Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
- (1)
- Meteorological Data
- (2)
- Soil Data
- (3)
- Double-Season Rice Observation Data
- (4)
- Agricultural Statistical Data
2.3. Research Methods
2.3.1. Technical Workflow
2.3.2. Methods
- (1)
- Nelder–Mead
- (2)
- NSGA-II
- (3)
- HASM
- (4)
- APSIM
- (5)
- HASM-APSIM
2.4. Model Evaluation
3. Results
3.1. Accuracy Validation
3.1.1. Validation of Early Rice Yield Accuracy in Jiangxi Province
3.1.2. Validation of Late Rice Yield Accuracy in Jiangxi Province
3.2. Double-Season Rice Yield Simulation in Jiangxi Province
3.2.1. Early Rice Yield Simulation
3.2.2. Late Rice Yield Simulation
4. Discussion
4.1. Model Accuracy
4.2. Applicability of the Model
4.3. Model Limitations and Future Directions
4.4. Challenges and Countermeasures in Double-Cropping Rice Production in Jiangxi Province
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.B.; Wang, L.X.; Yang, W.T.; Yang, B.J.; Zhou, Q.; Huang, G.Q. Effects of multiple winter cropping on soil organic carbon and double-cropping rice yield in the south of China. Acta Ecol. Sin. 2018, 38, 8. [Google Scholar]
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing yield gaps for rice self-sufficiency in China. Nat. Communnat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, X.B.; Xin, L.J.; Tan, M.H. Paddy rice multiple cropping index changes in Southern China: Impacts on national grain production capacity and policy implications. J. Geogr. Sci. 2019, 74, 12. [Google Scholar] [CrossRef]
- Qi, L. Trends and Basic Causes of the Regional Pattern Changes in China’s Grain Production Since 1950’s. Prog. Geogr. 1997, 16, 31–36. [Google Scholar]
- Foley, J.A. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Aravind, K.S.; Vashisth, A.; Krishnan, P.; Kundu, M.; Prasad, S.; Meena, M.C.; Lama, A.; Das, P.; Das, B. Development of multistage crop yield estimation model using machine learning and deep learning techniques. Int. J. Biometeorol. 2025, 69, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Bachinger, J.; Reining, E. An empirical statistical model for predicting the yield of herbage from legume-grass swards within organic crop rotations based on cumulative water balances. Grass Forage Sci. 2009, 64, 144–159. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, M.; Mohammadi, K.; Song, D.; Bi, J.; Wang, G. Machine Learning Crop Yield Models Based on Meteorological Features and Comparison with a Process-Based Model. Artif. Intell. Earth Syst. 2022, 1, e220002. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cahill, K.N.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Change 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Smith, C.J. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Mccown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Cai, J.B.; Mao, X.M. The Applicability and Application of AquaCrop Model. J. Irrig. Drain. 2011, 30, 28–33. [Google Scholar]
- Montoya, F.; Camargo, D.; Ortega, J.F.; Córcoles, J.I.; Domínguez, A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agric. Water Manag. 2016, 164, 267–280. [Google Scholar] [CrossRef]
- Soler, C.M.T.; Sentelhas, P.C.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- Alderman, P.D. A comprehensive R interface for the DSSAT Cropping Systems Model. Comput. Electron. Agric. 2020, 172, 105325. [Google Scholar] [CrossRef]
- Xu, C.M.; Tian, Z.Y.; Chen, W.; Liu, J.J.; Bai, J. Simulations and validations of the soybean yields per unit area using DSSAT crop model in the major soybean producing areas of China and America. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 8. [Google Scholar]
- Wang, Z.; Shi, Y.; Hou, C.; Zhang, P. Sensitivity analysis of simulated Lycium barbarum L. yield in the WOFOST model under different climate conditions. Ecol. Model. 2024, 488, 110602. [Google Scholar] [CrossRef]
- Sha, H.; Li, Q.; Sun, X.; Hu, Z.; Qiao, Y.; Ma, W.; Wang, X. Effects of warming and drought stress on winter wheat in Jiangsu Province, China. Agron. J. 2022, 114, 2056–2068. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Pirdashti, H.; Kaveh, M.; Dokoohaki, H.; Mousavi, H. Determination of a Sustainable Management for Rice Production Through a Modeling Approach. Int. J. Plant Prod. 2025, 19, 47–64. [Google Scholar] [CrossRef]
- Robertson, M.J.; Lilley, J.M. Simulation of growth, development and yield of canola (Brassica napus) in APSIM. Crop. Pasture Sci. 2016, 67, 332. [Google Scholar] [CrossRef]
- George, N.A.; Pedro Cuamba, H.D.J.; Lundy, M.E.; Bennett, S.J. Evaluating the Agricultural Production Systems sIMulator (APSIM) wheat module for California. Crop. Pasture Sci. 2024, 75, CP23046. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Li, Y.; Yu, L.; Gu, X.; Cai, H. Optimization of water and nitrogen measures for maize-soybean intercropping under climate change conditions based on the APSIM model in the Guanzhong plain, China. Agric. Syst. 2024, 224, 104236. [Google Scholar] [CrossRef]
- Hao, S.; Ryu, D.; Western, A.W.; Perry, E.; Bogena, H.; Franssen, H.J.H. Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs. Ecol. Model. 2023, 487, 110551. [Google Scholar] [CrossRef]
- Radanielson, A.M.; Gaydon, D.S.; Li, T.; Angeles, O.; Roth, C.H. Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur. J. Agron. 2018, 100, 44–55. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Zhu, A.X.; Shen, F.; Lei, Q.; Duan, Z. Global sensitivity analysis of the APSIM-Oryza rice growth model under different environmental conditions. Sci. Total Environ. 2018, 651, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W. Development and problems of crop models. Trans. Chin. Soc. Agric. 2008, 24, 6. [Google Scholar]
- Yue, T.X.; Liu, Y.; Zhao, M.W.; Du, Z.P.; Zhao, N. A fundamental theorem of Earth’s surface modelling. Environ. Earth Sci. 2016, 75, 751. [Google Scholar] [CrossRef]
- Yue, T.X. Principles and Methods of Earth’s Surface System Modeling and Analysis 2007; Science Press: Beijing, China, 2017. [Google Scholar]
- Zhao, N.; Yue, T.X.; Wang, C.L. Surface modeling of seasonal mean precipitation in China during 1951–2010. Prog. Geogr. 2013, 32, 49–58. [Google Scholar]
- Yue, T.X.; Zhao, N.; Ramsey, R.D.; Wang, C.L.; Fan, Z.M.; Chen, C.F.; Lu, Y.M.; Li, B.L. Climate change trend in China, with improved accuracy. Clim. Change 2013, 120, 137–151. [Google Scholar] [CrossRef]
- Yue, T.; Zhang, L.; Zhao, M.; Wang, Y.; Wilson, J. Space- and ground-based CO2 measurements: A review. Sci. China (Earth Sci.) 2016, 59, 2089–2097. [Google Scholar] [CrossRef]
- Zhao, N.; Yue, T.; Zhou, X.; Zhao, M.; Zhang, L. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method. Theor. Appl. Clim. 2016, 129, 281–292. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, N.; Chen, C.; Li, H.; Yue, T.; Zhang, L.; Liu, Y. Mapping temperature using a Bayesian statistical method and a high accuracy surface modelling method in the Beijing–Tianjin–Hebei region, China. Meteorol. Appl. 2017, 24, 571–579. [Google Scholar] [CrossRef]
- Zhao, N.; Yue, T.; Chen, C.; Zhao, M.; Du, Z. An improved HASM method for dealing with large spatial data sets. Sci. China (Earth Sci.) 2018, 61, 1078–1087. [Google Scholar] [CrossRef]
- Zhao, N.; Yue, T.; Li, H.; Zhang, L.; Yin, X.; Liu, Y. Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China. Atmos. Res. 2018, 202, 156–168. [Google Scholar] [CrossRef]
- Yue, T.X.; Zhao, N.; Fan, Z.M.; Li, J.; Chen, C.F.; Lu, Y.M.; Wang, C.L.; Gao, J.; Xu, B.; Jiao, Y.M. Methods for simulating climate scenarios with improved spatiotemporal specificity and less uncertainty. Glob. Planet. Change 2019, 181, 102973. [Google Scholar] [CrossRef]
- Li, Q.Q.; Yue, T.X.; Wang, C.Q.; Zhang, W.J.; Yu, Y.; Li, B.; Yang, J.; Bai, G.C. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena 2013, 104, 210–218. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhang, H.; Jiang, X.Y.; Luo, Y.; Wang, C.Q.; Yue, T.X.; Li, B.; Gao, X.S. Spatially distributed modeling of soil organic carbon across China with improved accuracy. J. Adv. Model. Earth Syst. 2017, 9, 1167–1185. [Google Scholar] [CrossRef]
- Shi, W.; Liu, J.; Du, Z.; Stein, A.; Yue, T. Surface modelling of soil properties based on land use information. Geoderma 2011, 162, 347–357. [Google Scholar] [CrossRef]
- Shi, W.J.; Liu, J.Y.; Du, Z.P.; Yue, T.X. High Accuracy Surface Modeling of Soil Properties Based on Geographic Information. Acta Geogr. Sin. 2011, 66, 8. [Google Scholar]
- Shi, W.J.; Yue, T.X.; Fan, Z.M. An Overview of High Accuracy Surface Modeling of Soil Properties. Procedia Environ. Sci. 2012, 13, 2304–2309. [Google Scholar] [CrossRef]
- Yue, T.X.; Song, D.J.; Zheng-Ping, D.U.; Wang, W. High-accuracy surface modelling and its application to DEM generation. Int. J. Remote. Sens. 2010, 31, 2205–2226. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, T.; Zhang, L.; Zhao, N.; Zhao, M.; Liu, Y. Simulation and analysis of XCO2 in North China based on high accuracy surface modeling. Environ. Sci. Pollut. Res. 2018, 25, 27378–27392. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.X.; Zhao, N.; Fan, Z.M.; Li, J.; Chen, C.F.; Lu, Y.M.; Wang, C.L.; Xu, B.; Wilson, J. CMIP5 downscaling and its uncertainty in China. Glob. Planet. Change 2016, 146, 30–37. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Yue, T.; Wang, C.; Jiang, L.; Sun, J. A high-accuracy method for simulating the XCO2 global distribution using GOSAT retrieval data. Sci. China Earth Sci. 2017, 60, 143–155. [Google Scholar] [CrossRef]
- Zhao, M.; Yue, T.; Zhang, X.; Sun, J.; Jiang, L.; Wang, C. Fusion of multi-source near-surface CO2 concentration data based on high accuracy surface modeling—ScienceDirect. Atmos. Pollut. Res. 2017, 8, 1170–1178. [Google Scholar]
- Zhang, L.; Yue, T.; Wilson, J.; Wang, D.; Zhao, N.; Liu, Y.; Liu, D.; Du, Z.; Wang, Y.; Lin, C. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments. Sensors 2016, 16, 1818. [Google Scholar] [CrossRef]
- Yue, T.X.; Wang, Y.A.; Chen, S.P.; Liu, J.Y.; Qiu, D.S.; Deng, X.Z.; Liu, M.L.; Tian, Y.Z. Numerical Simulation of Population Distribution in China. Popul. Environ. 2003, 25, 141–163. [Google Scholar] [CrossRef]
- Yue, T.X.; Wang, Y.A.; Liu, J.Y.; Chen, S.P.; Qiu, D.S.; Deng, X.Z.; Liu, M.L.; Tian, Y.Z.; Su, B.P. Surface modelling of human population distribution in China. Ecol. Model. 2005, 181, 461–478. [Google Scholar] [CrossRef]
- Yue, T.X.; Wang, Y.A.; Liu, J.Y.; Chen, S.P.; Tian, Y.Z.; Su, B.P. SMPD Scenarios of Spatial Distribution of Human Population in China. Popul. Environ. 2005, 26, 207–228. [Google Scholar] [CrossRef]
- Yue, T.X.; Du, Z.P.; Lu, M.; Fan, Z.M.; Wang, C.L.; Tian, Y.Z.; Xu, B. Surface modeling of ecosystem responses to climatic change in Poyang Lake Basin of China. Ecol. Model. 2015, 306, 16–23. [Google Scholar] [CrossRef]
- Yue, T.X.; Wu, C.C.; Liu, Y.; Du, Z.P.; Zhao, N.; Jiao, Y.M.; Xu, Z.; Shi, W.J. HASM quantum machine learning. Sci. China Earth Sci. 2023, 53, 1958–1966. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, N.; Zhao, M.W.; Chen, C.F.; Du, Z.P.; Song, D.J.; Fan, Z.M.; Shi, W.J.; Wang, S.H.; Yan, C.Q.; et al. A review of recent developments in HASM. Environ. Earth Sci. 2015, 74, 6541–6549. [Google Scholar]
- Yue, T.; Zhao, N.; Liu, Y.; Wang, Y.; Zhang, B.; Du, Z.; Fan, Z.; Shi, W.; Chen, C.; Zhao, M.; et al. A fundamental theorem for eco-environmental surface modelling and its applications. Sci. China Earth Sci. 2020, 63, 1092–1112. [Google Scholar] [CrossRef]
- Jiang, Z.W.; Chen, Z.X.; Ren, J.Q.; Zhou, Q.B. Estimation of crop yield using CERES-Wheat model based on particle filter data assimilation method. Trans. Chin. Soc. Agric. 2012, 28, 138–146. [Google Scholar]
- Song, L.J.; Ye, W.J.; Lu, Z.J.; Fu, B.; Xin, R.; Huang, N.; Wang, M.Y.; Bi, H.W. Review on Data Assimilation of Remote Sensing and Crop Growth Models in Rice. China Rice 2020, 26, 84–89. [Google Scholar]
- Li, W.; Li, M.; Awais, M.; Ji, L.; Li, H.; Song, R.; Cheema, M.J.M.; Agarwal, R. Research on Assimilation of Unmanned Aerial Vehicle Remote Sensing Data and AquaCrop Model. Sensors 2024, 24, 3255. [Google Scholar] [CrossRef]
- Shahhosseini, M.; Hu, G.; Huber, I.; Archontoulis, S.V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 2021, 11, 1606. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Dahms, T.; Kuebert-Flock, C.; Rummler, T.; Arnault, J.; Stefan-Dewenter, I.; Ullmann, T. Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. Front. Remote. Sens. 2023, 3, 1010978. [Google Scholar] [CrossRef]
- Li, Z.; Nie, Z.; Li, G. Integrating Crop Modeling and Machine Learning for the Improved Prediction of Dryland Wheat Yield. Agronomy 2024, 14, 777. [Google Scholar] [CrossRef]
- Feng, P.; Wang, B.; Liu, D.L.; Waters, C.M.; Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 2019, 275, 100–113. [Google Scholar] [CrossRef]
- Guerif, M.; Launay, M.; Duke, C. Remote sensing as a tool enabling the spatial use of crop models for crop diagnosis and yield prediction. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Zhang, F.L.; Liu, W.Y.; Tian, J.; Wang, J.J.; Liu, D.; Yang, J.; Li, Y.C.; Zhang, Y.Z. Simulating effects of climate change on growth season and yield of double cropping rice in Jiangxi province based on DSSAT model. Acta Agron. Sin. 2024, 50, 2614–2624. [Google Scholar]
- Duan, L.C.; Zhang, K.; Guo, R.G.; Cai, Z.; Wang, J.J.; Liu, D. Regional Division of Suitable Direct Sowing Date of Double Season Early Rice in Jiangxi Province. Chin. J. Agrometeorol. 2021, 42, 112. [Google Scholar]
- Guo, X.; Huang, J.; Zhu, A.F.; Lai, J.C.; Xie, W.; Zhao, X.M. A Study on Early Rice Yield Estimation Based on TM Image in Southern Hill Regions—A Case Study of Fengxin County. Acta Agric. Univ. Jiangxiensis 2010, 32, 1103–1108. [Google Scholar]
- Tang, J.; Huang, S.; Tan, X.M.; Shi, Q.H.; Pan, X.H. Effect of Different Tillage Regimes on Rice Yield under Mechanical Transplanting in A Double Rice Cropping System. Acta Agric. Univ. Jiangxiensis 2014, 36, 996–1001. [Google Scholar]
- Yang, B.J.; Wang, L.X.; Yuan, J.X.; Huang, G.Q. Study on different winter crops and multiple cropping patterns on rice yield and soil nitrogen characteristics in middle reaches of Yangtze River. Ecol. Sci. 2021, 40, 75–82. [Google Scholar]
- Tang, G.; Liao, P.; Sui, F.; Lu, W.S.; Zhang, J.; Ceng, Y.J.; Huang, S. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System. Crops 2021, 101–107. [Google Scholar]
- Chen, A.Q.; Lei, B.K.; Lu, Y.; Mao, Y.T.; Zhang, D. Study on nitrogen application rate tolerance based on rice yield and ecological security in hilly areas of South China. Trans. Chin. Soc. Agric. 2013, 29, 131–139. [Google Scholar]
- Stanisic, S.M.; Radakovic, Z.R. Method for characterization of soil electrical resistivity based on Wenner measurements by means of Nelder-Mead algorithm and FEM calculations. Electr. Eng. 2023, 105, 4427–4441. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; van Laar, H.H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agric. Syst. 2006, 87, 249–273. [Google Scholar] [CrossRef]
- Han, X.Y.; Jing, Y.S.; Hao, Y.; Geng, L.N. The Comparison of Regional Parameters of ORYZA2000 Based on The Field Test. J. Arid. Meteorol. 2013, 31, 37–42. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, M.L.; Yan, H.M.; Yang, J.Y.; Shi, W.J. Estimating maize yield in Jilin Province of China using VPM model combined with conversion coefficient. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2024, 40, 195–201. [Google Scholar]
- Wang, P.X.; Qiao, C.; Li, L.; Zhou, X.J.; Xu, L.X.; Hu, Y.J. Estimation of Maize Yield Based on Shapley Value Combination Forecasting. Trans. Chin. Soc. Agric. Mach. 2021, 52, 221–229. [Google Scholar]
- Zhou, X.J.; Zhang, Y.; Wang, P.X.; Zhang, S.Y.; Li, H.M.; Tian, H.R. Reconstruction of Time Series LAI and Winter Wheat Yield Estimation at Field Scales Based on Sentinel Satellites. Trans. Chin. Soc. Agric. Mach. 2022, 53, 173–185. [Google Scholar]
- Huang, G.Q. Achievements, problems and strategic countermeasures of development of paddy field farming systems in Southern China. J. Huazhong Agric. Univ. 2022, 41, 1–20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Jiao, Y.; Wu, C.; Shi, W.; Huang, H.; Zhang, Y.; Zhao, X.; Guo, X.; Zhang, Y.; Yue, T. Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model. Agriculture 2025, 15, 1034. https://doi.org/10.3390/agriculture15101034
Zhu M, Jiao Y, Wu C, Shi W, Huang H, Zhang Y, Zhao X, Guo X, Zhang Y, Yue T. Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model. Agriculture. 2025; 15(10):1034. https://doi.org/10.3390/agriculture15101034
Chicago/Turabian StyleZhu, Meiqing, Yimeng Jiao, Chenchen Wu, Wenjiao Shi, Hongsheng Huang, Ying Zhang, Xiaomin Zhao, Xi Guo, Yongshou Zhang, and Tianxiang Yue. 2025. "Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model" Agriculture 15, no. 10: 1034. https://doi.org/10.3390/agriculture15101034
APA StyleZhu, M., Jiao, Y., Wu, C., Shi, W., Huang, H., Zhang, Y., Zhao, X., Guo, X., Zhang, Y., & Yue, T. (2025). Simulation and Optimization of Double-Season Rice Yield in Jiangxi Province Based on High-Accuracy Surface Modeling–Agricultural Production Systems sIMulator Model. Agriculture, 15(10), 1034. https://doi.org/10.3390/agriculture15101034