Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = dynamic continuous cooling transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4449 KB  
Article
The Cooling Phase Transition Behavior of 30MnNbRE Steel Studied Based on TMCP
by Shimin Guo, Hui Ma, Xirong Bao, Jia Sun, Xuejiao Tang and Xiaodong Wang
Crystals 2025, 15(4), 327; https://doi.org/10.3390/cryst15040327 - 28 Mar 2025
Viewed by 612
Abstract
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with [...] Read more.
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with rare earth element Ce by combining temperature-dilatometric curves recorded after austenitization at 900 °C with microstructural characterization and microhardness measurements. Comparative analyses were conducted on the microstructures and microhardness of three experimental steels with varying Ce contents subjected to sizing (reducing) diameter deformation at 850 °C and 950 °C. The CCT experimental results revealed that the microhardness of the tested steels increased with cooling rates. Notably, dynamic CCT specimens cooled at 50 °C/s to room temperature following superheated deformation exhibited 56.7 HV5 higher microhardness than static CCT specimens, accompanied by increased martensite content. The reduction of deformation temperature from 950 °C to 850 °C resulted in the expansion of the bainitic phase region. The incorporation of trace Ce elements demonstrated a significant enhancement in the microhardness of 30MnNbRE steel. This research proposes an effective processing route for improving strength-toughness combination in microalloyed oil well tubes: introducing trace Ce additions followed by sizing (reducing) diameter deformation at 950 °C and subsequent ultra-fast cooling at 50 °C/s to room temperature. This methodology facilitates the production of high-strength/toughness steels containing abundant martensitic microstructures. Full article
Show Figures

Figure 1

15 pages, 6733 KB  
Article
Effect of Temperature Gradient and Cooling Rate on the Solidification of Iron: A Molecular Dynamics Study
by Qin Qin, Weizhuang Li, Wenrui Wang, Dongyue Li and Lu Xie
Materials 2024, 17(24), 6051; https://doi.org/10.3390/ma17246051 - 11 Dec 2024
Cited by 2 | Viewed by 1775
Abstract
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification [...] Read more.
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification methods. In the homogeneous temperature field, the solidification of iron is characterized by instantaneous nucleation. The BCC phase surged at 1431 K followed by the phenomenon of latent heat of crystallization. As the temperature continued to decrease, the percentage of the BCC phase continued to increase steadily. Eventually, the atoms aggregated to form a crystal nucleus and grow outward to form polycrystalline structures. During gradient solidification, continuous nucleation of iron leads to a slow increase in the BCC phase. From the initial stage of solidification, the solid–liquid interface moves in the direction of higher temperature and is accompanied by a higher stress distribution. Furthermore, increasing the temperature gradient, particularly the cooling rate, accelerates the transformation efficiency of iron in the gradient solidification process. In addition, increasing the cooling rate or temperature gradient reduces the residual stress and crystallinity of the solidified microstructure. It is worth noting that an increased temperature gradient or cooling rate will produce higher residual stress and uneven microstructure in the boundary region. This study provides an atomic-level understanding of the improvement in the solidification performance of iron. Full article
(This article belongs to the Special Issue Applied Mechanics in Metallic Material Engineering)
Show Figures

Figure 1

25 pages, 14711 KB  
Article
The Influence of Thermomechanical Conditions on the Hot Ductility of Continuously Cast Microalloyed Steels
by Saham Sadat Sharifi, Saeid Bakhtiari, Esmaeil Shahryari, Christof Sommitsch and Maria Cecilia Poletti
Materials 2024, 17(18), 4551; https://doi.org/10.3390/ma17184551 - 16 Sep 2024
Cited by 2 | Viewed by 1683
Abstract
Continuous casting is the most common method for producing steel into semi-finished shapes like billets or slabs. Throughout this process, steel experiences mechanical and thermal stresses, which influence its mechanical properties. During continuous casting, decreased formability in steel components leads to crack formation [...] Read more.
Continuous casting is the most common method for producing steel into semi-finished shapes like billets or slabs. Throughout this process, steel experiences mechanical and thermal stresses, which influence its mechanical properties. During continuous casting, decreased formability in steel components leads to crack formation and failure. One reason for this phenomenon is the appearance of the soft ferrite phase during cooling. However, it is unclear under which conditions this ferrite is detrimental to the formability. In the present research, we investigated what microstructural changes decrease the formability of microalloyed steels during continuous casting. We studied the hot compression behaviour of microalloyed steel over temperatures ranging from 650 °C to 1100 °C and strain rates of 0.1 s1 to 0.001 s1 using a Gleeble 3800® (Dynamic Systems Inc, Poestenkill, NY, USA) device. We examined microstructural changes at various deformation conditions using microscopy. Furthermore, we implemented a physically-based model to describe the deformation of austenite and ferrite. The model describes the work hardening and dynamic restoration mechanisms, i.e., discontinuous dynamic recrystallisation in austenite and dynamic recovery in ferrite and austenite. The model considers the stress, strain, and strain rate distribution between phases by describing the dynamic phase transformation during the deformation in iso-work conditions. Increasing the strain rate below the transformation temperature improves hot ductility by reducing dynamic recovery and strain concentration in ferrite. Due to limited grain boundary sliding, the hot ductility improves at lower temperatures (<750 °C). In the single-phase domain, dynamic recrystallisation improves the hot ductility provided that fracture occurs at strains in which dynamic recrystallisation advances. However, at very low strain rates, the ductility decreases due to prolonged time for grain boundary sliding and crack propagation. Full article
Show Figures

Figure 1

13 pages, 6652 KB  
Article
Study of Phase Transformations and Interface Evolution in Carbon Steel under Temperatures and Loads Using Molecular Dynamics Simulation
by Chao Wen, Zhengminqing Li, Hongyan Wu and Jianfeng Gu
Metals 2024, 14(7), 752; https://doi.org/10.3390/met14070752 - 25 Jun 2024
Cited by 2 | Viewed by 2181
Abstract
Carbon steel materials are widely used in mechanical transmission. Under different temperature and pressure service conditions, the microscopic changes of stress and strain that are difficult to detect and analyze by experimental means will lead to failure deformation, thus affecting their operational stability [...] Read more.
Carbon steel materials are widely used in mechanical transmission. Under different temperature and pressure service conditions, the microscopic changes of stress and strain that are difficult to detect and analyze by experimental means will lead to failure deformation, thus affecting their operational stability and life. In this study, the molecular dynamics method is used to simulate the heating–cooling phase transition process of common carbon steel materials. Austenite transformation temperatures of 980 K (0.2 wt.%) and 1095 K (0.5 wt.%) are acquired which is determined by the volume hysteresis before and after transformation, which is consistent with the results of JMatPro phase diagram analysis. The internal stress state of the material varies between compressive stress and tensile stress due to the change of phase structure, and the dislocation characteristics during the phase transition period are observed to change significantly. Then, an α/γ two-phase interface model is constructed to study the migration of the phase interface and the change of the phase structure by applying a continuously changing external load. At the same time, the transition pressure of αϵ is obtained with a value of 37 GPa under three different initial loads showing the independence of the initial load and the historical path. Based on the molecular dynamics simulation and the phase diagram calculation of the carbon steel, the analysis method for the microstructure transformation and the stress–strain behavior of the phase interface under the external load can provide a reference for the design of microstructure and mechanical properties of alloy steel in the future. Full article
Show Figures

Figure 1

28 pages, 17598 KB  
Article
3D Numerical Analysis of a Phase Change Material Solidification Process Applied to a Latent Thermal Energy Storage System
by Tulio R. N. Porto, João A. Lima, Tony H. F. Andrade, João M. P. Q. Delgado and António G. B. Lima
Energies 2023, 16(7), 3013; https://doi.org/10.3390/en16073013 - 25 Mar 2023
Cited by 4 | Viewed by 2698
Abstract
The techniques for releasing thermal energy accumulated in periods of high availability to meet the demand in periods of low energy supply contribute to the continuity of the cycles involved in thermodynamic processes. In this context, phase change materials are capable of absorbing [...] Read more.
The techniques for releasing thermal energy accumulated in periods of high availability to meet the demand in periods of low energy supply contribute to the continuity of the cycles involved in thermodynamic processes. In this context, phase change materials are capable of absorbing and releasing large amounts of energy in relatively short periods of time and under specific operating conditions. However, phase change materials have low thermal conductivity and need to be coupled with high-thermal-conductivity materials so that the heat flux can be intensified and the energy absorption and release times can be controlled. This work aims to numerically study the solidification process of a phase change material inserted into a triplex tube heat exchanger with finned copper walls to intensify the thermal exchange between the phase change material and the cooling heat transfer fluid, water, that will receive the energy accumulated in the material. This work proposes the 3D numerical modeling of the triplex tube heat exchanger with finned walls and meets the need for numerical models that allow for the analysis of the full geometry of the latent heat thermal energy storage system and the thermal and fluid dynamic phenomena that are influenced by this geometry. Results of the temperature, liquid fractions and velocity fields during phase transformations are presented, analyzed and validated with experimental data, presenting average errors of below 5%. The total material discharge time was approximately 168 min, necessary for the complete solidification of the phase change material, with water injected into the triplex tube heat exchanger at a flow rate of 8.3 L/min and a temperature of 68 °C. The solidification process occurred more slowly in the same direction as the length of the triplex tube heat exchanger, and from 80% of the material in the solid state, the difference between the solidification time for z = 0 and z = 480 mm was 30 min. The fluid dynamic conditions developed in the latent heat thermal energy storage system promoted a maximum negative heat flux of −6423 w/m2 to the annular internal surface and −742 w/m2 to the annular external surface, representing a heat removal process nine times less intense on the external surface. The total energy released to the cooling heat transfer fluid was 239.56 kJ/kg. Full article
Show Figures

Figure 1

12 pages, 2470 KB  
Article
Dynamic Heat Dissipation Model of Distributed Parameters for Oil-Directed and Air-Forced Traction Transformers and Its Experimental Validation
by Yonghua You, Kun Shao and Zhengming Yi
Entropy 2023, 25(3), 457; https://doi.org/10.3390/e25030457 - 6 Mar 2023
Cited by 6 | Viewed by 2999
Abstract
A traction transformer with narrow oil channels is usually cooled with the ODAF or “Oil Directed Air Forced” method, where its temperature greatly depends on the Joule heat of windings, the conjugate heat transfer in the transformer, and the secondary heat release via [...] Read more.
A traction transformer with narrow oil channels is usually cooled with the ODAF or “Oil Directed Air Forced” method, where its temperature greatly depends on the Joule heat of windings, the conjugate heat transfer in the transformer, and the secondary heat release via oil cooler, together with the oil flowrate generated by oil pump. Neither the thermal–electric analogy nor the CFD simulation approach is qualified to predict the temporal and spatial temperature variations in this type of transformer. In the current work, the distributed parameter models are built for traction transformers and oil coolers with the assumption of a one-dimensional temperature field in the oil flow direction, respectively. Then, the two models are combined with the lumped parameter ones of oil pumps and pipes via the flow rate, temperature and pressure continuities at their interfaces, resulting in the derivation of the dynamic heat dissipation model of oil-directed and air-forced traction transformers. Additionally, an efficient algorithm is proposed for its numerical solution, and the temperature rise experiment is performed for model validation. Finally, the fundamental of dynamic heat dissipation in traction transformers is investigated with the current numerical model and the effects of ambient temperature are studied. Full article
(This article belongs to the Special Issue Applied Thermodynamics and Heat Transfer)
Show Figures

Figure 1

10 pages, 4528 KB  
Article
980 MPa Grade Low-Alloy Carbide-Free Bainitic Steel Obtained by Dynamic Continuous Cooling Transformation
by Pengfei Wang, Peng Chen, Dapeng Yang, Tao Wang and Hongliang Yi
Crystals 2023, 13(2), 213; https://doi.org/10.3390/cryst13020213 - 24 Jan 2023
Viewed by 2297
Abstract
The addition of high-content alloying elements and the unbefitting process make carbide-free bainite steel difficult in industrial production. Thus, we adopted a dynamic continuous cooling process for developing the high-strength cold-rolled low-alloy carbide-free bainitic steels in this study. The influence of cooling rates [...] Read more.
The addition of high-content alloying elements and the unbefitting process make carbide-free bainite steel difficult in industrial production. Thus, we adopted a dynamic continuous cooling process for developing the high-strength cold-rolled low-alloy carbide-free bainitic steels in this study. The influence of cooling rates on the microstructure and mechanical properties was investigated by dilatometry, scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and tensile tests. The results show that the bainitic ferrite plates were refined by decreasing the cooling rate, and more austenite was retained in the steel with a medium cooling rate. Both the TRIP effect and the refined bainitic ferrite plate contribute to the good strength–ductility match. Consequently, the propitious microstructure adjustment is critical for developing 980 MPa carbide-free bainitic steel. Full article
(This article belongs to the Special Issue Advances in High Strength Steels)
Show Figures

Figure 1

15 pages, 611 KB  
Review
The Role of Radiation in the Modelling of Crop Evapotranspiration from Open Field to Indoor Crops
by Jorge Flores-Velazquez, Mohammad Akrami and Edwin Villagrán
Agronomy 2022, 12(11), 2593; https://doi.org/10.3390/agronomy12112593 - 22 Oct 2022
Cited by 12 | Viewed by 3199
Abstract
The agricultural sector continues to be the largest consumer of useful water. Despite knowing the volume of water required by plants (evapotranspiration), methodologies must be adapted to current production systems. Based on the energy balance (radiation), it is feasible to establish models to [...] Read more.
The agricultural sector continues to be the largest consumer of useful water. Despite knowing the volume of water required by plants (evapotranspiration), methodologies must be adapted to current production systems. Based on the energy balance (radiation), it is feasible to establish models to estimate evapotranspiration depending on the production system: extensive crops, closed, and interior systems. The objective of this work was to present related research to measure and model the evapotranspiration of crops under current production techniques, based on the energy balance. The original FAO Penman–Monteith model is considered to be the model that best describes the evapotranspiration process, and with advances in instrumentation, there are sensors capable of measuring each of the variables it contains. From this model, procedures have been approximated for its use in extensive crops through remote sensing to calculate evapotranspiration, which jointly integrates the climatic variables and the type and age of the crop, with which real evapotranspiration is obtained. The same Penman–Monteith model has been adapted for use in greenhouse crops, where given the reduced root space and being in a closed environment, it is possible to know the variables specifically. Keeping the root container saturated, crop transpiration will basically depend on the physiology of the plant (LAI, stomatal resistance, etc.) and the characteristics of the air (radiation, VPD, wind speed, etc.). Models based on computational fluid dynamics (CFD) have been developed, which predict the real evapotranspiration of the crop by activating the discrete ordinate (DO) radiation sub-model. For indoor crops, in the absence of solar radiation, and replaced with artificial lights (LEDs)—although it is true that they are hydroponic crops and water can be estimated through a balance of levels—it would be possible to use CFD to estimate transpiration by transforming flux units (Mmol) into radiation (W m−2). The transpiration of indoor crops works as a cooling system and stabilizes the environment of the plant factory or vertical farm. In each crop production system (from open field to indoor crops) models have been developed to manage water and microclimate. The result is reports that more than 90% of the water is saved. Full article
Show Figures

Figure 1

13 pages, 6145 KB  
Article
Employment of 3D-Printed Bilayer Structures with Embedded Continuous Fibers for Thermal Management Applications: An Axial Cooling 4D-Printed Fan Application Case Study
by Panagiotis Zouboulis, Elias P. Koumoulos and Anna Karatza
Polymers 2022, 14(19), 3952; https://doi.org/10.3390/polym14193952 - 21 Sep 2022
Cited by 3 | Viewed by 2321
Abstract
Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber [...] Read more.
Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber patterns and materials to achieve programmable and reversible transformations that can be exploited for thermal management applications. Stemming from this investigation’s results, an axial cooling fan prototype is designed and fabricated with composite blades that passively alter their shape, specifically their curvature and twist angle, under different operating temperatures. A series of computational fluid dynamics (CFD) simulations are performed, subjecting the fan’s geometry to different flow temperatures to measure differences in airflow deriving from the induced shape transformations. Corresponding experimental trials are additionally performed, aiming to validate the simulation results. The results indicate the potential of utilizing bilayer self-morphing configurations for the fabrication of smart components for cooling purposes. Full article
Show Figures

Figure 1

17 pages, 23237 KB  
Article
Dynamic Ferrite Formation and Evolution above the Ae3 Temperature during Plate Rolling Simulation of an API X80 Steel
by Francisco Romário de S. Machado, João C. Ferreira, Maria Veronica G. Rodrigues, Marcos Natan da S. Lima, Rodrigo de C. Paes Loureiro, Fulvio Siciliano, Eden S. Silva, Gedeon S. Reis, Regina C. de Sousa, Clodualdo Aranas, Hamilton F. Gomes de Abreu and Samuel Filgueiras Rodrigues
Metals 2022, 12(8), 1239; https://doi.org/10.3390/met12081239 - 22 Jul 2022
Cited by 3 | Viewed by 2416
Abstract
Thermo-mechanically controlled rolling is a technique used to produce steel strips and plates. One of the steels widely used in the production of heavy plates for application in oil and gas pipelines is API X80. The hot rolling process of this family of [...] Read more.
Thermo-mechanically controlled rolling is a technique used to produce steel strips and plates. One of the steels widely used in the production of heavy plates for application in oil and gas pipelines is API X80. The hot rolling process of this family of steels consists of applying deformation passes at high temperatures, mainly above Ae3, inside the austenite phase field. It has been shown that during deformation, the phenomenon of dynamic transformation (DT) of austenite into ferrite leads to lower hot deformation resistance within the stable austenite region. In this investigation, hot torsion simulations of an industrial rolling process under continuous cooling conditions were used to monitor the formation of ferrite by DT. Stress–strain flow curves and equivalent mean flow stresses followed by sample characterization via optical and electron microscopy showed the inevitable formation of ferrite above the Ae3. The employed 10-pass deformation schedule was divided into 5 roughing and 5 finishing passes, thereby promoting an increased volume fraction of ferrite and decreased critical strain for the onset of DT and dynamic recrystallization (DRX). A microstructural analysis confirmed the formation of ferrite from the first roughing strain until the last finishing pass. The volume fraction of DT ferrite increased due to strain accumulation, an increased number of deformation passes and as the temperature approached the Ae3, leading to a characteristic torsion texture at the end of the simulation. Full article
Show Figures

Figure 1

20 pages, 2924 KB  
Review
Ocean Convection
by Catherine A. Vreugdenhil and Bishakhdatta Gayen
Fluids 2021, 6(10), 360; https://doi.org/10.3390/fluids6100360 - 12 Oct 2021
Cited by 14 | Viewed by 10275
Abstract
Ocean convection is a key mechanism that regulates heat uptake, water-mass transformation, CO2 exchange, and nutrient transport with crucial implications for ocean dynamics and climate change. Both cooling to the atmosphere and salinification, from evaporation or sea-ice formation, cause surface waters to [...] Read more.
Ocean convection is a key mechanism that regulates heat uptake, water-mass transformation, CO2 exchange, and nutrient transport with crucial implications for ocean dynamics and climate change. Both cooling to the atmosphere and salinification, from evaporation or sea-ice formation, cause surface waters to become dense and down-well as turbulent convective plumes. The upper mixed layer in the ocean is significantly deepened and sustained by convection. In the tropics and subtropics, night-time cooling is a main driver of mixed layer convection, while in the mid- and high-latitude regions, winter cooling is key to mixed layer convection. Additionally, at higher latitudes, and particularly in the sub-polar North Atlantic Ocean, the extensive surface heat loss during winter drives open-ocean convection that can reach thousands of meters in depth. On the Antarctic continental shelf, polynya convection regulates the formation of dense bottom slope currents. These strong convection events help to drive the immense water-mass transport of the globally-spanning meridional overturning circulation (MOC). However, convection is often highly localised in time and space, making it extremely difficult to accurately measure in field observations. Ocean models such as global circulation models (GCMs) are unable to resolve convection and turbulence and, instead, rely on simple convective parameterizations that result in a poor representation of convective processes and their impact on ocean circulation, air–sea exchange, and ocean biology. In the past few decades there has been markedly more observations, advancements in high-resolution numerical simulations, continued innovation in laboratory experiments and improvement of theory for ocean convection. The impacts of anthropogenic climate change on ocean convection are beginning to be observed, but key questions remain regarding future climate scenarios. Here, we review the current knowledge and future direction of ocean convection arising from sea–surface interactions, with a focus on mixed layer, open-ocean, and polynya convection. Full article
(This article belongs to the Special Issue Ocean Convection)
Show Figures

Figure 1

8 pages, 476 KB  
Proceeding Paper
Systematic Model-Based Steady State and Dynamic Optimization of Combined Cooling and Antisolvent Multistage Continuous Crystallization Processes
by Jiaxu Liu and Brahim Benyahia
Proceedings 2020, 62(1), 7; https://doi.org/10.3390/proceedings2020062007 - 31 Dec 2020
Cited by 1 | Viewed by 1921
Abstract
Currently, one of the key challenges in the pharmaceutical industry is the transformation of traditional batch production methods into robust continuous processes with the intention of reducing manufacturing costs and time and improving product quality. Crystallization is by far the most important purification [...] Read more.
Currently, one of the key challenges in the pharmaceutical industry is the transformation of traditional batch production methods into robust continuous processes with the intention of reducing manufacturing costs and time and improving product quality. Crystallization is by far the most important purification technology in Pharma, as more than 80% of the active pharmaceutical ingredients (API) require at least one crystallization step. A successful crystallization process requires tight control over crystal size, shape and polymorphic purity. A rigorous and systematic methodology is presented to design and optimize multistage combined cooling and antisolvent continuous (mixed-suspension, mixed-product removal- MSMPR) crystallizers. The crystallization of acetylsalicylic acid (API) in ethanol (solvent) and water (anti-solvent) is used as a case study. A predictable and validated mathematical model of the system, which consists of a one-dimensional population balance model, was used to develop several optimizations strategies. Firstly, the attainable region of the mean particle size was determined for both minimum and maximum attainable crystal size. The method helped identify the most suitable number of stages and total residence time or volume for a cascade of continuous crystallizers. This was followed by a steady state optimization which helped determine the optimal operating temperatures and antisolvent flowrates. To minimize the startup time, a series of dynamic optimization strategies were implemented, assuming starting from empty vessels. The optimal dynamic profiles of the temperature and antisolvent flow rate, at different crystallization steps, were identified using a systematic and rigorous approach allowing a reduction in the startup time by 31%. Full article
(This article belongs to the Proceedings of The 2nd International Online Conference on Crystals)
Show Figures

Figure 1

20 pages, 10478 KB  
Article
Effects of Austenitization Temperature and Pre-Deformation on CCT Diagrams of 23MnNiCrMo5-3 Steel
by Ivo Schindler, Rostislav Kawulok, Petr Opěla, Petr Kawulok, Stanislav Rusz, Jaroslav Sojka, Michal Sauer, Horymír Navrátil and Lukáš Pindor
Materials 2020, 13(22), 5116; https://doi.org/10.3390/ma13225116 - 13 Nov 2020
Cited by 10 | Viewed by 2900
Abstract
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in [...] Read more.
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in the range suitable for the wire rolling mill. The applied compressive deformation corresponded to the true strain values in an unusually wide range. Based on the dilatometric tests and metallographic analyses, a total of five different CCT diagrams were constructed. Pre-deformation corresponding to the true strain of 0.35 or even 1.0 had no clear effect on the austenite decomposition kinetics at the austenitization temperature of 880 °C. During the long-lasting cooling, recrystallization and probably coarsening of the new austenitic grains occurred, which almost eliminated the influence of pre-deformation on the temperatures of the diffusion-controlled phase transformations. Decreasing the deformation temperature to 830 °C led to the significant acceleration of the austenite → ferrite and austenite → pearlite transformations due to the applied strain of 1.0 only in the region of the cooling rate between 3 and 35 °C·s−1. The kinetics of the bainitic or martensitic transformation remained practically unaffected by the pre-deformation. The acceleration of the diffusion-controlled phase transformations resulted from the formation of an austenitic microstructure with a mean grain size of about 4 µm. As the analysis of the stress–strain curves showed, the grain refinement was carried out by dynamic and metadynamic recrystallization. At low cooling rates, the effect of plastic deformation on the kinetics of phase transformations was indistinct. Full article
(This article belongs to the Special Issue Hot Deformation and Microstructure Evolution of Metallic Materials)
Show Figures

Figure 1

12 pages, 6120 KB  
Article
The Influence of Fly Ash on Mechanical Properties of Clay-Based Ceramics
by Tomáš Húlan, Igor Štubňa, Ján Ondruška and Anton Trník
Minerals 2020, 10(10), 930; https://doi.org/10.3390/min10100930 - 21 Oct 2020
Cited by 17 | Viewed by 3950 | Correction
Abstract
Elastic properties of mixtures of illitic clay, thermal power plant fly ash (fluidized fly ash—FFA and pulverized fly ash—PFA), and grog were investigated during the heating and cooling stages of the firing. The grog part in the mixtures was replaced with 10, 20, [...] Read more.
Elastic properties of mixtures of illitic clay, thermal power plant fly ash (fluidized fly ash—FFA and pulverized fly ash—PFA), and grog were investigated during the heating and cooling stages of the firing. The grog part in the mixtures was replaced with 10, 20, 30, and 40 mass% of the fly ash, respectively. The temperature dependence of Young’s modulus was derived using the dynamical thermomechanical analysis, in which dimensions and mass determined from thermogravimeric and thermodilatometric results were used. Flexural strength was measured at the room temperature using the three-point bending test. The following results were obtained: (1) Bulk density showed a decreasing trend up to 900 °C and a steep increase above 900 °C. During cooling, the bulk density slightly increased down to the room temperature. (2) Young’s modulus increased significantly during heating up to ~300 °C. Dehydroxylation was almost not reflected in Young’s modulus. At temperatures higher than 800 °C, Young’s modulus began to increase due to sintering. (3) During cooling, down to the glass transformation, Young’s modulus slightly increased and then began to slightly decrease due to microcracking between phases with different thermal expansion coefficients. (4) Around the β→α quartz transition, radial stresses on the quartz grain altered from compressive to tensile, creating microcracks. Below 560 °C, the radial stress remained tensile, and consequently, the microcracking around the quartz grains and a decreasing Young’s modulus continued. (5) With a lower amount of PFA and FFA, a higher Young’s modulus was reached after sintering. The final values of Young’s modulus, measured after firing, show a decreasing trend and depend linearly on the part of fly ash. (6) The flexural strength measured after firing decreased linearly with the amount of the fly ash for both mixtures. Full article
(This article belongs to the Special Issue Clay Minerals and Waste Fly Ash Ceramics)
Show Figures

Figure 1

14 pages, 9796 KB  
Article
Improvement of Longitudinal Performance Uniformity of Hot-Rolled Coils for Cold-Rolled DP980 Steel
by Haijun Li, Tianxiang Li, Chaofei Li, Zhaodong Wang and Guodong Wang
Metals 2020, 10(3), 382; https://doi.org/10.3390/met10030382 - 17 Mar 2020
Cited by 12 | Viewed by 5946
Abstract
Cold-rolled DP980 steel is widely used in the automobile industry. Hot-rolled coil is the raw material of cold-rolled DP980 steel, the head and tail parts of which are usually obviously stronger than the body part. The objective of this study is to improve [...] Read more.
Cold-rolled DP980 steel is widely used in the automobile industry. Hot-rolled coil is the raw material of cold-rolled DP980 steel, the head and tail parts of which are usually obviously stronger than the body part. The objective of this study is to improve the longitudinal performance uniformity of hot-rolled coils. The material properties of this steel, such as the dynamic continuous cooling transformation, the influence of the cooling mode before coiling, the cooling rate during coil cooling on the microstructure, and mechanical properties of cold-rolled DP980 steel were investigated through thermal simulation experiments and hot rolling experiments. Meanwhile, the temperature field of hot-rolled coil was analyzed using ABAQUS software, which was used to survey the cause of the longitudinal performance fluctuations of hot-rolled coils, combined with an investigation of the aforementioned material properties. The results illustrate that the average cooling rate of the head and tail parts are higher than that of the body part during coil cooling, which causes the longitudinal performance fluctuation of hot-rolled coils. Based on the temperature field of hot-rolled coil, obtained by FEM, the parameters of the U-shaped cooling process were optimized and used in industrial applications. Full article
(This article belongs to the Special Issue Researches and Simulations in Steel Rolling)
Show Figures

Figure 1

Back to TopTop