Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = early-season crop identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3079 KiB  
Review
Biology, Ecology, and Management of Prevalent Thrips Species (Thysanoptera: Thripidae) Impacting Blueberry Production in the Southeastern United States
by Rosan Adhikari, David G. Riley, Rajagopalbabu Srinivasan, Mark Abney, Cera Jones and Ashfaq A. Sial
Insects 2025, 16(7), 653; https://doi.org/10.3390/insects16070653 - 24 Jun 2025
Viewed by 640
Abstract
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically [...] Read more.
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically significant pests. While F. tritici and F. bispinosa primarily damage floral tissues, S. dorsalis targets young foliage. Their rapid reproduction, high mobility, and broad host range contribute to rapid population buildup and complicate the management programs. Species identification is often difficult due to overlapping morphological features and requires the use of molecular diagnostic tools for accurate identification. Although action thresholds, such as 2–6 F. tritici per flower cluster, are used to guide management decisions, robust economic thresholds based on yield loss remain undeveloped. Integrated pest management (IPM) practices include regular monitoring, cultural control (e.g., pruning, reflective mulch), biological control using Orius insidiosus (Say) and predatory mites, and chemical control. Reduced-risk insecticides like spinetoram and spinosad offer effective suppression while minimizing harm to pollinators and beneficial insects. However, the brief flowering period limits the establishment of biological control agents. Developing species-specific economic thresholds and phenology-based IPM strategies is critical for effective and sustainable thrips management in blueberry cropping systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

25 pages, 9063 KiB  
Article
Zonal Estimation of the Earliest Winter Wheat Identification Time in Shandong Province Considering Phenological and Environmental Factors
by Jiaqi Chen, Xin Du, Chen Wang, Cheng Cai, Guanru Fang, Ziming Wang, Mengyu Liu and Huanxue Zhang
Agronomy 2025, 15(6), 1463; https://doi.org/10.3390/agronomy15061463 - 16 Jun 2025
Viewed by 362
Abstract
Early-season crop mapping plays a critical role in yield estimation, agricultural management, and policy-making. However, most existing methods assign a uniform earliest identification time across provincial or broader extents, overlooking spatial heterogeneity in crop phenology and environmental conditions. This often results in delayed [...] Read more.
Early-season crop mapping plays a critical role in yield estimation, agricultural management, and policy-making. However, most existing methods assign a uniform earliest identification time across provincial or broader extents, overlooking spatial heterogeneity in crop phenology and environmental conditions. This often results in delayed detection or reduced mapping accuracy. To address this issue, we proposed a zonal-based early-season mapping framework for winter wheat by integrating phenological and environmental factors. Aggregation zones across Shandong Province were delineated using Principal Component Analysis (PCA) based on factors such as start of season, end of season, temperature, slope, and others. On this basis, early-season winter wheat identification was conducted for each zone individually. Training samples were generated using the Time-Weighted Dynamic Time Warping (TWDTW) method. Time-series datasets derived from Sentinel-1/2 imagery (2021–2022) were processed on the Google Earth Engine (GEE) platform, followed by feature selection and classification using the Random Forest (RF) algorithm. Results indicated that Shandong Province was divided into four zones (A–D), with Zone D (southwestern Shandong) achieving the earliest mapping by early December with an overall accuracy (OA) of 97.0%. Other zones reached optimal timing between late December and late January, all with OA above 95%. The zonal strategy improved OA by 3.6% compared to the non-zonal approach, demonstrated a high correlation with official municipal-level statistics (R2 = 0.97), and surpassed the ChinaWheat10 and ChinaWheatMap10 datasets in terms of crop differentiation and boundary delineation. Historical validation using 2017–2018 data from Liaocheng City, a prefecture-level city in Shandong Province, achieved an OA of 0.98 and an F1 score of 0.96, further confirming the temporal robustness of the proposed approach. This zonal strategy significantly enhances the accuracy and timeliness of early-season winter wheat mapping at a large scale. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 2958 KiB  
Article
Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model
by Meiqing Zhu, Yimeng Jiao, Chenchen Wu, Wenjiao Shi, Hongsheng Huang, Ying Zhang, Xiaomin Zhao, Xi Guo, Yongshou Zhang and Tianxiang Yue
Agriculture 2025, 15(10), 1034; https://doi.org/10.3390/agriculture15101034 - 10 May 2025
Viewed by 536
Abstract
The accurate estimation of double-season rice yield is critical for ensuring national food security. To address the limitations of traditional crop models in spatial resolution and accuracy, this study innovatively developed the HASM-APSIM coupled model by integrating High-Accuracy Surface Modeling (HASM) with the [...] Read more.
The accurate estimation of double-season rice yield is critical for ensuring national food security. To address the limitations of traditional crop models in spatial resolution and accuracy, this study innovatively developed the HASM-APSIM coupled model by integrating High-Accuracy Surface Modeling (HASM) with the Agricultural Production Systems sIMulator (APSIM) to simulate the historical yield of double-season rice in Jiangxi Province from 2000 to 2018. The methodological advancements included the following: the localized parameter optimization of APSIM using the Nelder–Mead simplex algorithm and NSGA-II multi-objective genetic algorithm to adapt to regional rice varieties, enhancing model robustness; coarse-resolution yield simulations (10 km grids) driven by meteorological, soil, and management data; and high-resolution refinement (1 km grids) via HASM, which fused APSIM outputs with station-observed yields as optimization constraints, resolving the trade-off between accuracy and spatial granularity. The results showed that the following: (1) Compared to the APSIM model, the HASM-APSIM model demonstrated higher accuracy and reliability in simulating historical yields of double-season rice. For early rice, the R-value increased by 14.67% (0.75→0.86), RMSE decreased by 34.02% (838.50→553.21 kg/hm2), MAE decreased by 31.43% (670.92→460.03 kg/hm2), and MAPE dropped from 11.03% to 7.65%. For late rice, the R-value improved by 27.42% (0.62→0.79), RMSE decreased by 36.75% (959.0→606.58 kg/hm2), MAE reduced by 26.37% (718.05→528.72 kg/hm2), and MAPE declined from 11.05% to 8.08%. (2) Significant spatiotemporal variations in double-season rice yields were observed in Jiangxi Province. Temporally, the simulated yields of early and late rice aligned with statistical yields in terms of numerical distribution and interannual trends, but simulated yields exhibited greater fluctuations. Spatially, high-yield zones for early rice were concentrated in the eastern and central regions, while late rice high-yield areas were predominantly distributed around Poyang Lake. The 1 km resolution outputs enabled the precise identification of yield heterogeneity, supporting targeted agricultural interventions. (3) The growth rate of double-season rice yield is slowing down. To safeguard food security, the study area needs to boost the development of high-yield and high-quality crop varieties and adopt region-specific strategies. The model proposed in this study offers a novel approach for simulating crop yield at the regional scale. The findings provide a scientific basis for agricultural production planning and decision-making in Jiangxi Province and help promote the sustainable development of the double-season rice industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 2969 KiB  
Article
Unveiling Drought-Tolerant Corn Hybrids for Early-Season Drought Resilience Using Morpho-Physiological Traits
by Charles Hunt Walne, Naflath Thenveettil, Purushothaman Ramamoorthy, Raju Bheemanahalli, Krishna N. Reddy and Kambham Raja Reddy
Agriculture 2024, 14(3), 425; https://doi.org/10.3390/agriculture14030425 - 6 Mar 2024
Cited by 3 | Viewed by 2749
Abstract
The increasing severity of drought has become a significant threat to global crop production. Early season drought in corn produces poor plant stand and grain yield. Thus, identifying corn hybrids for drought tolerance during the early season is important. Nineteen corn hybrids commonly [...] Read more.
The increasing severity of drought has become a significant threat to global crop production. Early season drought in corn produces poor plant stand and grain yield. Thus, identifying corn hybrids for drought tolerance during the early season is important. Nineteen corn hybrids commonly grown in the Midsouthern US were assessed for drought tolerance using mini-hoop structures. Plants grown under non-stress conditions were exposed to three moisture levels at 100% (0.17 m3 m−3 soil; control), 66% (mild drought; DS1), and 33% (moderate drought; DS2) of the control from one to five leaf stages (V1 to V5). The physiological and morphological traits of corn hybrids were measured to assess variability in drought tolerance. When averaged across the hybrids, shoot parameters declined by 51% and 59% under DS1 and DS2 conditions, respectively, compared to the control. A decline in root traits was noticed under drought stress (38% under DS1 and 48% under DS2) compared to the control, revealing the shoot system sensitivity under drought conditions. In the principal component analysis, the first two principal components accounted for 66% of the phenotypic variation among the corn hybrids under drought stress. Total, shoot, leaf dry weights, root surface area, and root volume captured most of the phenotypic variation among the corn hybrids under drought. The results of the principal component analysis and drought stress response indices complimented the identification of ‘A6659’ and ‘D57VP51’ as drought-tolerant hybrids during the early seedling stage. These hybrids can be used as source material in developing drought-tolerant cultivars. Also, the tolerant hybrids will perform best under rainfed environments prone to early-season drought. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 3426 KiB  
Article
Early Identification of Corn and Soybean Using Crop Growth Curve Matching Method
by Ruiqing Chen, Liang Sun, Zhongxin Chen, Deji Wuyun and Zheng Sun
Agronomy 2024, 14(1), 146; https://doi.org/10.3390/agronomy14010146 - 8 Jan 2024
Cited by 3 | Viewed by 2639
Abstract
The prompt and precise identification of corn and soybeans are essential for making informed decisions in agricultural production and ensuring food security. Nonetheless, conventional crop identification practices often occur after the completion of crop growth, lacking the timeliness required for effective agricultural management. [...] Read more.
The prompt and precise identification of corn and soybeans are essential for making informed decisions in agricultural production and ensuring food security. Nonetheless, conventional crop identification practices often occur after the completion of crop growth, lacking the timeliness required for effective agricultural management. To achieve in-season crop identification, a case study focused on corn and soybeans in the U.S. Corn Belt was conducted using a crop growth curve matching methodology. Initially, six vegetation indices datasets were derived from the publicly available HLS product, and then these datasets were integrated with known crop-type maps to extract the growth curves for both crops. Furthermore, crop-type information was acquired by assessing the similarity between time-series data and the respective growth curves. A total of 18 scenarios with varying input image numbers were arranged at approximately 10-day intervals to perform identical similarity recognition. The objective was to identify the scene that achieves an 80% recognition accuracy earliest, thereby establishing the optimal time for early crop identification. The results indicated the following: (1) The six vegetation index datasets demonstrate varying capabilities in identifying corn and soybean. Among those, the EVI index and two red-edge indices exhibit the best performance, all surpassing 90% accuracy when the entire time-series data are used as input. (2) EVI, NDPI, and REVI2 indices can achieve early identification, with an accuracy exceeding 80% around July 20, more than two months prior to the end of the crops’ growth periods. (3) Utilizing the same limited sample size, the early crop identification method based on crop growth curve matching outperforms the method based on random forest by approximately 20 days. These findings highlight the considerable potential and value of the crop growth curve matching method for early identification of corn and soybeans, especially when working with limited samples. Full article
Show Figures

Figure 1

24 pages, 5149 KiB  
Article
Early-Stage Identification of Powdery Mildew Levels for Cucurbit Plants in Open-Field Conditions Based on Texture Descriptors
by Claudia Angélica Rivera-Romero, Elvia Ruth Palacios-Hernández, Osbaldo Vite-Chávez and Iván Alfonso Reyes-Portillo
Inventions 2024, 9(1), 8; https://doi.org/10.3390/inventions9010008 - 3 Jan 2024
Cited by 4 | Viewed by 2998
Abstract
Constant monitoring is necessary for powdery mildew prevention in field crops because, as a fungal disease, it modifies the green pigments of the leaves and is responsible for production losses. Therefore, there is a need for solutions that assure early disease detection to [...] Read more.
Constant monitoring is necessary for powdery mildew prevention in field crops because, as a fungal disease, it modifies the green pigments of the leaves and is responsible for production losses. Therefore, there is a need for solutions that assure early disease detection to realize proactive control and management of the disease. The methodology currently used for the identification of powdery mildew disease uses RGB leaf images to detect damage levels. In the early stage of the disease, no symptoms are visible, but this is a point at which the disease can be controlled before the symptoms appear. This study proposes the implementation of a support vector machine to identify powdery mildew on cucurbit plants using RGB images and color transformations. First, we use an image dataset that provides photos covering five growing seasons in different locations and under natural light conditions. Twenty-two texture descriptors using the gray-level co-occurrence matrix result are calculated as the main features. The proposed damage levels are ’healthy leaves’, ’leaves in the fungal germination phase’, ’leaves with first symptoms’, and ’diseased leaves’. The implementation reveals that the accuracy in the L * a * b color space is higher than that when using the combined components, with an accuracy value of 94% and kappa Cohen of 0.7638. Full article
Show Figures

Figure 1

26 pages, 13649 KiB  
Article
Large-Scale Cotton Classification under Insufficient Sample Conditions Using an Adaptive Feature Network and Sentinel-2 Imagery in Uzbekistan
by Jaloliddin Jaloliddinov, Xiangyu Tian, Yongqing Bai, Yonglin Guo, Zhengchao Chen, Yixiang Li and Shaohua Wang
Agronomy 2024, 14(1), 75; https://doi.org/10.3390/agronomy14010075 - 28 Dec 2023
Viewed by 2041
Abstract
Cotton (Gossypium hirsutum L.) is one of the main crops in Uzbekistan, which makes a major contribution to the country’s economy. The cotton industry has played a pivotal role in the economic landscape of Uzbekistan for decades, generating employment opportunities and supporting [...] Read more.
Cotton (Gossypium hirsutum L.) is one of the main crops in Uzbekistan, which makes a major contribution to the country’s economy. The cotton industry has played a pivotal role in the economic landscape of Uzbekistan for decades, generating employment opportunities and supporting the livelihoods of countless individuals across the country. Therefore, having precise and up-to-date data on cotton cultivation areas is crucial for overseeing and effectively managing cotton fields. Nonetheless, there is currently no extensive, high-resolution approach that is appropriate for mapping cotton fields on a large scale, and it is necessary to address the issues related to the absence of ground-truth data, inadequate resolution, and timeliness. In this study, we introduced an effective approach for automatically mapping cotton fields on a large scale. A crop-type mapping method based on phenology was conducted to map cotton fields across the country. This research affirms the significance of phenological metrics in enhancing the mapping of cotton fields during the growing season in Uzbekistan. We used an adaptive feature-fusion network for crop classification using single-temporal Sentinel-2 images and automatically generated samples. The map achieved an overall accuracy (OA) of 0.947 and a kappa coefficient (KC) of 0.795. This model can be integrated with additional datasets to predict yield based on the identified crop type, thereby enhancing decision-making processes related to supply chain logistics and seasonal production forecasts. The early boll opening stage, occurring approximately a little more than a month before harvest, yielded the most precise identification of cotton fields. Full article
(This article belongs to the Special Issue Application of Remote Sensing and GIS Technology in Agriculture)
Show Figures

Figure 1

15 pages, 1566 KiB  
Article
Rapid and High Throughput Hydroponics Phenotyping Method for Evaluating Chickpea Resistance to Phytophthora Root Rot
by Muhammad A. Asif, Sean L. Bithell, Ramethaa Pirathiban, Brian R. Cullis, David Glyn Dionaldo Hughes, Aidan McGarty, Nicole Dron and Kristy Hobson
Plants 2023, 12(23), 4069; https://doi.org/10.3390/plants12234069 - 4 Dec 2023
Viewed by 2051
Abstract
Phytophthora root rot (PRR) is a major constraint to chickpea production in Australia. Management options for controlling the disease are limited to crop rotation and avoiding high risk paddocks for planting. Current Australian cultivars have partial PRR resistance, and new sources of resistance [...] Read more.
Phytophthora root rot (PRR) is a major constraint to chickpea production in Australia. Management options for controlling the disease are limited to crop rotation and avoiding high risk paddocks for planting. Current Australian cultivars have partial PRR resistance, and new sources of resistance are needed to breed cultivars with improved resistance. Field- and glasshouse-based PRR resistance phenotyping methods are labour intensive, time consuming, and provide seasonally variable results; hence, these methods limit breeding programs’ abilities to screen large numbers of genotypes. In this study, we developed a new space saving (400 plants/m2), rapid (<12 days), and simplified hydroponics-based PRR phenotyping method, which eliminated seedling transplant requirements following germination and preparation of zoospore inoculum. The method also provided post-phenotyping propagation all the way through to seed production for selected high-resistance lines. A test of 11 diverse chickpea genotypes provided both qualitative (PRR symptoms) and quantitative (amount of pathogen DNA in roots) results demonstrating that the method successfully differentiated between genotypes with differing PRR resistance. Furthermore, PRR resistance hydroponic assessment results for 180 recombinant inbred lines (RILs) were correlated strongly with the field-based phenotyping, indicating the field phenotype relevance of this method. Finally, post-phenotyping high-resistance genotypes were selected. These were successfully transplanted and propagated all the way through to seed production; this demonstrated the utility of the rapid hydroponics method (RHM) for selection of individuals from segregating populations. The RHM will facilitate the rapid identification and propagation of new PRR resistance sources, especially in large breeding populations at early evaluation stages. Full article
(This article belongs to the Special Issue Advances in Legume Crops Research)
Show Figures

Figure 1

18 pages, 7484 KiB  
Article
Within-Season Crop Identification by the Fusion of Spectral Time-Series Data and Historical Crop Planting Data
by Qun Wang, Boli Yang, Luchun Li, Hongyi Liang, Xiaolin Zhu and Ruyin Cao
Remote Sens. 2023, 15(20), 5043; https://doi.org/10.3390/rs15205043 - 20 Oct 2023
Cited by 9 | Viewed by 1910
Abstract
Crop mapping at an earlier time within the growing season benefits agricultural management. However, crop spectral information is very limited at the early crop phenological stages, leading to difficulties for within-season crop identification. In this study, we proposed a deep learning-based fusion method [...] Read more.
Crop mapping at an earlier time within the growing season benefits agricultural management. However, crop spectral information is very limited at the early crop phenological stages, leading to difficulties for within-season crop identification. In this study, we proposed a deep learning-based fusion method for crop mapping within the growing season, which first learned a priori information (i.e., pre-season crop types) from historical crop planting data and then integrated the a priori information with the satellite-derived crop types estimated from spectral times-series data. We expect that preseason crop types provided by crop rotation patterns is an effective supplement to spectral information to generate reliable crop maps in the early growing season. We tested the proposed fusion method at three representative sites in the U.S. with different crop rotation intensities and one site with cloudy weather conditions in the Sichuan Province of China. The experimental results showed that the fusion method incorporated the strengths of pre-season crop type estimates and the spectral-based crop type estimates and thus achieved higher crop classification accuracy than the two estimates throughout the growing season. We found that pre-season crop estimates had a higher accuracy in the scenarios with either nearly continuous planting or half-time planting of the same crop. In addition, the historical crop type data strongly affected the performance of pre-season crop estimates, suggesting that high-quality historical crop planting data are particularly important for crop identification at earlier times in the growing season. Our study highlighted the great potential for near real-time crop mapping through the fusion of spectral information and crop rotation patterns. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Figure 1

18 pages, 4721 KiB  
Article
Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm
by Peng Wei, Huichun Ye, Shuting Qiao, Ronghao Liu, Chaojia Nie, Bingrui Zhang, Lijuan Song and Shanyu Huang
Remote Sens. 2023, 15(13), 3212; https://doi.org/10.3390/rs15133212 - 21 Jun 2023
Cited by 32 | Viewed by 5330
Abstract
Early-season crop mapping and information extraction is essential for crop growth monitoring and yield prediction, and it facilitates agricultural management and rapid response to agricultural disasters. However, training classifiers by remote sensing classification features for early crop prediction can be challenging, as early-season [...] Read more.
Early-season crop mapping and information extraction is essential for crop growth monitoring and yield prediction, and it facilitates agricultural management and rapid response to agricultural disasters. However, training classifiers by remote sensing classification features for early crop prediction can be challenging, as early-season mapping can only use remote sensing image data during part of the crop growth period. In order to overcome this limitation, this study takes the Sanjiang Plain as an example to investigate the earliest identification time of rice, maize and soybean based on Sentinel-2 time-series data and the random forest classification algorithm. Crop information extraction was then performed. Following the analysis of the remote sensing classification features by the random forest importance approach and the subsequent normalization, the optimal features greater than or equal to 0.5 have yielded quite results in early crop mapping, and their overall accuracy was the highest in early-season mapping. The overall accuracy was observed to improve by 5% for 10 to 20 days of delay. In addition, rice, maize, and soybean were mapped at the irrigation transplanting period (10 May), jointing stage (9 July) and flowering (29 July), with an overall accuracy of 90.4%, 90.0% and 90.9%, respectively. This study shows that features suitable for early crop classification can be selected by random forest importance analysis as well as the ability of remote sensing to extract crop acreage information within the reproductive period. Full article
(This article belongs to the Special Issue State-of-the-Art in Land Cover Classification and Mapping)
Show Figures

Figure 1

16 pages, 18115 KiB  
Article
Detection of Soybean Insect Pest and a Forecasting Platform Using Deep Learning with Unmanned Ground Vehicles
by Yu-Hyeon Park, Sung Hoon Choi, Yeon-Ju Kwon, Soon-Wook Kwon, Yang Jae Kang and Tae-Hwan Jun
Agronomy 2023, 13(2), 477; https://doi.org/10.3390/agronomy13020477 - 6 Feb 2023
Cited by 26 | Viewed by 4533
Abstract
Soybeans (Glycine max (L.) Merr.), a popular food resource worldwide, have various uses throughout the industry, from everyday foods and health functional foods to cosmetics. Soybeans are vulnerable to pests such as stink bugs, beetles, mites, and moths, which reduce yields. Riptortus [...] Read more.
Soybeans (Glycine max (L.) Merr.), a popular food resource worldwide, have various uses throughout the industry, from everyday foods and health functional foods to cosmetics. Soybeans are vulnerable to pests such as stink bugs, beetles, mites, and moths, which reduce yields. Riptortus pedestris (R. pedestris) has been reported to cause damage to pods and leaves throughout the soybean growing season. In this study, an experiment was conducted to detect R. pedestris according to three different environmental conditions (pod filling stage, maturity stage, artificial cage) by developing a surveillance platform based on an unmanned ground vehicle (UGV) GoPro CAM. Deep learning technology (MRCNN, YOLOv3, Detectron2)-based models used in this experiment can be quickly challenged (i.e., built with lightweight parameter) immediately through a web application. The image dataset was distributed by random selection for training, validation, and testing and then preprocessed by labeling the image for annotation. The deep learning model localized and classified the R. pedestris individuals through a bounding box and masking in the image data. The model achieved high performances, at 0.952, 0.716, and 0.873, respectively, represented through the calculated means of average precision (mAP) value. The manufactured model will enable the identification of R. pedestris in the field and can be an effective tool for insect forecasting in the early stage of pest outbreaks in crop production. Full article
Show Figures

Figure 1

24 pages, 5911 KiB  
Article
Investigating the Potential of Crop Discrimination in Early Growing Stage of Change Analysis in Remote Sensing Crop Profiles
by Mengfan Wei, Hongyan Wang, Yuan Zhang, Qiangzi Li, Xin Du, Guanwei Shi and Yiting Ren
Remote Sens. 2023, 15(3), 853; https://doi.org/10.3390/rs15030853 - 3 Feb 2023
Cited by 13 | Viewed by 3962
Abstract
Currently, remote sensing crop identification is mostly based on all available images acquired throughout crop growth. However, the available image and data resources in the early growth stage are limited, which makes early crop identification challenging. Different crop types have different phenological characteristics [...] Read more.
Currently, remote sensing crop identification is mostly based on all available images acquired throughout crop growth. However, the available image and data resources in the early growth stage are limited, which makes early crop identification challenging. Different crop types have different phenological characteristics and seasonal rhythm characteristics, and their growth rates are different at different times. Therefore, making full use of crop growth characteristics to augment crop growth difference information at different times is key to early crop identification. In this study, we first calculated the differential features between different periods as new features based on images acquired during the early growth stage. Secondly, multi-temporal difference features of each period were constructed by combination, then a feature optimization method was used to obtain the optimal feature set of all possible combinations in different periods and the early key identification characteristics of different crops, as well as their stage change characteristics, were explored. Finally, the performance of classification and regression tree (Cart), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Machine (SVM) classifiers in recognizing crops in different periods were analyzed. The results show that: (1) There were key differences between different crops, with rice changing significantly in period F, corn changing significantly in periods E, M, L, and H, and soybean changing significantly in periods E, M, N, and H. (2) For the early identification of rice, the land surface water index (LSWI), simple ratio index (SR), B11, and normalized difference tillage index (NDTI) contributed most, while B11, normalized difference red-edge3 (NDRE3), LSWI, the green vegetation index (VIgreen), red-edge spectral index (RESI), and normalized difference red-edge2 (NDRE2) contributed greatly to corn and soybean identification. (3) Rice could be identified as early as 13 May, with PA and UA as high as 95%. Corn and soybeans were identified as early as 7 July, with PA and UA as high as 97% and 94%, respectively. (4) With the addition of more temporal features, recognition accuracy increased. The GBDT and RF performed best in identifying the three crops in the early stage. This study demonstrates the feasibility of using crop growth difference information for early crop recognition, which can provide a new idea for early crop recognition. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Figure 1

17 pages, 6369 KiB  
Article
Assessing the Effects of Drought on Rice Yields in the Mekong Delta
by Kim Lavane, Pankaj Kumar, Gowhar Meraj, Tran Gia Han, Luong Hong Boi Ngan, Bui Thi Bich Lien, Tran Van Ty, Nguyen Truong Thanh, Nigel K. Downes, Nguyen Dinh Giang Nam, Huynh Vuong Thu Minh, Suraj Kumar Singh and Shruti Kanga
Climate 2023, 11(1), 13; https://doi.org/10.3390/cli11010013 - 3 Jan 2023
Cited by 49 | Viewed by 4951
Abstract
In contrast to other natural disasters, droughts may develop gradually and last for extended periods of time. The World Meteorological Organization advises using the Standardized Precipitation Index (SPI) for the early identification of drought and understanding of its characteristics over various geographical areas. [...] Read more.
In contrast to other natural disasters, droughts may develop gradually and last for extended periods of time. The World Meteorological Organization advises using the Standardized Precipitation Index (SPI) for the early identification of drought and understanding of its characteristics over various geographical areas. In this study, we use long-term rainfall data from 14 rain gauge stations in the Vietnamese Mekong Delta (1979–2020) to examine correlations with changes in rice yields. Results indicate that in the winter–spring rice cropping season in both 2016 and 2017, yields declined, corresponding with high humidity levels. Excessive rainfall during these years may have contributed to waterlogging, which in turn adversely affected yields. The results highlight that not only drought, but also humidity has the potential to adversely affect rice yield. Full article
Show Figures

Figure 1

22 pages, 5601 KiB  
Article
Early-Season Crop Identification in the Shiyang River Basin Using a Deep Learning Algorithm and Time-Series Sentinel-2 Data
by Zhiwei Yi, Li Jia, Qiting Chen, Min Jiang, Dingwang Zhou and Yelong Zeng
Remote Sens. 2022, 14(21), 5625; https://doi.org/10.3390/rs14215625 - 7 Nov 2022
Cited by 25 | Viewed by 3548
Abstract
Timely and accurate crop identification and mapping are of great significance for crop yield estimation, disaster warning, and food security. Early-season crop identification places higher demands on the quality and mining of time-series information than post-season mapping. In recent years, great strides have [...] Read more.
Timely and accurate crop identification and mapping are of great significance for crop yield estimation, disaster warning, and food security. Early-season crop identification places higher demands on the quality and mining of time-series information than post-season mapping. In recent years, great strides have been made in the development of deep-learning algorithms, and the emergence of Sentinel-2 data with a higher temporal resolution has provided new opportunities for early-season crop identification. In this study, we aimed to fully exploit the potential of deep-learning algorithms and time-series Sentinel-2 data for early-season crop identification and early-season crop mapping. In this study, four classifiers, i.e., two deep-learning algorithms (one-dimensional convolutional networks and long and short-term memory networks) and two shallow machine-learning algorithms (a random forest algorithm and a support vector machine), were trained using early-season Sentinel-2 images and field samples collected in 2019. Then, these algorithms were applied to images and field samples for 2020 in the Shiyang River Basin. Twelve scenarios with different classifiers and time intervals were compared to determine the optimal combination for the earliest crop identification. The results show that: (1) the two deep-learning algorithms outperformed the two shallow machine-learning algorithms in early-season crop identification; (2) the combination of a one-dimensional convolutional network and 5-day interval time-series Sentinel-2 data outperformed the other schemes in obtaining the early-season crop identification time and achieving early mapping; and (3) the early-season crop identification mapping time in the Shiyang River Basin was identified as the end of July, and the overall classification accuracy reached 0.83. In addition, the early identification time for each crop was as follows: the wheat was in the flowering stage (mid-late June); the alfalfa was in the first harvest (mid-late June); the corn was in the early tassel stage (mid-July); the fennel and sunflower were in the flowering stage (late July); and the melons were in the fruiting stage (around late July). This study demonstrates the potential of using Sentinel-2 time-series data and deep-learning algorithms to achieve early-season crop identification, and this method is expected to provide new solutions and ideas for addressing early-season crop identification monitoring. Full article
(This article belongs to the Special Issue Monitoring Crops and Rangelands Using Remote Sensing)
Show Figures

Graphical abstract

14 pages, 3479 KiB  
Technical Note
Estimate the Earliest Phenophase for Garlic Mapping Using Time Series Landsat 8/9 Images
by Yan Guo, Haoming Xia, Xiaoyang Zhao, Longxin Qiao and Yaochen Qin
Remote Sens. 2022, 14(18), 4476; https://doi.org/10.3390/rs14184476 - 8 Sep 2022
Cited by 12 | Viewed by 2680
Abstract
Garlic is the major economic crop in China. Timely and accurate identification and mapping of garlic are significant for garlic yield prediction and garlic market management. Previous studies on garlic mapping were mainly based on all observations of the entire growing season, so [...] Read more.
Garlic is the major economic crop in China. Timely and accurate identification and mapping of garlic are significant for garlic yield prediction and garlic market management. Previous studies on garlic mapping were mainly based on all observations of the entire growing season, so the resulting maps have a hysteresis. Here, we determined the optimal identification strategy and the earliest identifiable phenophase for garlic based on all available Landsat 8/9 time series imagery in Google Earth Engine. Specifically, we evaluated the performance of different vegetation indices for each phenophase to determine the optimal classification metrics for garlic. Secondly, we identified garlic using random forest algorithm and classification metrics of different time series lengths. Finally, we determined the earliest identifiable phenophase of garlic and generated an early-season garlic distribution map. Garlic could be identified as early as March (bud differentiation period) with an F1 of 0.91. Our study demonstrates the differences in the performance of vegetation indices at different phenophases, and these differences provide a new idea for mapping crops. The generated early-season garlic distribution map provides timely data support for various stakeholders. Full article
(This article belongs to the Special Issue Monitoring Agricultural Land-Use Change and Land-Use Intensity Ⅱ)
Show Figures

Figure 1

Back to TopTop