Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = e-barrier tunneling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2502 KB  
Article
Kinetic Parameters at High-Pressure-Limit for Unimolecular Alkene Elimination Reaction Class of Fatty Acid Alkyl Esters (FAAEs)
by Xiaohui Sun, Zhenyu Pei, Zerong Li and Yuanyuan Tian
Molecules 2025, 30(20), 4054; https://doi.org/10.3390/molecules30204054 - 11 Oct 2025
Viewed by 292
Abstract
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and [...] Read more.
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and intricate branched-chain configurations. Thermo-kinetic parameters are essential for constructing a reaction mechanism, which can be used to clarify the chemical nature of combustion for biodiesel fuels. In this paper, the B3LYP method, in conjunction with the 6-311G(d,p) basis set, is used to carry out geometry optimization of the species participating in the reactions. Frequency calculations are further executed at the same level of theory. Additionally, coupled with the 6-311G(d,p) basis set, the B3LYP method acts as the low-level ab initio approach, while the Gaussian-4 (G4) composite method serves as the high-level ab initio approach within the isodesmic reaction correction scheme. The CCSD(T) approach is employed to verify the consistency of the electronic energy ascertained through the G4 method. The isodesmic reaction method (IRM) is used to obtain the energy barriers and reaction enthalpies for unimolecular alkene elimination reaction class of FAAEs. Based on the reaction class transition state theory (RC-TST), high-pressure-limit rate coefficients were computed, with asymmetric Eckart tunneling corrections applied across 500~2000 K temperature range. Rate rules at the high-pressure-limit are obtained through the averaging of rate coefficients from a representative collection of reactions, which incorporate substituent groups and carbon chains with different sizes and lengths. Ultimately, the energy barriers, reaction enthalpies, and rate rules at the high-pressure-limit and kinetic parameters expressed as (A, n, E) are supplied for developing the low-temperature combustion mechanism of biodiesel fuels. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

24 pages, 1135 KB  
Article
Birth of an Isotropic and Homogeneous Universe with a Running Cosmological Constant
by A. Oliveira Castro Júnior, A. Corrêa Diniz, G. Oliveira-Neto and G. A. Monerat
Universe 2025, 11(9), 310; https://doi.org/10.3390/universe11090310 - 11 Sep 2025
Viewed by 402
Abstract
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) [...] Read more.
The present work discusses the birth of the Universe via quantum tunneling through a potential barrier, based on quantum cosmology, taking a running cosmological constant into account. We consider the Friedmann–Lemaître–Robertson–Walker (FLRW) metric with positively curved spatial sections (k=1) and the matter’s content is a dust perfect fluid. The model was quantized by the Dirac formalism, leading to a Wheeler–DeWitt equation. We solve that equation both numerically and using a WKB approximation. We study the behavior of tunneling probabilities TPWKB and TPint by varying the energy E of the dust perfect fluid, the phenomenological parameter ν, the present value of the Hubble function H0, and the constant energy density ρΛ0, with the last three parameters all being associated with the running cosmological constant. We observe that both tunneling probabilities, TPWKB and TPint, decrease as one increases ν. We also note that TPWKB and TPint grow as E increases, indicating that the Universe is more likely to be born with higher dust energy E values. The same is observed for the parameter ρΛ0, that is, TPWKB and TPint are larger for higher values of ρΛ0. Finally, the tunneling probabilities decrease as one increases the value of H0. Therefore, the best conditions for the Universe to be born, in the present model, would be to have the highest possible values for E and Λ and the lowest possible values for ν and H0. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

14 pages, 951 KB  
Review
Assessment of Tunnel Explosion Mitigation Techniques for Fire Scenarios Involving Hydrogen Tank Rupture
by Volodymyr Shentsov, Luisa Giuliani, Wenqian Liu and Frank Markert
Energies 2025, 18(13), 3368; https://doi.org/10.3390/en18133368 - 26 Jun 2025
Cited by 2 | Viewed by 650
Abstract
This paper presents a review of explosion mitigation techniques for road tunnels, with a focus on scenarios involving high-pressure hydrogen tank rupture under fire conditions. Both passive and active strategies are considered—including structural configurations (e.g., tunnel branching, vent openings, right-angle bends) and protective [...] Read more.
This paper presents a review of explosion mitigation techniques for road tunnels, with a focus on scenarios involving high-pressure hydrogen tank rupture under fire conditions. Both passive and active strategies are considered—including structural configurations (e.g., tunnel branching, vent openings, right-angle bends) and protective systems (e.g., drop-down perforated plates, high-performance fibre-reinforced cementitious composite (HPFRCC) panels)—to reduce blast impact on tunnel occupants and structures. The review highlights that while measures such as blast walls or energy-absorbing barriers can significantly attenuate blast pressures, an integrated approach addressing both blast load reduction and structural resilience is essential. This paper outlines how coupled computational fluid dynamics–finite element method (CFD–FEM) simulations can evaluate these mitigation methods, and we discuss design considerations (e.g., optimising barrier placement and tunnel geometry) for enhanced safety. The findings provide guidance for designing safer hydrogen vehicle tunnels, and they identify gaps for future research, including the need for experimental validation of combined CFD–FEM models in hydrogen fire–explosion scenarios. Full article
(This article belongs to the Special Issue Advanced Studies on Clean Hydrogen Energy Systems of the Future)
Show Figures

Figure 1

14 pages, 16149 KB  
Article
Modeling and Optimization of Structural Tuning in Bandgap-Engineered Tunneling Oxide for 3D NAND Flash Application
by Zhihong Xu, Shibo Xie, Zhijun Ying, Wenlong Zhang and Liming Gao
Electronics 2025, 14(7), 1461; https://doi.org/10.3390/electronics14071461 - 4 Apr 2025
Cited by 1 | Viewed by 1759
Abstract
The bandgap-engineered tunneling oxide (BE-TOX) structure has been proposed to address the incompatibility between erase efficiency and retention performance in NAND flash memory. Previous studies have primarily focused on single flash memory cells, whose architecture significantly differs from that of 3D NAND flash [...] Read more.
The bandgap-engineered tunneling oxide (BE-TOX) structure has been proposed to address the incompatibility between erase efficiency and retention performance in NAND flash memory. Previous studies have primarily focused on single flash memory cells, whose architecture significantly differs from that of 3D NAND flash memory. Thus, the BE-TOX structure requires further research and optimization to improve device performance. In this study, the impact of varying proportions of the SiO2/SiOxNy/SiO2 (O1/N/O2) structure on performance is investigated using Technology Computer-Aided Design (TCAD) simulations. The results indicate that as the thickness of the N layer increases, the program/erase (P/E) speed improves, but reliability deteriorates. By adjusting the ratio of the O1 and O2 layers, the P/E speed can be optimized, and an optimal thickness can be identified. The simulation results demonstrate that the phenomenon is attributed to the combined effects of different barrier heights for charge tunneling and variations in band bending across the material layers. This study paves the way for further designing BE-TOX structures with balanced P/E performance and reliability. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

12 pages, 3122 KB  
Article
Effect of p-InGaN Cap Layer on Low-Resistance Contact to p-GaN: Carrier Transport Mechanism and Barrier Height Characteristics
by Mohit Kumar, Laurent Xu, Timothée Labau, Jérôme Biscarrat, Simona Torrengo, Matthew Charles, Christophe Lecouvey, Aurélien Olivier, Joelle Zgheib, René Escoffier and Julien Buckley
Crystals 2025, 15(1), 56; https://doi.org/10.3390/cryst15010056 - 8 Jan 2025
Cited by 4 | Viewed by 2172
Abstract
This study investigated the low contact resistivity and Schottky barrier characteristics in p-GaN by modifying the thickness and doping levels of a p-InGaN cap layer. A comparative analysis with highly doped p-InGaN revealed the key mechanisms contributing to low-resistance contacts. Atomic force microscopy [...] Read more.
This study investigated the low contact resistivity and Schottky barrier characteristics in p-GaN by modifying the thickness and doping levels of a p-InGaN cap layer. A comparative analysis with highly doped p-InGaN revealed the key mechanisms contributing to low-resistance contacts. Atomic force microscopy inspections showed that the surface roughness depends on the doping levels and cap layer thickness, with higher doping improving the surface quality. Notably, increasing the doping concentration in the p++-InGaN cap layer significantly reduced the specific contact resistivity to 6.4 ± 0.8 × 10−6 Ω·cm2, primarily through enhanced tunneling. Current–voltage (I–V) characteristics indicated that the cap layer’s surface properties and strain-induced polarization effects influenced the Schottky barrier height and reverse current. The reduction in barrier height by approximately 0.42 eV in the p++-InGaN layer enhanced hole tunneling, further lowering the contact resistivity. Additionally, polarization-induced free charges at the metal–semiconductor interface reduced band bending, thereby enhancing carrier transport. A transition in current conduction mechanisms was also observed, shifting from recombination tunneling to space-charge-limited conduction across different voltage ranges. This research underscores the importance of doping, cap layer thickness, and polarization effects in achieving ultra-low contact resistivity, offering valuable insights for improving the performance of p-GaN-based power devices. Full article
Show Figures

Figure 1

15 pages, 11613 KB  
Article
Gate Oxide Reliability in Silicon Carbide Planar and Trench Metal-Oxide-Semiconductor Field-Effect Transistors Under Positive and Negative Electric Field Stress
by Limeng Shi, Jiashu Qian, Michael Jin, Monikuntala Bhattacharya, Shiva Houshmand, Hengyu Yu, Atsushi Shimbori, Marvin H. White and Anant K. Agarwal
Electronics 2024, 13(22), 4516; https://doi.org/10.3390/electronics13224516 - 18 Nov 2024
Cited by 6 | Viewed by 5532
Abstract
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current [...] Read more.
This work investigates the gate oxide reliability of commercial 1.2 kV silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) with planar and trench gate structures. The performance of threshold voltage (Vth) and gate leakage current (Igss) in SiC MOSFETs is evaluated under positive and negative gate voltage stress. The oxide lifetimes of SiC planar and trench MOSFETs at 150 °C are measured using constant voltage Time-Dependent Dielectric Breakdown (TDDB) testing. From the test results, it is found that electron trapping and hole trapping in SiO2 caused by oxide electric field (Eox) stress affect the Vth of SiC MOSFETs. The saturation and turnaround behavior of the Vth shift during positive and negative gate voltage stresses indicates that the influence of charge trapping in the gate oxide varies with stress time. The Igss under positive and negative gate voltages depends on the tunneling barrier height for electrons and holes, respectively, which can be calculated using the Fowler–Nordheim (FN) tunneling mechanism. Moreover, the presence of near-interface traps (NITs) affects the barrier height for holes under negative gate voltages. The behavior of Vth shift and Igss under high-temperature gate bias reflects the charge trapping occurring in different regions of the gate oxide. In addition, compared to SiC planar MOSFETs, SiC trench MOSFETs with thicker gate oxide tend to exhibit higher lifetimes in TDDB tests. Full article
Show Figures

Figure 1

19 pages, 8257 KB  
Article
Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures
by Luna R. N. Oliveira and Marcos G. E. da Luz
Entropy 2024, 26(11), 942; https://doi.org/10.3390/e26110942 - 3 Nov 2024
Cited by 1 | Viewed by 953
Abstract
In this contribution, we address quantum transport in long periodic arrays whose basic cells, localized potentials U(x), display certain particular features. We investigate under which conditions these “local” special characteristics can influence the tunneling behavior through the full structure. [...] Read more.
In this contribution, we address quantum transport in long periodic arrays whose basic cells, localized potentials U(x), display certain particular features. We investigate under which conditions these “local” special characteristics can influence the tunneling behavior through the full structure. As the building blocks, we consider two types of U(x)s: combinations of either Pöschl–Teller, U0/cosh2[αx], potentials (for which the reflection and transmission coefficients are known analytically) or Gaussian-shaped potentials. For the latter, we employ an improved potential slicing procedure using basic barriers, like rectangular, triangular and trapezoidal, to approximate U(x) and thus obtain its scattering amplitudes. By means of a recently derived method, we discuss scattering along lattices composed of a number, N, of these U(x)s. We find that near-resonance energies of an isolated U(x) do impact the corresponding energy bands in the limit of very large Ns, but only when the cell is spatially asymmetric. Then, there is a very narrow opening (defect or rip) in the system conduction quasi-band, corresponding to the energy of the U(x) quasi-state. Also, for specific U0’s of a single Pöschl–Teller well, one has 100% transmission for any incident E>0. For the U(x) parameters rather close to such a condition, the associated array leads to a kind of “reflection comb” for large Ns; |TN(k)|2 is not close to one only at very specific values of k, when |TN|20. Finally, the examples here—illustrating how the anomalous transport comportment in finite but long lattices can be inherited from certain singular aspects of the U(x)s—are briefly discussed in the context of known effects in the literature, notably for lattices with asymmetric cells. Full article
(This article belongs to the Special Issue Tunneling in Complex Systems)
Show Figures

Figure 1

13 pages, 5871 KB  
Article
LiDAR-Based Urban Three-Dimensional Rail Area Extraction for Improved Train Collision Warnings
by Tuo Shen, Jinhuang Zhou, Tengfei Yuan, Yuanxiang Xie and Xuanxiong Zhang
Sensors 2024, 24(15), 4963; https://doi.org/10.3390/s24154963 - 31 Jul 2024
Cited by 4 | Viewed by 1956
Abstract
The intrusion of objects into track areas is a significant issue affecting the safety of urban rail transit systems. In recent years, obstacle detection technology based on LiDAR has been developed to identify potential issues, in which accurately extracting the track area is [...] Read more.
The intrusion of objects into track areas is a significant issue affecting the safety of urban rail transit systems. In recent years, obstacle detection technology based on LiDAR has been developed to identify potential issues, in which accurately extracting the track area is critical for segmentation and collision avoidance. However, because of the sparsity limitations inherent in LiDAR data, existing methods can only segment track regions over short distances, which are often insufficient given the speed and braking distance of urban rail trains. As such, a new approach is developed in this study to indirectly extract track areas by detecting references parallel to the rails (e.g., tunnel walls, protective walls, and sound barriers). Reference point selection and curve fitting are then applied to generate a reference curve on either side of the track. A centerline is then extrapolated from the two curves and expanded to produce a 2D track area with the given size specifications. Finally, the 3D track area is acquired by detecting the ground and removing points that are either too high or too low. The proposed technique was evaluated using a variety of scenes, including tunnels, elevated sections, and level urban rail transit lines. The results showed this method could successfully extract track regions from LiDAR data over significantly longer distances than conventional algorithms. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

16 pages, 6994 KB  
Article
Point-Contact Spectroscopy in Bulk Samples of Electron-Doped Cuprate Superconductors
by Angela Nigro, Anita Guarino, Antonio Leo, Gaia Grimaldi, Francesco Avitabile and Paola Romano
Materials 2023, 16(24), 7644; https://doi.org/10.3390/ma16247644 - 14 Dec 2023
Cited by 1 | Viewed by 1745
Abstract
Point-contact spectroscopy was performed on bulk samples of electron-doped high temperature superconductor Nd2−xCexCuO4−δ. The samples were characterized using X-ray diffraction and scanning electron microscopy equipped with a wavelength-dispersive spectrometer and an electron backscatter diffraction detector. Samples with [...] Read more.
Point-contact spectroscopy was performed on bulk samples of electron-doped high temperature superconductor Nd2−xCexCuO4−δ. The samples were characterized using X-ray diffraction and scanning electron microscopy equipped with a wavelength-dispersive spectrometer and an electron backscatter diffraction detector. Samples with Ce content x = 0.15 showed the absence of spurious phases and randomly oriented grains, most of which had dimensions of approximately 220 µm2. The low-bias spectra in the tunneling regime, i.e., high-transparency interface, exhibited a gap feature at about ±5 meV and no zero-bias conductance, despite the random oriented grains investigated within our bulk samples, consistent with most of the literature data on oriented samples. High-bias conductance was also measured in order to obtain information on the properties of the barrier. A V-shape was observed in some cases, instead of the parabolic behavior expected for tunnel junctions. Full article
(This article belongs to the Special Issue Physics and Application of Superconductivity)
Show Figures

Figure 1

11 pages, 3661 KB  
Article
TCAD Simulation Studies on Ultra-Low-Power Non-Volatile Memory
by Ziming Xu, Jinshun Bi, Mengxin Liu, Yu Zhang, Baihong Chen and Zijian Zhang
Micromachines 2023, 14(12), 2207; https://doi.org/10.3390/mi14122207 - 6 Dec 2023
Cited by 1 | Viewed by 2039
Abstract
Ultra-Low-Power Non-Volatile Memory (UltraRAM), as a promising storage device, has attracted wide research attention from the scientific community. Non-volatile data retention in combination with switching at ≤2.6 V is achieved through the use of the extraordinary 2.1 eV conduction band offsets of InAs/AlSb [...] Read more.
Ultra-Low-Power Non-Volatile Memory (UltraRAM), as a promising storage device, has attracted wide research attention from the scientific community. Non-volatile data retention in combination with switching at ≤2.6 V is achieved through the use of the extraordinary 2.1 eV conduction band offsets of InAs/AlSb and a triple-barrier resonant tunnelling structure. Along these lines, in this work, the structure, storage mechanism, and improvement strategies of UltraRAM were systematically investigated to enhance storage window clarity and speed performance. First, the basic structure and working principle of UltraRAM were introduced, and its comparative advantages over traditional memory devices were highlighted. Furthermore, through the validation of the band structure and storage mechanism, the superior performance of UltraRAM, including its low operating voltage and excellent non-volatility, was further demonstrated. To address the issue of the small storage window, an improvement strategy was proposed by reducing the thickness of the channel layer to increase the storage window. The feasibility of this strategy was validated by performing a series of simulation-based experiments. From our analysis, a significant 80% increase in the storage window after thinning the channel layer was demonstrated, providing an important foundation for enhancing the performance of UltraRAM. Additionally, the data storage capability of this strategy was examined under the application of short pulse widths, and a data storage operation with a 10 ns pulse width was successfully achieved. In conclusion, valuable insights into the application of UltraRAM in the field of non-volatile storage were provided. Our work paves the way for further optimizing the memory performance and expanding the functionalities of UltraRAM. Full article
(This article belongs to the Special Issue Advances in Emerging Nonvolatile Memory, 3rd Edition)
Show Figures

Figure 1

10 pages, 2313 KB  
Article
Modeling of Conduction Mechanisms in Ultrathin Films of Al2O3 Deposited by ALD
by Silvestre Salas-Rodríguez, Joel Molina-Reyes, Jaime Martínez-Castillo, Rosa M. Woo-Garcia, Agustín L. Herrera-May and Francisco López-Huerta
Electronics 2023, 12(4), 903; https://doi.org/10.3390/electronics12040903 - 10 Feb 2023
Cited by 9 | Viewed by 3578
Abstract
We reported the analysis and modeling of some conduction mechanisms in ultrathin aluminum oxide (Al2O3) films of 6 nm thickness, which are deposited by atomic layer deposition (ALD). This modeling included current-voltage measurements to metal-insulator-semiconductor (MIS) capacitors with gate [...] Read more.
We reported the analysis and modeling of some conduction mechanisms in ultrathin aluminum oxide (Al2O3) films of 6 nm thickness, which are deposited by atomic layer deposition (ALD). This modeling included current-voltage measurements to metal-insulator-semiconductor (MIS) capacitors with gate electrode areas of 3.6 × 10−5 cm2 and 6.4 × 10−5 cm2 at room temperature. The modeling results showed the presence of ohmic conduction, Poole Frenkel emission, Schottky emission, and trap-assisted tunneling mechanisms through the Al2O3 layer. Based on extracted results, we measured a dielectric conductivity of 5 × 10−15 S/cm at low electric fields, a barrier height at oxide/semiconductor interface of 2 eV, and an energy trap level into bandgap with respect to the conduction band of 3.11 eV. These results could be affected by defect density related to oxygen vacancies, dangling bonds, fixed charges, or interface traps, which generate conduction mechanisms through and over the dielectric energy barrier. In addition, a current density model is developed by considering the sum of dominant conduction mechanisms and results based on the finite element method for electronic devices, achieving a good match with experimental data. Full article
(This article belongs to the Special Issue Advances in Thin-Film Systems)
Show Figures

Figure 1

7 pages, 2564 KB  
Communication
Simulation of a Steep-Slope p- and n-Type HfS2/MoTe2 Field-Effect Transistor with the Hybrid Transport Mechanism
by Juan Lyu and Jian Gong
Nanomaterials 2023, 13(4), 649; https://doi.org/10.3390/nano13040649 - 7 Feb 2023
Cited by 1 | Viewed by 2257
Abstract
The use of a two-dimensional (2D) van der Waals (vdW) metal-semiconductor (MS) heterojunction as an efficient cold source (CS) has recently been proposed as a promising approach in the development of steep-slope field-effect transistors (FETs). In addition to the selection of source materials [...] Read more.
The use of a two-dimensional (2D) van der Waals (vdW) metal-semiconductor (MS) heterojunction as an efficient cold source (CS) has recently been proposed as a promising approach in the development of steep-slope field-effect transistors (FETs). In addition to the selection of source materials with linearly decreasing density-of-states-energy relations (D(E)s), in this study, we further verified, by means of a computer simulation, that a 2D semiconductor-semiconductor combination could also be used as an efficient CS. As a test case, a HfS2/MoTe2 FET was studied. It was found that MoTe2 can be spontaneously p-type-doped by interfacing with n-doped HfS2, resulting in a truncated decaying hot-carrier density with an increasing p-type channel barrier. Compared to the conventional MoTe2 FET, the subthreshold swing (SS) of the HfS2/MoTe2 FET can be significantly reduced to below 60 mV/decade, and the on-state current can be greatly enhanced by more than two orders of magnitude. It was found that there exists a hybrid transport mechanism involving the cold injection and the tunneling effect in such a p- and n-type HfS2/MoTe2 FET, which provides a new design insight into future low-power and high-performance 2D electronics from a physical point of view. Full article
(This article belongs to the Special Issue First-Principles Investigations of Low-Dimensional Nanomaterials)
Show Figures

Figure 1

14 pages, 4028 KB  
Article
Silicon-Germanium Heterojunction Bipolar Transistor DC and AC Analysis Operating under Cryogenic Temperature
by Dinesh Gupta and Kaushik Nayak
Electronics 2022, 11(24), 4164; https://doi.org/10.3390/electronics11244164 - 13 Dec 2022
Cited by 2 | Viewed by 3263
Abstract
In this work, the numerical simulation of a SiGe heterojunction bipolar transistor (HBT) for DC and AC performance operating at cryogenic temperature with a hydrodynamic carrier transport model is analyzed. A new modified temperature-dependent Si1−xGex energy bandgap model was used. [...] Read more.
In this work, the numerical simulation of a SiGe heterojunction bipolar transistor (HBT) for DC and AC performance operating at cryogenic temperature with a hydrodynamic carrier transport model is analyzed. A new modified temperature-dependent Si1−xGex energy bandgap model was used. Using a simplified 2D TCAD design structure, the device characteristics on 55 nm SiGe HBT technology and the mobility model are calibrated with experimental data. Base current reversal due to induced impact-ionization at the collector-base junction is analyzed, where the estimated collector-emitter breakdown voltage with the base open (BVCEO) is 1.48 V at 300 K. This reveals good voltage handling ability. At cryogenic temperatures, dopant incomplete ionization in the lightly doped collector region shows a 28% decrease in ionized dopant concentration at 50 K; this affects the base-collector depletion capacitance. The emitter electron barrier tunneling leakage on collector current is studied using a non-local e-barrier tunneling model at different temperatures that shows an improvement in peak DC gain at lower temperatures. Using the small-signal ac analysis, the cut-off frequency and the maximum oscillation frequency are extracted for high-frequency application, and the base widening effect is discussed. A comparison of this work with measured data on 90 nm SiGe HBT is also discussed in brief, which shows improvements in the simulated structure. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

13 pages, 11555 KB  
Article
Quantum Dynamic Optimization Algorithm for Neural Architecture Search on Image Classification
by Jin Jin, Qian Zhang, Jia He and Hongnian Yu
Electronics 2022, 11(23), 3969; https://doi.org/10.3390/electronics11233969 - 30 Nov 2022
Cited by 4 | Viewed by 2995
Abstract
Deep neural networks have proven to be effective in solving computer vision and natural language processing problems. To fully leverage its power, manually designed network templates, i.e., Residual Networks, are introduced to deal with various vision and natural language tasks. These hand-crafted neural [...] Read more.
Deep neural networks have proven to be effective in solving computer vision and natural language processing problems. To fully leverage its power, manually designed network templates, i.e., Residual Networks, are introduced to deal with various vision and natural language tasks. These hand-crafted neural networks rely on a large number of parameters, which are both data-dependent and laborious. On the other hand, architectures suitable for specific tasks have also grown exponentially with their size and topology, which prohibits brute force search. To address these challenges, this paper proposes a quantum dynamic optimization algorithm to find the optimal structure for a candidate network using Quantum Dynamic Neural Architecture Search (QDNAS). Specifically, the proposed quantum dynamics optimization algorithm is used to search for meaningful architectures for vision tasks and dedicated rules to express and explore the search space. The proposed quantum dynamics optimization algorithm treats the iterative evolution process of the optimization over time as a quantum dynamic process. The tunneling effect and potential barrier estimation in quantum mechanics can effectively promote the evolution of the optimization algorithm to the global optimum. Extensive experiments on four benchmarks demonstrate the effectiveness of QDNAS, which is consistently better than all baseline methods in image classification tasks. Furthermore, an in-depth analysis is conducted on the searchable networks that provide inspiration for the design of other image classification networks. Full article
(This article belongs to the Special Issue Advanced Machine Learning Applications in Big Data Analytics)
Show Figures

Figure 1

11 pages, 1965 KB  
Article
High Responsivity Vacuum Nano-Photodiode Using Single-Crystal CsPbBr3 Micro-Sheet
by Xiangjun Zeng, Shasha Li, Zairan Liu, Yang Chen, Jun Chen, Shaozhi Deng, Fei Liu and Juncong She
Nanomaterials 2022, 12(23), 4205; https://doi.org/10.3390/nano12234205 - 26 Nov 2022
Cited by 4 | Viewed by 2419
Abstract
Field electron emission vacuum photodiode is promising for converting free-space electromagnetic radiation into electronic signal within an ultrafast timescale due to the ballistic electron transport in its vacuum channel. However, the low photoelectric conversion efficiency still hinders the popularity of vacuum photodiode. Here, [...] Read more.
Field electron emission vacuum photodiode is promising for converting free-space electromagnetic radiation into electronic signal within an ultrafast timescale due to the ballistic electron transport in its vacuum channel. However, the low photoelectric conversion efficiency still hinders the popularity of vacuum photodiode. Here, we report an on-chip integrated vacuum nano-photodiode constructed from a Si-tip anode and a single-crystal CsPbBr3 cathode with a nano-separation of ~30 nm. Benefiting from the nanoscale vacuum channel and the high surface work function of the CsPbBr3 (4.55 eV), the vacuum nano-photodiode exhibits a low driving voltage of 15 V with an ultra-low dark current (50 pA). The vacuum nano-photodiode demonstrates a high photo responsivity (1.75 AW−1@15 V) under the illumination of a 532-nm laser light. The estimated external quantum efficiency is up to 400%. The electrostatic field simulation indicates that the CsPbBr3 cathode can be totally depleted at an optimal thickness. The large built-in electric field in the depletion region facilitates the dissociation of photoexcited electron–hole pairs, leading to an enhanced photoelectric conversion efficiency. Moreover, the voltage drop in the vacuum channel increases due to the photoconductive effect, which is beneficial to the narrowing of the vacuum barrier for more efficient electron tunneling. This device shows great promise for the development of highly sensitive perovskite-based vacuum opto-electronics. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode)
Show Figures

Figure 1

Back to TopTop