Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,060)

Search Parameters:
Keywords = early-stage disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 760 KiB  
Article
Prediction of Congenital Portosystemic Shunt in Neonatal Hypergalactosemia Using Gal-1-P/Gal Ratio, Bile Acid, and Ammonia
by Sayaka Suzuki-Ajihara, Ikuma Musha, Masato Arao, Koki Mori, Shunsuke Fujibayashi, Ihiro Ryo, Tomotaka Kono, Asako Tajima, Hiroshi Mochizuki, Atsuko Imai-Okazaki, Ryuichiro Araki, Chikahiko Numakura and Akira Ohtake
Int. J. Neonatal Screen. 2025, 11(3), 61; https://doi.org/10.3390/ijns11030061 (registering DOI) - 7 Aug 2025
Abstract
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using [...] Read more.
Congenital portosystemic shunts (CPSSs) are often associated with life-threatening systemic complications, which may be detected by identifying hypergalactosemia in newborn screening (NBS). However, diagnosing CPSS at an early stage is not easy. The purpose of this study was to predict CPSS early using screening values and general blood tests. The medical records of 153 patients with hypergalactosemia who underwent NBS in Saitama Prefecture between 1 December 1997 and 31 October 2023 were retrospectively analyzed. We provided the final diagnosis of the analyzed patients. Of the 153 patients, 44 (29%) were in the CPSS group and 83 (54%) were in the transient galactosemia group. Using the initial screening items and the six blood test items, we attempted to extract a CPSS group from the transient galactosemia group. Finally, a model for CPSS prediction was established. From multiple logistic regression analysis, filtered blood galactose-1 phosphate/galactose, serum total bile acid, and ammonia were adopted as explanatory variables for the prediction model. If the cut-off value for predicted disease probability value (P) was >0.357, CPSS was identified with 86.4% sensitivity (95%CI 72.6–94.8%) and 81.9% specificity (95%CI 72.0–89.5%). This predictive model might allow prediction of CPSS and early intervention. Full article
(This article belongs to the Collection Newborn Screening in Japan)
21 pages, 583 KiB  
Review
Diagnosis and Emerging Biomarkers of Cystic Fibrosis-Related Kidney Disease (CFKD)
by Hayrettin Yavuz, Manish Kumar, Himanshu Ballav Goswami, Uta Erdbrügger, William Thomas Harris, Sladjana Skopelja-Gardner, Martha Graber and Agnieszka Swiatecka-Urban
J. Clin. Med. 2025, 14(15), 5585; https://doi.org/10.3390/jcm14155585 - 7 Aug 2025
Abstract
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to [...] Read more.
As people with cystic fibrosis (PwCF) live longer, kidney disease is emerging as a significant comorbidity that is increasingly linked to cardiovascular complications and progression to end-stage kidney disease. In our recent review, we proposed the unifying term CF-related kidney disease (CFKD) to encompass the spectrum of kidney dysfunction observed in this population. Early detection of kidney injury is critical for improving long-term outcomes, yet remains challenging due to the limited sensitivity of conventional laboratory tests, particularly in individuals with altered muscle mass and unique CF pathophysiology. Emerging approaches, including novel blood and urinary biomarkers, urinary extracellular vesicles, and genetic risk profiling, offer promising avenues for identifying subclinical kidney damage. When integrated with machine learning algorithms, these tools may enable the development of personalized risk stratification models and targeted therapeutic strategies. This precision medicine approach has the potential to transform kidney disease management in PwCF, shifting care from reactive treatment of late-stage disease to proactive monitoring and early intervention. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Clinical Manifestations and Treatment)
Show Figures

Figure 1

12 pages, 362 KiB  
Article
The Predictive Value of Red Cell Distribution Width in End-Stage Colorectal Cancers’ 6-Month Palliative Chemotherapy Response—A Single Center’s Experience
by Maciej Jankowski, Krystyna Bratos, Joanna Wawer and Tomasz Urbanowicz
J. Pers. Med. 2025, 15(8), 359; https://doi.org/10.3390/jpm15080359 - 7 Aug 2025
Abstract
Backgrounds: The incidence of gastrointestinal cancers (GICs), though decreased in recent years, still accounts for 35% of all cancer-related mortality. The proper identification of risk factors, early diagnosis, and therapy optimization represent the three cornerstones of GIC treatment. In four-stage diseases, chemotherapy embodies [...] Read more.
Backgrounds: The incidence of gastrointestinal cancers (GICs), though decreased in recent years, still accounts for 35% of all cancer-related mortality. The proper identification of risk factors, early diagnosis, and therapy optimization represent the three cornerstones of GIC treatment. In four-stage diseases, chemotherapy embodies target therapy that may prolong patients’ expectancy when suitably applied. Patients and Methods: There were 133 (82 (62%) male and 51 (38%) female) consecutive patients with a median age of 70 (64–74) years who underwent palliative treatment due to four-stage colorectal cancer (CRC) between 2022 and 2024. The demographic, clinical, and laboratory data and applied chemotherapeutic protocols were evaluated regarding the response to applied therapy, resulting in complete or partial tumor regression. The advancement of the tumor was based on computed tomography (CT) performed before and 6 months after the chemotherapy. Results: The multivariable model revealed red cell distribution width (RDW) from peripheral blood analysis (OR: 0.81, 95% CI: 0.65–1.00, p = 0.049) as a possible predictor for systemic treatment response in colorectal cancer. The receiver operating characteristic curve revealed a predictive value of male sex and RDW prior to systemic therapy, with an area under the curve of 0.672, yielding a sensitivity of 70.0% and specificity of 58.1%. Conclusions: The results of our analysis point out the possible modulatory impact of RDW on six-month systemic therapy in colorectal terminal cancer management. Further studies are required to confirm the presented results. Full article
(This article belongs to the Special Issue Precision Medicine for Digestive Diseases)
Show Figures

Figure 1

28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

41 pages, 1612 KiB  
Review
Navigating the Landscape of Liquid Biopsy in Colorectal Cancer: Current Insights and Future Directions
by Pina Ziranu, Andrea Pretta, Giorgio Saba, Dario Spanu, Clelia Donisi, Paolo Albino Ferrari, Flaviana Cau, Alessandra Pia D’Agata, Monica Piras, Stefano Mariani, Marco Puzzoni, Valeria Pusceddu, Ferdinando Coghe, Gavino Faa and Mario Scartozzi
Int. J. Mol. Sci. 2025, 26(15), 7619; https://doi.org/10.3390/ijms26157619 (registering DOI) - 6 Aug 2025
Abstract
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), [...] Read more.
Liquid biopsy has emerged as a valuable tool for the detection and monitoring of colorectal cancer (CRC), providing minimally invasive insights into tumor biology through circulating biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Additional biomarkers, including tumor-educated platelets (TEPs) and exosomal RNAs, offer further potential for early detection and prognostic role, although ongoing clinical validation is still needed. This review summarizes the current evidence on the diagnostic, prognostic, and predictive capabilities of liquid biopsy in both metastatic and non-metastatic CRC. In the non-metastatic setting, liquid biopsy is gaining traction in early detection through screening and in identifying minimal residual disease (MRD), potentially guiding adjuvant treatment and reducing overtreatment. In contrast, liquid biopsy is more established in metastatic CRC for monitoring treatment responses, clonal evolution, and mechanisms of resistance. The integration of ctDNA-guided treatment algorithms into clinical practice could optimize therapeutic strategies and minimize unnecessary interventions. Despite promising advances, challenges remain in assay standardization, early-stage sensitivity, and the integration of multi-omic data for comprehensive tumor profiling. Future efforts should focus on enhancing the sensitivity of liquid biopsy platforms, validating emerging biomarkers, and expanding multi-omic approaches to support more targeted and personalized treatment strategies across CRC stages. Full article
(This article belongs to the Special Issue Cancer Biology and Epigenetic Modifications)
Show Figures

Figure 1

13 pages, 1536 KiB  
Article
Gosha-Jinki-Gan Reduces Inflammation in Chronic Ischemic Stroke Mouse Models by Suppressing the Infiltration of Macrophages
by Mingli Xu, Kaori Suyama, Kenta Nagahori, Daisuke Kiyoshima, Satomi Miyakawa, Hiroshi Deguchi, Yasuhiro Katahira, Izuru Mizoguchi, Hayato Terayama, Shogo Hayashi, Takayuki Yoshimoto and Ning Qu
Biomolecules 2025, 15(8), 1136; https://doi.org/10.3390/biom15081136 - 6 Aug 2025
Abstract
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into [...] Read more.
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into three categories: acute, subacute, and chronic. Current treatments for ischemic stroke are limited to effectiveness in the early stages. In this study, we investigated the therapeutic effect of an oriental medicine, Gosha-jinki-gan (TJ107), on improving chronic ischemic stroke using the mouse model with middle cerebral artery occlusion (MCAO). The changes in the intracerebral inflammatory response (macrophages (F4/80), TLR24, IL-23, IL-17, TNF-α, and IL-1β) were examined using real-time RT-PCR. The MCAO mice showed the increased expression of glial fibrillary acidic protein (GFAP) and of F4/80, TLR2, TLR4, IL-1β, TNF-α, and IL-17 in the brain tissue from the MCAO region. This suggests that they contribute to the expansion of the ischemic stroke infarct area and to the worsening of the neurological symptoms of the MCAO mice in the chronic phase. On the other hand, the administration of TJ107 was proven to reduce the infarct area, with decreased GFAP expression, suppressed macrophage infiltration in the brain, and reduced TNF-α, IL-1β, and IL-17 production compared with the MCAO mice. This study first demonstrated Gosha-jinki-gan’s therapeutic effects on the chronic ischemic stroke. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Treatments of Stroke)
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

11 pages, 972 KiB  
Article
Rapid and Accurate Detection of the Most Common Bee Pathogens; Nosema ceranae, Aspergillus flavus, Paenibacillus larvae and Black Queen Cell Virus
by Simona Marianna Sanzani, Raied Abou Kubaa, Badr-Eddine Jabri, Sabri Ala Eddine Zaidat, Rocco Addante, Naouel Admane and Khaled Djelouah
Insects 2025, 16(8), 810; https://doi.org/10.3390/insects16080810 - 5 Aug 2025
Viewed by 32
Abstract
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for [...] Read more.
Honey bees are essential pollinators for the ecosystem and food crops. However, their health and survival face threats from both biotic and abiotic stresses. Fungi, microsporidia, and bacteria might significantly contribute to colony losses. Therefore, rapid and sensitive diagnostic tools are crucial for effective disease management. In this study, molecular assays were developed to quickly and efficiently detect the main honey bee pathogens: Nosema ceranae, Aspergillus flavus, Paenibacillus larvae, and Black queen cell virus. In this context, new primer pairs were designed for use in quantitative Real-time PCR (qPCR) reactions. Various protocols for extracting total nucleic acids from bee tissues were tested, indicating a CTAB-based protocol as the most efficient and cost-effective. Furthermore, excluding the head of the bee from the extraction, better results were obtained in terms of quantity and purity of extracted nucleic acids. These assays showed high specificity and sensitivity, detecting up to 250 fg of N. ceranae, 25 fg of P. larvae, and 2.5 pg of A. flavus DNA, and 5 pg of BQCV cDNA, without interference from bee DNA. These qPCR assays allowed pathogen detection within 3 h and at early stages of infection, supporting timely and efficient management interventions. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

14 pages, 278 KiB  
Review
Novel Biomarkers for Rejection in Kidney Transplantation: A Comprehensive Review
by Michael Strader and Sam Kant
J. Clin. Med. 2025, 14(15), 5489; https://doi.org/10.3390/jcm14155489 - 4 Aug 2025
Viewed by 207
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage kidney disease. Despite significant advances in graft survival, rejection continues to pose a major clinical challenge. Conventional monitoring tools, such as serum creatinine, donor-specific antibodies, and proteinuria, lack sensitivity and specificity for [...] Read more.
Kidney transplantation is the treatment of choice for patients with end-stage kidney disease. Despite significant advances in graft survival, rejection continues to pose a major clinical challenge. Conventional monitoring tools, such as serum creatinine, donor-specific antibodies, and proteinuria, lack sensitivity and specificity for early detection of graft injury. Moreover, while biopsy remains the current gold standard for diagnosing rejection, it is prone to confounders, invasive, and associated with procedural risks. However, non-invasive novel biomarkers have emerged as promising alternatives for earlier rejection detection and improved immunosuppression management. This review focuses on the leading candidate biomarkers currently under clinical investigation, with an emphasis on their diagnostic performance, prognostic value, and potential to support personalised immunosuppressive strategies in kidney transplantation. Full article
(This article belongs to the Special Issue Clinical Advancements in Kidney Transplantation)
35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Viewed by 133
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

11 pages, 579 KiB  
Case Report
Thirty-Three Years Follow-Up of a Greek Family with Abetalipoproteinemia: Absence of Liver Damage on Long-Term Medium Chain Triglycerides Supplementation
by John K. Triantafillidis, Areti Manioti, Theodoros Pittaras, Theodoros Kozonis, Emmanouil Kritsotakis, Georgios Malgarinos, Konstantinos Pantos, Konstantinos Sfakianoudis, Manousos M. Konstadoulakis and Apostolos E. Papalois
J. Pers. Med. 2025, 15(8), 354; https://doi.org/10.3390/jpm15080354 - 4 Aug 2025
Viewed by 127
Abstract
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. [...] Read more.
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. In two of the three patients, diarrhea appeared in early infancy, while in the third, it appeared during adolescence. CNS symptomatology worsened after the second decade of life. At the same time, night blindness appeared in the advanced stages of the disease, resulting in almost complete loss of vision in one of the male patients and severe impairment in the other. The diagnosis was based on the clinical picture, ophthalmological findings, serum lipid estimations, and presence of peripheral acanthocytosis. All patients exhibited typical serum lipidemic profile, ophthalmological findings, and acanthocytes in the peripheral blood. During the follow-up period, strict dietary modifications were applied, including the substitution of fat with medium-chain triglycerides (MCT oil). After 33 years since the initial diagnosis, all patients are alive without any sign of liver dysfunction despite continuous use of MCT oil. However, symptoms from the central nervous system and vision impairment worsened. Conclusion: The course of these patients suggests that the application of a modified diet, including MCT oil, along with close surveillance, could prolong the survival of patients without significant side effects from the liver. Full article
(This article belongs to the Special Issue Clinical and Experimental Surgery in Personalized Molecular Medicine)
Show Figures

Figure 1

13 pages, 491 KiB  
Article
Optimizing One-Sample Tests for Proportions in Single- and Two-Stage Oncology Trials
by Alan David Hutson
Cancers 2025, 17(15), 2570; https://doi.org/10.3390/cancers17152570 - 4 Aug 2025
Viewed by 148
Abstract
Background/Objectives: Phase II oncology trials often rely on single-arm designs to test H0:π=π0 versus Ha:π>π0, especially when randomized trials are infeasible due to cost or disease rarity. Traditional approaches, such [...] Read more.
Background/Objectives: Phase II oncology trials often rely on single-arm designs to test H0:π=π0 versus Ha:π>π0, especially when randomized trials are infeasible due to cost or disease rarity. Traditional approaches, such as the exact binomial test and Simon’s two-stage design, tend to be conservative, with actual Type I error rates falling below the nominal α due to the discreteness of the underlying binomial distribution. This study aims to develop a more efficient and flexible method that maintains accurate Type I error control in such settings. Methods: We propose a convolution-based method that combines the binomial distribution with a simulated normal variable to construct an unbiased estimator of π. This method is designed to precisely control the Type I error rate while enabling more efficient trial designs. We derive its theoretical properties and assess its performance against traditional exact tests in both one-stage and two-stage trial designs. Results: The proposed method results in more efficient designs with reduced sample sizes compared to standard approaches, without compromising the control of Type I error rates. We introduce a new two-stage design incorporating interim futility analysis and compare it with Simon’s design. Simulations and real-world examples demonstrate that the proposed approach can significantly lower trial cost and duration. Conclusions: This convolution-based approach offers a flexible and efficient alternative to traditional methods for early-phase oncology trial design. It addresses the conservativeness of existing designs and provides practical benefits in terms of resource use and study timelines. Full article
(This article belongs to the Special Issue Application of Biostatistics in Cancer Research)
Show Figures

Figure 1

30 pages, 3430 KiB  
Article
Stage-Specific Serum Proteomic Signatures Reveal Early Biomarkers and Molecular Pathways in Huntington’s Disease Progression
by Christiana C. Christodoulou, Christiana A. Demetriou and Eleni Zamba-Papanicolaou
Cells 2025, 14(15), 1195; https://doi.org/10.3390/cells14151195 - 4 Aug 2025
Viewed by 251
Abstract
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation [...] Read more.
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation were implemented to characterize the proteomic landscape across the three HD stages—asymptomatic, early symptomatic and symptomatic advanced—alongside gender/age-matched controls. Results: We identified 84 over-expressed and 118 under-expressed differentially expressed proteins. Enrichment analysis revealed dysregulation in pathways including the complement cascade, LXR/RXR activation and RHOGDI signaling. Biomarker analysis highlighted key proteins with diagnostic potential, including CAP1 (AUC = 0.809), CAPZB (AUC = 0.861), TAGLN2 (AUC = 0.886), THBS1 (AUC = 0.883) and CFH (AUC = 0.948). CAP1 and CAPZB demonstrated robust diagnostic potential in linear mixed-effects models. CAP1 decreased in the asymptomatic stage, suggesting early cytoskeletal disruption, while CAPZB was consistently increased across HD stages. Conclusions: Our findings illuminate the dynamic proteomic and molecular landscape of HD. Future studies should validate these candidates in larger, more diverse cohorts and explore their mechanistic roles in HD pathology and progression. Full article
Show Figures

Figure 1

21 pages, 328 KiB  
Review
Adjuvant Immunotherapy in Stage IIB/IIC Melanoma: Current Evidence and Future Directions
by Ivana Prkačin, Ana Brkić, Nives Pondeljak, Mislav Mokos, Klara Gaćina and Mirna Šitum
Biomedicines 2025, 13(8), 1894; https://doi.org/10.3390/biomedicines13081894 - 4 Aug 2025
Viewed by 251
Abstract
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This [...] Read more.
Background: Patients with resected stage IIB and IIC melanoma are at high risk of recurrence and distant metastasis, despite surgical treatment. The recent emergence of immune checkpoint inhibitors (ICIs) has led to their evaluation in the adjuvant setting for early-stage disease. This review aims to synthesize current evidence regarding adjuvant immunotherapy for stage IIB/IIC melanoma, explore emerging strategies, and highlight key challenges and future directions. Methods: We conducted a comprehensive literature review of randomized clinical trials, observational studies, and relevant mechanistic and biomarker research on adjuvant therapy in stage IIB/IIC melanoma. Particular focus was placed on pivotal trials evaluating PD-1 inhibitors (KEYNOTE-716 and CheckMate 76K), novel vaccine and targeted therapy trials, mechanisms of resistance, immune-related toxicity, and biomarker development. Results: KEYNOTE-716 and CheckMate 76K demonstrated significant improvements in recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) with pembrolizumab and nivolumab, respectively, compared to placebo. However, no definitive overall survival benefit has yet been shown. Adjuvant immunotherapy is linked to immune-related adverse events, including permanent endocrinopathies. Emerging personalized approaches, such as circulating tumor DNA monitoring and gene expression profiling, may enhance patient selection, but remain investigational. Conclusions: Adjuvant PD-1 blockade offers clear RFS benefits in high-risk stage II melanoma, but optimal patient selection remains challenging, due to uncertain overall survival benefit and toxicity concerns. Future trials should integrate biomarker-driven approaches to refine therapeutic decisions and minimize overtreatment. Full article
(This article belongs to the Section Gene and Cell Therapy)
18 pages, 876 KiB  
Review
Dormancy in Colorectal Carcinoma: Detection and Therapeutic Potential
by Sofía Fernández-Hernández, Miguel Ángel Hidalgo-León, Carlos Lacalle-González, Rocío Olivera-Salazar, Michael Ochieng’ Otieno, Jesús García-Foncillas and Javier Martinez-Useros
Biomolecules 2025, 15(8), 1119; https://doi.org/10.3390/biom15081119 - 4 Aug 2025
Viewed by 191
Abstract
Colorectal cancer (CRC) is not only the third most common cancer worldwide, with 1.1 million new cases per year; it is also the second leading cause of cancer death. However, mortality has decreased since 2012 due to early detection programs and better therapeutic [...] Read more.
Colorectal cancer (CRC) is not only the third most common cancer worldwide, with 1.1 million new cases per year; it is also the second leading cause of cancer death. However, mortality has decreased since 2012 due to early detection programs and better therapeutic approaches. While many patients are diagnosed at an early stage, there is up to 50% relapse after optimal initial treatment. Therefore, it is crucial to explore the mechanism underlying the development of recurrences and metastasis. It is known that tumors release dormant cells that escape chemotherapy and nest in a target organ without proliferating. Under certain circumstances that are not yet entirely clear, they can be activated and metastasize. Therefore, the objective of this work is to explore the detailed mechanisms of dormancy, including early detection of recurrence and therapeutic approaches for the treatment of CRC. The specific objectives are to determine biomarkers that may be useful in identifying dormant cells to detect minimal residual disease (MRD) after surgery and predicting disease progression, as well as evaluating biomarkers that are susceptible to therapeutic intervention. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

Back to TopTop