Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (172)

Search Parameters:
Keywords = eco-architecture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6211 KiB  
Review
Unlocking the Potential of MBenes in Li/Na-Ion Batteries
by Zixin Li, Yao Hu, Haihui Lan and Huicong Xia
Molecules 2025, 30(13), 2831; https://doi.org/10.3390/molecules30132831 - 1 Jul 2025
Viewed by 276
Abstract
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication [...] Read more.
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication protocols for MBenes, with particular focus on strategies for optimizing energy storage metrics through controlled adjustment of interlayer distance and tailored surface modifications. The discussion highlights these materials’ unique capability to host substantial alkali metal ions, translating to exceptional longevity during charge–discharge cycling and remarkable high-current performance in both lithium and sodium battery systems. Current obstacles to materials development are critically evaluated, encompassing precision control in nanoscale synthesis, reproducibility in large-scale production, enhancement of thermodynamic stability, and eco-friendly processing requirements. Prospective research pathways are proposed, including sustainable manufacturing innovations, atomic-level structural tailoring through computational modeling, and expansion into hybrid energy storage-conversion platforms. By integrating fundamental material science principles with practical engineering considerations, this work seeks to establish actionable frameworks for advancing MBene-based technologies toward next-generation electrochemical storage solutions with enhanced energy density and operational reliability. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

31 pages, 741 KiB  
Article
Inspiring from Galaxies to Green AI in Earth: Benchmarking Energy-Efficient Models for Galaxy Morphology Classification
by Vasileios Alevizos, Emmanouil V. Gkouvrikos, Ilias Georgousis, Sotiria Karipidou and George A. Papakostas
Algorithms 2025, 18(7), 399; https://doi.org/10.3390/a18070399 - 28 Jun 2025
Viewed by 259
Abstract
Recent advancements in space exploration have significantly increased the volume of astronomical data, heightening the demand for efficient analytical methods. Concurrently, the considerable energy consumption of machine learning (ML) has fostered the emergence of Green AI, emphasizing sustainable, energy-efficient computational practices. We introduce [...] Read more.
Recent advancements in space exploration have significantly increased the volume of astronomical data, heightening the demand for efficient analytical methods. Concurrently, the considerable energy consumption of machine learning (ML) has fostered the emergence of Green AI, emphasizing sustainable, energy-efficient computational practices. We introduce the first large-scale Green AI benchmark for galaxy morphology classification, evaluating over 30 machine learning architectures (classical, ensemble, deep, and hybrid) on CPU and GPU platforms using a balanced subset of the Galaxy Zoo dataset. Beyond traditional metrics (precision, recall, and F1-score), we quantify inference latency, energy consumption, and carbon-equivalent emissions to derive an integrated EcoScore that captures the trade-off between predictive performance and environmental impact. Our results reveal that a GPU-optimized multilayer perceptron achieves state-of-the-art accuracy of 98% while emitting 20× less CO2 than ensemble forests, which—despite comparable accuracy—incur substantially higher energy costs. We demonstrate that hardware–algorithm co-design, model sparsification, and careful hyperparameter tuning can reduce carbon footprints by over 90% with negligible loss in classification quality. These findings provide actionable guidelines for deploying energy-efficient, high-fidelity models in both ground-based data centers and onboard space observatories, paving the way for truly sustainable, large-scale astronomical data analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence in Space Applications)
Show Figures

Figure 1

20 pages, 2691 KiB  
Article
Art Nouveau Buildings, Examples of Innovative and Sustainable Approach—Case Study: Oradea, Romania
by Mariana Ratiu, Emil Traian Gligor, George Florentin Tamas, Ana Cornelia Peres and Mircea Bogdan Tataru
Sustainability 2025, 17(13), 5952; https://doi.org/10.3390/su17135952 - 28 Jun 2025
Viewed by 487
Abstract
In the current context, where sustainability, energy efficiency, and reduction of environmental impact are omnipresent themes, the need and interest for conservation, restoration, and reuse of heritage buildings is a topic of real interest. The city of Oradea, engaged in the last decades [...] Read more.
In the current context, where sustainability, energy efficiency, and reduction of environmental impact are omnipresent themes, the need and interest for conservation, restoration, and reuse of heritage buildings is a topic of real interest. The city of Oradea, engaged in the last decades on the path of a sustainable urban regeneration, has managed to bring back to life part of the valuable Art Nouveau architectural treasure it inherited from previous generations. This paper presents a part of a much wider research and studies on Art Nouveau buildings in Oradea, in the context of the needs arising from the many problems identified with the start of conservation and restoration works. After an introduction on the link between heritage buildings and sustainability and a review of the current context in Oradea related to this topic, one of the emblematic buildings under renovation, the Ullmann Palace, is presented, as well as the results of some physical-mechanical tests carried out. This is followed by some discussions on the innovative and sustainable character of Art Nouveau buildings and the importance of carrying out high-quality conservation and restoration works that are environmentally friendly, safe, and sustainable. Full article
(This article belongs to the Special Issue Architecture, Urban Space and Heritage in the Digital Age)
Show Figures

Figure 1

41 pages, 2631 KiB  
Systematic Review
Brain-Computer Interfaces and AI Segmentation in Neurosurgery: A Systematic Review of Integrated Precision Approaches
by Sayantan Ghosh, Padmanabhan Sindhujaa, Dinesh Kumar Kesavan, Balázs Gulyás and Domokos Máthé
Surgeries 2025, 6(3), 50; https://doi.org/10.3390/surgeries6030050 - 26 Jun 2025
Viewed by 680
Abstract
Background: BCI and AI-driven image segmentation are revolutionizing precision neurosurgery by enhancing surgical accuracy, reducing human error, and improving patient outcomes. Methods: This systematic review explores the integration of AI techniques—particularly DL and CNNs—with neuroimaging modalities such as MRI, CT, EEG, and ECoG [...] Read more.
Background: BCI and AI-driven image segmentation are revolutionizing precision neurosurgery by enhancing surgical accuracy, reducing human error, and improving patient outcomes. Methods: This systematic review explores the integration of AI techniques—particularly DL and CNNs—with neuroimaging modalities such as MRI, CT, EEG, and ECoG for automated brain mapping and tissue classification. Eligible clinical and computational studies, primarily published between 2015 and 2025, were identified via PubMed, Scopus, and IEEE Xplore. The review follows PRISMA guidelines and is registered with the OSF (registration number: J59CY). Results: AI-based segmentation methods have demonstrated Dice similarity coefficients exceeding 0.91 in glioma boundary delineation and tumor segmentation tasks. Concurrently, BCI systems leveraging EEG and SSVEP paradigms have achieved information transfer rates surpassing 22.5 bits/min, enabling high-speed neural decoding with sub-second latency. We critically evaluate real-time neural signal processing pipelines and AI-guided surgical robotics, emphasizing clinical performance and architectural constraints. Integrated systems improve targeting precision and postoperative recovery across select neurosurgical applications. Conclusions: This review consolidates recent advancements in BCI and AI-driven medical imaging, identifies barriers to clinical adoption—including signal reliability, latency bottlenecks, and ethical uncertainties—and outlines research pathways essential for realizing closed-loop, intelligent neurosurgical platforms. Full article
Show Figures

Figure 1

15 pages, 2580 KiB  
Article
Dual-Particle Synergy in Bio-Based Linseed Oil Pickering Emulsions: Optimising ZnO–Silica Networks for Greener Mineral Sunscreens
by Marina Barquero, Luis A. Trujillo-Cayado and Jenifer Santos
Materials 2025, 18(13), 3030; https://doi.org/10.3390/ma18133030 - 26 Jun 2025
Viewed by 334
Abstract
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect [...] Read more.
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect of incorporating fumed silica/alumina (Aerosil COK 84) was evaluated. A central composite response surface design was used to ascertain the oil/ZnO ratio that maximised the in vitro sun protection factor at sub-300 nm droplet size. The incorporation of Aerosil at concentrations ranging from 0 to 2 wt.% resulted in a transformation of the dispersion from a nearly Newtonian state to a weak-gel behaviour. This alteration was accompanied by a reduction in the Turbiscan Stability Index. Microscopic analysis has revealed a hierarchical particle architecture, in which ZnO forms Pickering shells around each droplet, while Aerosil aggregates bridge neighboring interfaces, creating a percolated silica scaffold that immobilises droplets and amplifies multiple UV scattering. The findings demonstrate that coupling interfacial Pickering armour with a continuous silica network yields a greener, physically robust mineral sunscreen and offers a transferable strategy for stabilising plant-oil emulsions containing inorganic actives. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

34 pages, 8454 KiB  
Article
Architectural Heritage Conservation and Green Restoration with Hydroxyapatite Sustainable Eco-Materials
by Alina Moșiu, Rodica-Mariana Ion, Iasmina Onescu, Meda Laura Moșiu, Ovidiu-Constantin Bunget, Lorena Iancu, Ramona Marina Grigorescu and Nelu Ion
Sustainability 2025, 17(13), 5788; https://doi.org/10.3390/su17135788 - 24 Jun 2025
Viewed by 503
Abstract
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the [...] Read more.
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the hydroxyapatite (HAp) in various combinations on masonry samples is presented, with the aim of identifying the ideal solution to be applied to an entire historical building in Banloc monument. The new solution has various advantages: compatibility with historical lime mortars (chemical and physical), increased durability under aggressive environmental conditions, non-invasive and reversible, aligning with conservation ethics, bioinspired material that avoids harmful synthetic additives, preservation of esthetics—minimal visual change to treated surfaces, and nanostructural (determined via SEM and AFM) reinforcement to improve cohesion without altering the porosity. An innovative approach involving hydroxiapatite addition to commercial mortars is developed and presented within this paper. Physico-chemical, mechanical studies, and architectural and economic trends will be addressed in this paper. Some specific tests (reduced water absorption, increased adhesion, high mechanical strength, unchanged chromatic aspect, high contact angle, not dangerous freeze–thaw test, reduced carbonation test), will be presented to evidence the capability of hydroxyapatite to be incorporated into green renovation efforts, strengthen the consolidation layer, and focus on its potential uses as an eco-material in building construction and renovation. The methodology employed in evaluating the comparative performance of hydroxyapatite (HAp)-modified mortar versus standard Baumit MPI25 mortar includes a standard error (SE) analysis computed column-wise across performance indicators. To further substantiate the claim of “optimal performance” at 20% HAp addition, independent samples t-tests were performed. The results of the independent samples t-tests were applied to three performance and cost indicators: Application Cost, Annualized Cost, and Efficiency-Cost-Performance (ECP) Index. This validates the claim that HAp-modified mortar offers superior overall performance when considering efficiency, cost, and durability combined. Full article
Show Figures

Figure 1

19 pages, 8107 KiB  
Article
Investigating the Integration of Biomimicry and Eco-Materials in Sustainable Interior Design Education
by Iman Ibrahim and Rania Nasreldin
Architecture 2025, 5(2), 39; https://doi.org/10.3390/architecture5020039 - 19 Jun 2025
Viewed by 380
Abstract
This paper discusses the adoption of biomimicry and eco-friendly materials as overarching concepts in interior design education. It aims to investigate how biomimicry and eco-friendly materials can be integrated into the existing and established interior design program curriculum. Changes in green and sustainable [...] Read more.
This paper discusses the adoption of biomimicry and eco-friendly materials as overarching concepts in interior design education. It aims to investigate how biomimicry and eco-friendly materials can be integrated into the existing and established interior design program curriculum. Changes in green and sustainable design concepts used in student capstone projects, which incorporated the reiteration of learning objectives aimed at enhancing student learning outcomes, were identified. This investigation addressed a gap in knowledge by analyzing the influence of nature-inspired designs on students’ problem-solving abilities and creativity. It employed a qualitative case study approach to analyze selected designs that employed biomimicry concepts in functional interior spaces, followed by a visualization stage, in which 3D-printed models were created from recycled and eco-friendly materials, closing the loop on sustainability applications. The study revealed that biomimicry and eco-friendly materials are valuable components of various design curricula, particularly in the fields of environmental studies, architecture, and interior design. This research underscores the urgent need to comprehensively integrate biomimicry and eco-friendly materials into design curricula, fostering a new generation of sustainability-conscious designers equipped to lead transformative change in the future of interior design and beyond. Full article
Show Figures

Figure 1

23 pages, 1821 KiB  
Systematic Review
Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management
by Daniela Isola, Stefano Bigiotti and Alvaro Marucci
Sustainability 2025, 17(12), 5644; https://doi.org/10.3390/su17125644 - 19 Jun 2025
Viewed by 341
Abstract
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the [...] Read more.
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the environment and rural landscapes. Since the environment, cultural heritage, and community identity deserve protection, research trends and current knowledge on livestock buildings, building sustainability, energy efficiency strategies, and landscape management were investigated using the Web of Science and Scopus search tools (2005–2025). Research on these topics was found to be uneven, with limited focus on livestock buildings compared to food production and animal welfare, and significant interest in eco-sustainable building materials. A total of 96 articles were selected after evaluating over 5400 records. The analysis revealed a lack of universally accepted definitions for building design strategies and their rare application to livestock facilities, where passive solutions and insulation prevailed. The application of renewable energy was rare and limited to rural buildings, as was the application of sustainable building materials to livestock, agriculture, and vernacular buildings. Conversely, increased attention was paid to the definition and classification of vernacular architecture features aimed at enhancing existing buildings and mitigating or facilitating the landscape integration of those that diverge most from them. Although not exhaustive, this review identified some knowledge gaps. More efforts are needed to reduce environmental impacts and meet the milestones set by international agreements. Research on building materials could benefit from collaboration with experts in cultural heritage conservation because of their command of traditional materials, durability-enhancing methods, and biodeterioration. Full article
Show Figures

Graphical abstract

30 pages, 4198 KiB  
Article
Enabling Low-Carbon Transportation: Resilient Energy Governance via Intelligent VPP and Mobile Energy Storage-Driven V2G Solutions
by Guwon Yoon, Myeong-in Choi, Keonhee Cho, Seunghwan Kim, Ayoung Lee and Sehyun Park
Buildings 2025, 15(12), 2045; https://doi.org/10.3390/buildings15122045 - 13 Jun 2025
Viewed by 324
Abstract
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station [...] Read more.
Integrating Electric Vehicle (EV) charging stations into buildings is becoming increasingly important due to the rapid growth of private EV ownership and prolonged parking durations in residential areas. This paper proposes robust, building-integrated charging solutions that combine mobile energy storage systems (ESSs), station linkage data, and traffic volume data. The proposed system promotes eco-friendly EV usage, flexible energy management, and carbon neutrality through a polyfunctional Vehicle-to-Grid (V2G) architecture that integrates decentralized energy networks. Two core strategies are implemented: (1) configuring Virtual Power Plant (VPP)-based charging packages tailored to station types, and (2) utilizing EV batteries as distributed ESS units. K-means clustering based on spatial proximity and energy demand is followed by heuristic algorithms to improve the efficiency of mobile ESS operation. A three-layer framework is used to assess improvements in energy demand distribution, with demand-oriented VPPs deployed in high-demand zones to maximize ESS utilization. This approach enhances station stability, increases the load factor to 132.7%, and reduces emissions by 271.5 kgCO2. Economically, the system yields an annual benefit of USD 47,860, a Benefit–Cost Ratio (BCR) of 6.67, and a Levelized Cost of Energy (LCOE) of USD 37.78 per MWh. These results demonstrate the system’s economic viability and resilience, contributing to the development of a flexible and sustainable energy infrastructure for cities. Full article
Show Figures

Figure 1

33 pages, 4056 KiB  
Review
Sustainable Anodes for Direct Methanol Fuel Cells: Advancing Beyond Platinum Scarcity with Low-Pt Alloys and Non-Pt Systems
by Liangdong Zhao and Yankun Jiang
Sustainability 2025, 17(11), 5086; https://doi.org/10.3390/su17115086 - 1 Jun 2025
Viewed by 539
Abstract
Direct methanol fuel cells (DMFCs) represent a promising pathway for energy conversion, yet their reliance on platinum-group metal (PGM)-based anode catalysts poses critical sustainability challenges, which stem from finite mineral reserves, environmentally detrimental extraction processes, and prohibitive lifecycle costs. Current anode catalysts for [...] Read more.
Direct methanol fuel cells (DMFCs) represent a promising pathway for energy conversion, yet their reliance on platinum-group metal (PGM)-based anode catalysts poses critical sustainability challenges, which stem from finite mineral reserves, environmentally detrimental extraction processes, and prohibitive lifecycle costs. Current anode catalysts for DMFCs are dominated by platinum materials; therefore, this review systematically evaluates the following three emerging eco-efficient design paradigms using platinum materials as a starting point: (1) the atomic-level optimization of low-Pt alloy surfaces to maximize catalytic efficiency per metal atom, (2) Earth-abundant transition metal compounds (e.g., nitrides and sulfides) and coordination-tunable metal–organic frameworks as viable PGM-free alternatives, and (3) mechanically robust carbon architectures with engineered topological defects that enhance catalyst stability through covalent metal–carbon interactions. Through comparative analysis with pure Pt benchmarks, we critically examine how these strategic material innovations collectively mitigate CO intermediate poisoning risks and improve electrochemical durability. Such fundamental advances in catalyst design not only address immediate technical barriers, but also establish essential material foundations for the development of DMFC technologies compatible with circular economy frameworks and United Nations Sustainable Development Goal 7 targets. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

22 pages, 12284 KiB  
Article
EcoDetect-YOLOv2: A High-Performance Model for Multi-Scale Waste Detection in Complex Surveillance Environments
by Jing Su, Ruihan Chen, Mingzhi Li, Shenlin Liu, Guobao Xu and Zanhong Zheng
Sensors 2025, 25(11), 3451; https://doi.org/10.3390/s25113451 - 30 May 2025
Viewed by 512
Abstract
Conventional waste monitoring relies heavily on manual inspection, while most detection models are trained on close-range, simplified datasets, limiting their applicability for real-world surveillance. Even with surveillance imagery, challenges such as cluttered backgrounds, scale variation, and small object sizes often lead to missed [...] Read more.
Conventional waste monitoring relies heavily on manual inspection, while most detection models are trained on close-range, simplified datasets, limiting their applicability for real-world surveillance. Even with surveillance imagery, challenges such as cluttered backgrounds, scale variation, and small object sizes often lead to missed detections and reduced robustness. To address these challenges, this study introduces EcoDetect-YOLOv2, a lightweight and high-efficiency object detection model developed using the Intricate Environment Waste Exposure Detection (IEWED) dataset. Building upon the YOLOv8s architecture, EcoDetect-YOLOv2 incorporates a small object detection P2 detection layer to enhance sensitivity to small objects. The integration of an efficient multi-scale attention (EMA) mechanism prior to the P2 head further improves the model’s capacity to detect small-scale targets, while bolstering robustness against cluttered backgrounds and environmental noise, as well as generalizability across scale variations. In the feature fusion stage, a Dynamic Upsampling Module (Dysample) replaces traditional nearest-neighbor upsampling to yield higher-quality feature maps, thereby facilitating improved discrimination of overlapping and degraded waste particles. To reduce computational overhead and inference latency without sacrificing detection accuracy, Ghost Convolution (GhostConv) replaces conventional convolution layers within the neck. Based on this, a GhostResBottleneck structure is proposed, along with a novel ResGhostCSP module—designed via a one-shot aggregation strategy—to replace the original C2f module. Experiments conducted on the IEWED dataset, which features multi-object, multi-class, and highly complex real-world scenes, demonstrate that EcoDetect-YOLOv2 outperforms the baseline YOLOv8s by 1.0%, 4.6%, 4.8%, and 3.1% in precision, recall, mAP50, and mAP50:95, respectively, while reducing the parameter count by 19.3%. These results highlight the model’s effectiveness in real-time, multi-object waste detection, providing a scalable and efficient tool for automated urban and digital governance. Full article
Show Figures

Figure 1

49 pages, 3785 KiB  
Review
Carbon-Nanotube-Based Nanocomposites in Environmental Remediation: An Overview of Typologies and Applications and an Analysis of Their Paradoxical Double-Sided Effects
by Silvana Alfei and Guendalina Zuccari
J. Xenobiot. 2025, 15(3), 76; https://doi.org/10.3390/jox15030076 - 21 May 2025
Cited by 1 | Viewed by 935
Abstract
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, [...] Read more.
Incessant urbanization and industrialization have resulted in several pollutants being increasingly produced and continuously discharged into the environment, altering its equilibrium, with a high risk for living organisms’ health. To restore it, new advanced materials for remediating gas streams, polluted soil, water, wastewater, groundwater and industrial waste are continually explored. Carbon-based nanomaterials (CNMs), including quantum dots, nanotubes, fullerenes and graphene, have displayed outstanding effectiveness in the decontamination of the environment by several processes. Carbon nanotubes (CNTs), due to their nonpareil characteristics and architecture, when included in absorbents, filter membranes, gas sensors, etc., have significantly improved the efficiency of these technologies in detecting and/or removing inorganic, organic and gaseous xenobiotics and pathogens from air, soil and aqueous matrices. Moreover, CNT-based membranes have displayed significant potential for efficient, fast and low-energy water desalination. However, despite CNTs serving as very potent instruments for environmental detoxification, their extensive utilization could, paradoxically, be highly noxious to the environment and, therefore, humans, due to their toxicity. The functionalization of CNTs (F-CNTs), in addition to further enhancing their absorption capacity and selectivity, has increased their hydrophilicity, thus minimizing their toxicity and carcinogenic effects. In this scenario, this review aims to provide evidence of both the enormous potential of CNTs in sustainable environmental remediation and the concerning hazards to the environment and living organisms that could derive from their extensive and uncontrolled utilization. To this end, an introduction to CNTs, including their eco-friendly production from biomass, is first reported. Several literature reports on CNTs’ possible utilization for environmental remediation, their potential toxicity due to environmental accumulation and the challenges of their regeneration are provided using several reader-friendly tools, to better capture readers’ attention and make reading easier. Full article
Show Figures

Graphical abstract

29 pages, 4235 KiB  
Review
Wide-Bandgap Subcells for All-Perovskite Tandem Solar Cells: Recent Advances, Challenges, and Future Perspectives
by Qiman Li, Wenming Chai, Xin Luo, Weidong Zhu, Dazheng Chen, Long Zhou, He Xi, Hang Dong, Chunfu Zhang and Yue Hao
Energies 2025, 18(10), 2415; https://doi.org/10.3390/en18102415 - 8 May 2025
Viewed by 890
Abstract
All-perovskite tandem solar cells (APTSCs) offer a promising pathway to surpassing the efficiency limits of single-junction photovoltaics. The wide-bandgap (WBG) subcell, serving as the top absorber, plays a critical role in optimizing light harvesting and charge extraction in tandem architectures. This review comprehensively [...] Read more.
All-perovskite tandem solar cells (APTSCs) offer a promising pathway to surpassing the efficiency limits of single-junction photovoltaics. The wide-bandgap (WBG) subcell, serving as the top absorber, plays a critical role in optimizing light harvesting and charge extraction in tandem architectures. This review comprehensively summarizes recent advancements in WBG subcells, focusing on material design, defect passivation strategies, and interfacial engineering to address challenges such as phase instability, halide segregation, and voltage losses. Key innovations, including compositional tuning, additive engineering, and charge transport layer optimization, are critically analyzed for their contributions to efficiency and stability enhancement. Despite significant progress, challenges remain regarding scalability, long-term stability under illumination, and cost-effective fabrication. Future research directions include the development of lead-reduced perovskites, machine learning-guided material discovery, and scalable deposition techniques. This review provides insights into advancing WBG subcells toward high-efficiency, stable, and eco-friendly APTSCs for next-generation solar energy applications. Full article
Show Figures

Figure 1

35 pages, 26705 KiB  
Article
Living Inheritance of Traditional Knowledge and Practical Wisdom of Severe Cold-Region Traditional Villages: A Case Study of Jinjiang Chalet Village in the Changbai Mountain Area
by Hongyu Zhao, Jiandong Fang, Zhanlve Lin, Jiajun Tang, Shinan Zhen, Huijia Shi, Xiaoyu Hui and Yuesong Liu
Sustainability 2025, 17(9), 4225; https://doi.org/10.3390/su17094225 - 7 May 2025
Viewed by 690
Abstract
Despite traditional knowledge’s (TK’s) potential to mitigate climate-induced vulnerabilities across diverse climates, cold-region communities remain critically understudied. To bridge that gap, this study adopts the pressure–state–response (PSR) framework to analyze how Indigenous knowledge in China’s Jinjiang Chalet Village—a 300-year-old cold-region settlement—embodies dynamic resilience [...] Read more.
Despite traditional knowledge’s (TK’s) potential to mitigate climate-induced vulnerabilities across diverse climates, cold-region communities remain critically understudied. To bridge that gap, this study adopts the pressure–state–response (PSR) framework to analyze how Indigenous knowledge in China’s Jinjiang Chalet Village—a 300-year-old cold-region settlement—embodies dynamic resilience across ecological, climatic, social, and economic dimensions. Combining semi-structured interviews with Indigenous Elders, UAV-based multispectral analysis, and environmental simulations, we identify strategies rooted in sustainable wisdom: ecosystem stewardship, climate-responsive architecture, community governance, and adaptive economic practices. A key innovation lies in the Eco-Wisdom Laboratory—a pilot project operationalizing TK through modern passive design and participatory education, demonstrating how traditional woodcraft and microclimate management can be integrated with contemporary technologies to achieve scalable, low-carbon solutions. Crucially, we advance the concept of living inheritance by showcasing how such hybrid practices decolonize static preservation paradigms, enabling communities to codify TK into tangible, future-oriented applications. This study provides a replicable framework for embedding TK into global sustainability agendas, particularly for severe cold regions facing similar stressors. Our findings advocate for policy reforms centering Indigenous agency in climate adaptation planning, offering actionable insights for architects, policymakers, and educators working at the nexus of cultural heritage and ecological resilience. Full article
Show Figures

Figure 1

25 pages, 10814 KiB  
Article
Eco-Cooperative Planning and Control of Connected Autonomous Vehicles Considering Energy Consumption Characteristics
by Chaofeng Pan, Jintao Pi and Jian Wang
Electronics 2025, 14(8), 1646; https://doi.org/10.3390/electronics14081646 - 18 Apr 2025
Viewed by 393
Abstract
Cooperative driving systems can coordinate individual vehicles on the road in a platoon, holding significant promise for enhancing traffic efficiency and lowering the energy consumption of vehicle movements. For an extended period, vehicles on the road will consist of a mix of traditional [...] Read more.
Cooperative driving systems can coordinate individual vehicles on the road in a platoon, holding significant promise for enhancing traffic efficiency and lowering the energy consumption of vehicle movements. For an extended period, vehicles on the road will consist of a mix of traditional gasoline and electric vehicles. To explore the economic driving strategies for diverse vehicles on the road, this paper introduces a collaborative eco-driving system that takes into account the energy consumption traits of vehicles. Unlike prior research, this paper puts forward a lane change decision-making approach that integrates energy modeling and speed prediction. This method can effectively capture the speed variations in the vehicle ahead and facilitate lane changes with energy efficiency in mind. The system encompasses three vital functions: vehicle cooperative architecture, ecological trajectory planning, and power system control. Specifically, eco-speed planning is carried out in two stages: the initial stage is executed globally, with cooperative speed optimization performed based on the energy consumption characteristics of different vehicles to determine the economical speed for vehicle platoon driving. The subsequent stage involves local speed adaptation, where the vehicle platoon dynamically adjusts its speed and makes lane change decisions according to local driving conditions. Ultimately, the generated control information is fed into the powertrain control system to regulate the vehicle. To assess the proposed collaborative eco-driving system, the algorithms were tested on highways, and the results substantiated the system’s efficacy in reducing the energy consumption of vehicle driving. Full article
(This article belongs to the Special Issue Advances in Electric Vehicles and Energy Storage Systems)
Show Figures

Figure 1

Back to TopTop