Assessing the Effects of Drought on Rice Yields in the Mekong Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimated SPI for Each Period and Rice Cropping Seasons
2.3. Temporal Analysis
2.4. Spatial Analysis of Drought Status
3. Results and Discussion
3.1. Temporal Analysis Using SPI 12−Month Drought
3.2. Cluster Analysis Using AHC Technique
3.3. SPI 3-Month, SPI 6-Month, SPI 9-Month, and SPI 12-Month Drought Patterns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tfwala, C.; Mengistu, A.; Seyama, E.; Mosia, M.; van Rensburg, L.; Mvubu, B.; Mbingo, M.; Dlamini, P. Nationwide Temporal Variability of Droughts in the Kingdom of Eswatini: 1981–2018. Heliyon 2020, 6, e05707. [Google Scholar] [CrossRef] [PubMed]
- Dow, K. News Coverage of Drought Impacts and Vulnerability in the US Carolinas, 1998–2007. Nat. Hazards 2010, 54, 497–518. [Google Scholar] [CrossRef]
- Popova, Z.; Ivanova, M.; Martins, D.; Pereira, L.; Doneva, K.; Alexandrov, V.; Kercheva, M. Vulnerability of Bulgarian Agriculture to Drought and Climate Variability with Focus on Rainfed Maize Systems. Nat. Hazards 2014, 74, 865–886. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.; Dominguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought Risk Assessment in Central Nepal: Temporal and Spatial Analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Wong, G.; Lambert, M.; Leonard, M.; Metcalfe, A. Drought Analysis Using Trivariate Copulas Conditional on Climate States. J. Hydrol. Eng. 2010, 15, 129–141. [Google Scholar] [CrossRef]
- Bevacqua, A.G.; Chaffe, P.L.; Chagas, V.B.; AghaKouchak, A. Spatial and Temporal Patterns of Propagation from Meteorological to Hydrological Droughts in Brazil. J. Hydrol. 2021, 603, 126902. [Google Scholar] [CrossRef]
- NOAA Defense Meteorological Satellite Program. Available online: https://ngdc.noaa.gov/ngdc.html (accessed on 1 May 2019).
- Mekong River Commission. Drought Management Strategy for the Lower Mekong Basin 2020–2025. Available online: https://www.mrcmekong.org/resource/ajg4ye (accessed on 4 June 2022).
- Nguyen, H.T.; Tran, V.H.; Tu, T.N. Research on Droughts Based on the Drought Index (K) on Binh Thuan Province. Vietnam J. Hydrometeorol. 2022, 734, 34–49. [Google Scholar]
- Hong, N.V.; Phan, T.T.; Giai, N.S. Possibilities of Use the Standardized Precipitation Index (SPI) in Assessing Influence of Dry and Wet Conditions to Rice Crop Yield in Can Tho and Hau Giang Provinces. J. Sci. Clim. Chang. 2018, 5, 36–42. [Google Scholar]
- World Meteorological Organization. The Drought Indices. Available online: https://public.wmo.int/en (accessed on 23 July 2022).
- Le, M.-H.; Kim, H.; Moon, H.; Zhang, R.; Lakshmi, V.; Nguyen, L.-B. Assessment of Drought Conditions over Vietnam Using Standardized Precipitation Evapotranspiration Index, MERRA-2 Re-Analysis, and Dynamic Land Cover. J. Hydrol. Reg. Stud. 2020, 32, 100767. [Google Scholar] [CrossRef]
- Moreira, E.E.; Coelho, C.A.; Paulo, A.A.; Pereira, L.S.; Mexia, J.T. SPI-Based Drought Category Prediction Using Loglinear Models. J. Hydrol. 2008, 354, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Ty, T.V.; Hoai, D.T.T.H.; Minh, H.V.T. Mapping Meteorological Drought in the Mekong Delta under Climate Change. Cantho Univ. J. Sci. 2015, 226–233. [Google Scholar]
- Minh, H.V.T.; Kumar, P.; Van Ty, T.; Duy, D.V.; Han, T.G.; Lavane, K.; Avtar, R. Understanding Dry and Wet Conditions in the Vietnamese Mekong Delta Using Multiple Drought Indices: A Case Study in Ca Mau Province. Hydrology 2022, 9, 213. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Lavane, K.; Ty, T.V.; Downes, N.K.; Hong, T.T.K.; Kumar, P. Evaluation of the Impact of Drought and Saline Water Intrusion on Rice Yields in the Mekong Delta, Vietnam. Water 2022, 14, 3499. [Google Scholar] [CrossRef]
- Van Ty, T.; Lavane, K.; Nguyen, P.C.; Downes, N.K.; Nam, N.D.G.; Minh, H.V.T.; Kumar, P. Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land 2022, 11, 2175. [Google Scholar]
- Lien, M.K.; Thai, T.H.; Trung, T.D.B.; Dai, H.V.; Diep, D.N. Drought Characteristics in the Mekong Delta. Vietnam J. Hydrometeorol. 2016, 5, 1–5. [Google Scholar]
- To, V.T. Assessment of Drought and Saltwater Intrusion; Causes and Forecast of Drought and Saline Intrusion in the Coming Time in the Mekong Delta from an Expert Perspective. Available online: http://dmc.gov.vn/news-detail/assessment-causes-and-forecasts-of-drought-saltwater-intrusion-in-the-mekong-delta-from-expert-perspective-cd9902-32.html?lang=en-US (accessed on 25 October 2022).
- Nguyen, V.B.; Tran, T.L.H.; Trien, T.; Van, P.D.T. Impacts of Saline Intrusion on Agriculture and Aquaculture in the Tran De District, Soc Trang Province. Cantho Univ. J. Sci. 2017, 94–100. [Google Scholar]
- Be, N.V.; Tri, V.P.Đ.; Hang, T.T.L.; An, N.T. Impacts of Saline Intrusion on Water Resource Management for Agricultural Production in Long Phu District, Soc Trang Province. Cantho Univ. J. Sci. 2017, 104–112. [Google Scholar]
- Vietnam News Agency Overview of the Mekong Delta Region. 2022. Available online: https://www.vietnamplus.vn/ (accessed on 26 August 2022).
- Vietnames Broadcast Mekong Delta with the Role of Ensuring National Food Security. Available online: https://vovworld.vn/ (accessed on 26 August 2020).
- Ministry of Planning and Investment. Agricultural, Forestry and Fishery Production in November and 11 Months of 2022. Available online: https://www.mpi.gov.vn/en/Pages/tinbai.aspx?idTin=56171&idcm=49 (accessed on 10 September 2022).
- Magazine Numbers and Facts Drought, Saltwater Intrusion in the Mekong Delta Situation and Solutions. Available online: https://consosukien.vn/ (accessed on 26 August 2022).
- Ngan an Hạn Hán, Xâm Nhập Mặn ở Đồng Bằng Sông Cửu Long Thực Trạng và Giải Pháp. Available online: https://consosukien.vn/han-han-xam-nhap-man-o-dong-bang-song-cuu-long-thuc-trang-va-giai-phap.htm (accessed on 10 August 2022).
- Wilhite, D.A. Quantification of Agricultural Drought for Effective Drought Mitigation and Preparedness: Key Issues and Challenges. In Proceedings of the Agricultural Drought Indices: Proceedings of an Expert Meeting, 2–4 June 2010, Murcia, Spain; pp. 13–21.
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine Learning-Based Integration of Remotely-Sensed Drought Factors Can Improve the Estimation of Agricultural Drought in South-Eastern Australia. Agric. Syst. 2019, 173, 303–316. [Google Scholar] [CrossRef]
- Yahaya, T.I.; Muhammed, M. Assessing Rainfall Variability Impacts Using Agricultural Index (ARI) on Cassava Growth in Ilorin Area of Kwara State, Nigenia. Int. J. Environ. Policy Issues Geo-Stud. Forum 2013, 6, 158–170. [Google Scholar]
- Pandžić, K.; Likso, T.; Pejić, I.; Šarčević, H.; Pecina, M.; Šestak, I.; Tomšić, D.; Strelec Mahović, N. Application of the Self-Calibrated Palmer Drought Severity Index and Standardized Precipitation Index for Estimation of Drought Impact on Maize Grain Yield in Pannonian Part of Croatia. Nat. Hazards 2022, 113, 1237–1262. [Google Scholar] [CrossRef]
- Agnew, C. Using the SPI to Identify Drought. In Proceedings of the Drought Network News (1994–2001); National Drought Mitigation Center: London, UK, 2000; Volume 12, p. 8. [Google Scholar]
- Soleimani, H.; Ahmadi, H.; Zehtabian, G. Comparison of Temporal and Spatial Trend of SPI, DI and CZI as Important Drought Indices to Map Using IDW Method in Taleghan Watershed. Ann. Biol. Res. 2013, 4, 46–55. [Google Scholar]
- Vicente-Serrano, S.M. Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula. Water Resour. Manag. 2006, 20, 37–60. [Google Scholar] [CrossRef]
- Thang, N.V.; Khiem, M.V. The Assessment and Estimate Dry Condition by SPI Indicator for the VMD Bu Using the SPI Index. Vietnam J. Hydrometeorol. 2017, 6, 1–9. [Google Scholar]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of Trend Analysis for Monthly Water Quality Data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Shrestha, S.; Kazama, F. Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Spec. Sect. Environ. Risk Emerg. Manag. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water Quality Assessment and Apportionment of Pollution Sources of Gomti River (India) Using Multivariate Statistical Techniques—A Case Study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Kurasaki, M.; Ty, T.V.; Tran, D.Q.; Le, K.N.; Avtar, R.; Rahman, M.; Osaki, M. Effects of Multi-Dike Protection Systems on Surface Water Quality in the Vietnamese Mekong Delta. Water 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Trung, K. Vulnerability to Natural Disasters: The Case of Vietnam’s Mekong Delta. In Vulnerability in a Mobile World; Forbes-Mewett, H., Ed.; Emerald Publishing Limited: Bingley, UK, 2019; pp. 71–90. ISBN 978-1-78756-912-6. [Google Scholar]
- Nguyen, V.H.; Yen, H.P.H. Seasonal Variation and Its Impacts in Rice-Growing Regions of the Mekong Delta. Int. J. Clim. Chang. Strat. Manag. 2021, 13, 483–491. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V.; Mainuddin, M.; Trung, L.D. Future Rice Farming Threatened by Drought in the Lower Mekong Basin. Sci. Rep. 2021, 11, 9383. [Google Scholar] [CrossRef]
Drought Levels | SPI Values | Drought Levels | SPI Values |
---|---|---|---|
Normal | 0–0.24 | Normal | (−0.24)–0 |
Very slightly wet | 0.25–0.49 | Very slight drought | (−49)–(−0.25) |
Slightly wet | 0.5–0.99 | Slight drought | (−0.99)–(−0.5) |
Moderately wet | 1–1.44 | Moderate drought | (−1.44)–(−1) |
Severely wet | 1.5–1.99 | Severe drought | (−1.99)–(−1.5) |
Extremely wet | >2 | Extreme drought | <(−2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavane, K.; Kumar, P.; Meraj, G.; Han, T.G.; Ngan, L.H.B.; Lien, B.T.B.; Van Ty, T.; Thanh, N.T.; Downes, N.K.; Nam, N.D.G.; et al. Assessing the Effects of Drought on Rice Yields in the Mekong Delta. Climate 2023, 11, 13. https://doi.org/10.3390/cli11010013
Lavane K, Kumar P, Meraj G, Han TG, Ngan LHB, Lien BTB, Van Ty T, Thanh NT, Downes NK, Nam NDG, et al. Assessing the Effects of Drought on Rice Yields in the Mekong Delta. Climate. 2023; 11(1):13. https://doi.org/10.3390/cli11010013
Chicago/Turabian StyleLavane, Kim, Pankaj Kumar, Gowhar Meraj, Tran Gia Han, Luong Hong Boi Ngan, Bui Thi Bich Lien, Tran Van Ty, Nguyen Truong Thanh, Nigel K. Downes, Nguyen Dinh Giang Nam, and et al. 2023. "Assessing the Effects of Drought on Rice Yields in the Mekong Delta" Climate 11, no. 1: 13. https://doi.org/10.3390/cli11010013
APA StyleLavane, K., Kumar, P., Meraj, G., Han, T. G., Ngan, L. H. B., Lien, B. T. B., Van Ty, T., Thanh, N. T., Downes, N. K., Nam, N. D. G., Minh, H. V. T., Singh, S. K., & Kanga, S. (2023). Assessing the Effects of Drought on Rice Yields in the Mekong Delta. Climate, 11(1), 13. https://doi.org/10.3390/cli11010013