbane leaves can be considered as a good tea source rich in natural antioxidants. Full article
Show Figures

Graphical abstract

20 pages, 3553 KB  
Article
Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds
by Agata Motyka-Pomagruk, Anna Dzimitrowicz, Jakub Orlowski, Weronika Babinska, Dominik Terefinko, Michal Rychlowski, Michal Prusinski, Pawel Pohl, Ewa Lojkowska, Piotr Jamroz and Wojciech Sledz
Int. J. Mol. Sci. 2021, 22(17), 9256; https://doi.org/10.3390/ijms22179256 - 26 Aug 2021
Cited by 17 | Viewed by 3350
Abstract
Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to [...] Read more.
Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3–4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods. Full article
(This article belongs to the Special Issue Plasma-Activated Seed Germination)
Show Figures

Figure 1

10 pages, 2082 KB  
Article
Pilot-Scale Production of Chito-Oligosaccharides Using an Innovative Recombinant Chitosanase Preparation Approach
by Chih-Yu Cheng, Chia-Huang Tsai, Pei-Jyun Liou and Chi-Hang Wang
Polymers 2021, 13(2), 290; https://doi.org/10.3390/polym13020290 - 18 Jan 2021
Cited by 1 | Viewed by 3056
Abstract
For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl [...] Read more.
For pilot-scale production of chito-oligosaccharides, it must be cost-effective to prepare designable recombinant chitosanase. Herein, an efficient method for preparing recombinant Bacillus chitosanase from Escherichia coli by elimination of undesirable substances as a precipitate is proposed. After an optimized culture with IPTG (Isopropyl β-d-1-thiogalactopyranoside) induction, the harvested cells were resuspended, disrupted by sonication, divided by selective precipitation, and stored using the same solution conditions. Several factors involved in these procedures, including ion types, ionic concentration, pH, and bacterial cell density, were examined. The optimal conditions were inferred to be pH = 4.5, 300 mM sodium dihydrogen phosphate, and cell density below 1011 cells/mL. Finally, recombinant chitosanase was purified to >70% homogeneity with an activity recovery and enzyme yield of 90% and 106 mg/L, respectively. When 10 L of 5% chitosan was hydrolyzed with 2500 units of chitosanase at ambient temperature for 72 h, hydrolyzed products having molar masses of 833 ± 222 g/mol with multiple degrees of polymerization (chito-dimer to tetramer) were obtained. This work provided an economical and eco-friendly preparation of recombinant chitosanase to scale up the hydrolysis of chitosan towards tailored oligosaccharides in the near future. Full article
(This article belongs to the Special Issue Chitin and Chitosan: Properties and Applications II)
Show Figures

Graphical abstract

Back to TopTop