Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = dye rejection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6318 KB  
Article
Reverse Osmosis Membrane Cleaning Optimization from Textile Dyeing Wastewater Reuse Applications
by Zhengwei Wang, Rulu Ouyang, Guorui Zhang, Chunhai Wei, Shiming Ji, Qixuan Li, Chunyang Tao and Hongwei Rong
Membranes 2026, 16(1), 29; https://doi.org/10.3390/membranes16010029 - 4 Jan 2026
Viewed by 298
Abstract
Reverse osmosis (RO) is the key process for textile dyeing wastewater reuse applications. Membrane fouling reduces both permeability and rejection capability, negatively affecting the technological economy of RO process. Membrane cleaning is critical to recovery of the permeability of fouled RO membranes. Based [...] Read more.
Reverse osmosis (RO) is the key process for textile dyeing wastewater reuse applications. Membrane fouling reduces both permeability and rejection capability, negatively affecting the technological economy of RO process. Membrane cleaning is critical to recovery of the permeability of fouled RO membranes. Based on multi-batch filtration and cleaning experiments, this study systematically evaluated the RO membrane fouling potential of pre-treated textile dyeing wastewater by a membrane bioreactor and the recovery performance of fouled RO membranes after different cleaning methods. A significant decline (more than 15%) in RO membrane permeability occurred after RO membrane permeate production of 625 L/m2 at a water recovery ratio of 60%. Protein-like substances and soluble microbial products were identified as the primary organic foulants via three-dimensional fluorescence excitation-emission matrix spectrometry (3D-FEEM). The single forward flushing with either pure water, acid, alkaline, or sodium hypochlorite solutions with a low active chlorine concentration showed very limited recovery of fouled RO membrane permeability. The combined forward flushing with acid followed by alkaline solutions restored fouled membrane permeability by up to 87% of a new RO membrane. The addition of pure water backwashing at a transmembrane pressure (TMP) of 0.5 MPa after both acid and alkaline solutions combined forward flushing restored fouled membrane permeability by up to 97% of a new RO membrane but deteriorated the rejection capability of the RO membrane. The backwashing parameters were further optimized at a TMP of 0.125 MPa and crossflow velocity (CFV) of 0.5 m/s, achieving fouled RO membrane permeability by up to 96% of a new RO membrane, and there were no negative effects on the rejection capability of the RO membrane. Alkaline forward flushing followed by pure water backwashing was the dominant contributor for fouled RO membrane permeability recovery. A preliminary economic analysis showed that the total chemical cost per RO production was 0.763 CNY/m3 and could be further reduced via removing acid cleaning and replacing combined alkaline flushing and pure water backwashing with alkaline backwashing. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 5463 KB  
Article
Preparation of Cu-MnO2/GO/PVDF Catalytic Membranes via Phase Inversion Method and Application for Separation Removal of Dyes
by Fei Wang, Xinyu Hou, Runze He, Jiachen Song, Yifan Xie, Zhaohui Yang and Xiao Liu
Membranes 2025, 15(12), 384; https://doi.org/10.3390/membranes15120384 - 18 Dec 2025
Viewed by 408
Abstract
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the [...] Read more.
To address the issues of hydrophobicity, easy fouling, and limited application of polyvinylidene fluoride (PVDF) membranes in water treatment processes, this study prepared Cu-MnO2/GO/PVDF catalytic membranes via the immersion precipitation phase inversion method. Graphene oxide (GO) was incorporated to facilitate the construction of good water channels, while copper-doped manganese dioxide (Cu-MnO2) was added to enhance catalytic activity. The structure, morphology, and performance of the membranes were characterized comprehensively. Results showed that Cu-MnO2 was well interspersed between GO sheets, thereby increasing membrane surface roughness, effective filtration area, and hydrophilicity. The best catalytic membrane CM-5 exhibited the highest pure water flux (1391.20 L·m−2·h−1) and methyl blue (MBE) rejection rate (98.06%), and it also displayed excellent reusability and stability. EPR tests confirmed the generation of HO· and HOO· in the Fenton-like system, which mediated dye degradation. The Cu-MnO2/GO/PVDF catalytic membrane demonstrated excellent hydrophilicity, antifouling properties, and catalytic efficiency, thus providing a viable solution for dye wastewater treatment. Full article
Show Figures

Figure 1

33 pages, 1097 KB  
Review
Novel Alginate-, Cellulose- and Starch-Based Membrane Materials for the Separation of Synthetic Dyes and Metal Ions from Aqueous Solutions and Suspensions—A Review
by Małgorzata A. Kaczorowska
Materials 2025, 18(24), 5495; https://doi.org/10.3390/ma18245495 - 6 Dec 2025
Viewed by 587
Abstract
Pollution of water resources with hazardous substances of anthropogenic origin (e.g., synthetic dyes, heavy metal ions) is currently one of the most important environmental issues, and the development of not only effective and economical but also eco-friendly methods of removing these substances from [...] Read more.
Pollution of water resources with hazardous substances of anthropogenic origin (e.g., synthetic dyes, heavy metal ions) is currently one of the most important environmental issues, and the development of not only effective and economical but also eco-friendly methods of removing these substances from aqueous solutions is one of the greatest challenges. Among the various separation methods, techniques based on the utilization of different types of polymer membranes have gained increasing interest due to their usually high efficiency, the materials’ stability and reusability, and the possibility of using “green” components for their formation. Recent research efforts have been concentrated, inter alia, on the application of natural polysaccharide polymers (e.g., cellulose, alginates, starch, cyclodextrins) and their derivatives to produce well-performing membranes. Appropriately composed polysaccharide-based membranes under optimal process conditions enable effective separation of dyes, salts, and metal ions (e.g., often with a rejection rates of >95% for dyes and metal ions and <7% for salts). This review concerns the latest developments in the formation and utilization of novel polysaccharide-based membranes for the separation of synthetic dyes and metal ions from aqueous solutions and suspensions, with emphasis on their most important advantages, limitations, and potential impact on the environment and sustainability. Full article
Show Figures

Figure 1

12 pages, 18099 KB  
Article
A Low-Cost Pressure-Driven Filtration System for Nanofiltration Membrane Evaluation
by Kasper Eliasson, Maria Strømme and Chao Xu
Hardware 2025, 3(4), 14; https://doi.org/10.3390/hardware3040014 - 3 Nov 2025
Viewed by 597
Abstract
With the growing interest in fabricating nanofiltration membranes using novel materials and techniques, there is an increasing need to evaluate the practical viability of innovative membranes at the early stages of development. In many materials research laboratories, access to professionally manufactured membrane-evaluation systems [...] Read more.
With the growing interest in fabricating nanofiltration membranes using novel materials and techniques, there is an increasing need to evaluate the practical viability of innovative membranes at the early stages of development. In many materials research laboratories, access to professionally manufactured membrane-evaluation systems may be limited. Here we present a pressure-driven filtration system for evaluation of nanofiltration membranes, which can be constructed from 3D-printed parts and widely available off-the-shelf components at a cost of approximately 60 €. The system uses a stirred cross-flow design capable of circulating the feed solution in the filter cell and maintaining a stable solute concentration during extended filtration experiments—as in conventional cross-flow cells. It is suitable for the filtration of aqueous solutions containing dyes, inorganic salts, and dilute acids. Validation was performed by filtering a 2000 mg L−1 MgSO4 solution through a Veolia RL membrane at 7.6 bar, achieving a 96.5% rejection rate and a permeance of 7.5 L m−2 h−1 bar−1 after 24 h of continuous operation. Full article
Show Figures

Figure 1

18 pages, 5645 KB  
Article
Cost-Effective and Durable Ceramic Membrane: Fabrication and Performance Optimization
by Ahmed H. El-Shazly and Yomna A. Fahmy
Membranes 2025, 15(10), 307; https://doi.org/10.3390/membranes15100307 - 9 Oct 2025
Viewed by 1711
Abstract
The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing [...] Read more.
The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing at different pressures and sintering temperatures, then tested using a scanning electron microscope (SEM) and XRD. The porosity of the resulting membrane was 38.7%, and the contact angle was 65° indicating good hydrophilicity for filtration applications. The main composition was 70% clay, 25% CaCO3, and 5% alumina. The removal % for methylene blue was tested at varying concentrations, achieving up to 99% removal, an initial flux of 496.8 L m−2 h−1, and an average pore size of 2 µm. Furthermore, the research explores the effect of backwashing cycles and techniques on the membrane long-term performance. The results indicated that washing the membrane for four cycles to cleanness has achieved an improved efficiency of the membrane and % dye rejection. Back washing was achieved using no chemicals; only distilled water and drying were used. A preliminary costs assessment of the production for affordable membrane resulted in a value of 170 USD/m2. The findings demonstrate that optimizing backwashing cycles is essential for prolonging the membrane lifespan and lowering operation costs. Full article
(This article belongs to the Special Issue Ceramic Membranes for Wastewater and Water Reuse (2nd Edition))
Show Figures

Figure 1

28 pages, 7157 KB  
Article
Development and Characterization of Sawdust-Based Ceramic Membranes for Textile Effluent Treatment
by Ana Vitória Santos Marques, Antusia dos Santos Barbosa, Larissa Fernandes Maia, Meiry Gláucia Freire Rodrigues, Tellys Lins Almeida Barbosa and Carlos Bruno Barreto Luna
Membranes 2025, 15(10), 298; https://doi.org/10.3390/membranes15100298 - 1 Oct 2025
Cited by 1 | Viewed by 1060
Abstract
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including [...] Read more.
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including X-ray diffraction, scanning electron microscopy, porosity, mechanical strength, water uptake, and membrane hydrodynamic permeability. The results demonstrated that the incorporation of sawdust not only altered the pore morphology but also significantly improved water permeation and dye removal efficiency. The ceramic membrane had an average pore diameter of 0.346–0.622 µm and porosities ranging from 40.85 to 42.96%. The membranes were applied to the microfiltration of synthetic effluent containing methylene blue (MB) and, additionally, subjected to investigation of their adsorptive capacity. All membrane variants showed high hydrophilicity (contact angles < 60°) and achieved MB rejection efficiencies higher than 96%, demonstrating their efficiency in treating dye-contaminated effluents. Batch adsorption using ceramic membranes (M0–M3) removed 34.0–41.2% of methylene blue. Adsorption behavior fitted both Langmuir and Freundlich models, indicating mixed mono- and multilayer mechanisms. FTIR confirmed electrostatic interactions, hydrogen bonding, and possible π–π interactions in dye retention. Full article
Show Figures

Figure 1

17 pages, 6943 KB  
Article
Flux and Fouling Behavior of Graphene Oxide-Polyphenylsulfone Ultrafiltration Membranes Incorporating ZIF-67/ZIF-8 Fillers
by Azile Nqombolo, Thollwana Andretta Makhetha, Richard Motlhaletsi Moutloali and Philiswa Nosizo Nomngongo
Membranes 2025, 15(10), 289; https://doi.org/10.3390/membranes15100289 - 25 Sep 2025
Cited by 1 | Viewed by 1001
Abstract
Wider adoption of membrane technology is hindered by fouling and flux/rejection challenges. Recent practice in mitigating these is to incorporate hydrophilic and porous fillers. Herein the addition of hydrophilic graphene oxide (GO) in conjunction with porous mixed ZIFs (ZIF-67/ZIF-8) crystallites were used as [...] Read more.
Wider adoption of membrane technology is hindered by fouling and flux/rejection challenges. Recent practice in mitigating these is to incorporate hydrophilic and porous fillers. Herein the addition of hydrophilic graphene oxide (GO) in conjunction with porous mixed ZIFs (ZIF-67/ZIF-8) crystallites were used as inorganic fillers in the preparation of polyphenylenesulfone (PPSU) ultrafiltration (UF) membranes. The morphology of the resultant composite membranes was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM) whilst surface hydrophilicity through water contact angle. The pure water flux (PWF) and membrane permeability were found to increase with increasing filler content. This was attributed to the combined hydrophilicity of GO and porous structure of the ZIF materials because of increasing alternative water pathways in the membrane matrix with increasing filler content. Furthermore, the increase in the ZIF component led to increasing bovine serum albumin (BSA) fouling resistance as demonstrated by increasing fouling recovery ratio (FRR). The dye rejection was due to a combination of electrostatic interaction between the fillers and the dyes as well as size exclusion. The chemical interactions between the ZIFs and the dyes resulted in slightly different rejection profiles for the smaller dyes, the cationic methylene blue being rejected less efficiently than the anionic methyl orange, potentially leading to their separation. The larger anionic dye, Congo red was rejected predominately through size exclusion. Full article
(This article belongs to the Special Issue Design, Preparation and Application of Nanocomposite Membranes)
Show Figures

Figure 1

18 pages, 5588 KB  
Article
Double-Crosslinked H-PAN/MoS2/PEI Composite Nanofiltration Membrane for Ethanol Systems: Fabrication and Dye Separation Performance
by Yixin Zhang, Chunli Liu, Lei Zhu, Xin Zhou, Miaona Wang and Yongqian Shen
Membranes 2025, 15(10), 286; https://doi.org/10.3390/membranes15100286 - 23 Sep 2025
Viewed by 883
Abstract
Organic solvent nanofiltration (OSN) is a promising technology for solute removal from organic media, yet developing membranes with stable separation performance remains challenging. This study presents a solvent-resistant double-crosslinked nanofiltration membrane fabricated via a two-step strategy: preparation of the membrane by the polyion [...] Read more.
Organic solvent nanofiltration (OSN) is a promising technology for solute removal from organic media, yet developing membranes with stable separation performance remains challenging. This study presents a solvent-resistant double-crosslinked nanofiltration membrane fabricated via a two-step strategy: preparation of the membrane by the polyion complexion reaction-assisted non-solvent-induced phase inversion (PIC-assisted NIPS) method and then post-crosslinking with hydrothermal treatment followed by quaternization with 1,3,5-tris(bromomethyl)benzene (TBB). To enhance solvent stability, molybdenum sulfide (MoS2) nanosheets were incorporated into a hydrolyzed polyacrylonitrile (H-PAN) substrate. The H-PAN/MoS2/PEI base membrane was fabricated by PIC-assisted NIPS with a polyethylenimine (PEI) aqueous solution as the coagulation bath. The membrane subsequently underwent dual crosslinking comprising hydrothermal treatment and 1,3,5-tris(bromomethyl)benzene (TBB)-mediated quaternization crosslinking, ultimately yielding the H-PAN/MoS2/PEI (Ther.+TBB QCL) composite membrane. These crosslinking procedures reduced the membrane’s separation skin layer thickness from 64 nm (uncrosslinked) to 41 nm. The resultant membrane effectively separated dyes from ethanol, achieving a rejection rate of 97.0 ± 0.9% for anionic dyes (e.g., Congo Red) and a permeance flux of 23.6 ± 0.2 L·m−2·h−1·bar−1 at 0.4 MPa. Furthermore, after 30 days of immersion in ethanol at 25 °C, its flux decay rate was markedly lower than that of a non-crosslinked control membrane. The enhanced separation performance and stability are attributed to the thermal crosslinking promoting amide bond formation and the TBB crosslinking introducing quaternary ammonium groups. This double-crosslinking strategy offers a promising approach for preparing high-performance OSN membranes. Full article
Show Figures

Figure 1

22 pages, 3747 KB  
Article
Recycled Polystyrene as a Sustainable Material for Hollow Fiber Membranes in Dye Filtration
by Mauricio Huhn-Ibarra, Libia Madai Itza-Uitzil, Marcial Yam-Cervantes, Abigail González-Díaz, Fernando José Zapata-Catzin, Javier Ivan Cauich-Cupul, Manuel Aguilar-Vega and Maria Ortencia González-Díaz
Membranes 2025, 15(10), 285; https://doi.org/10.3390/membranes15100285 - 23 Sep 2025
Viewed by 1374
Abstract
Expanded polystyrene (EPS) waste was chemically modified by sulfonation to obtain sulfonated EPS (sEPS), which was subsequently blended with virgin polyphenylsulfone (PPSU) at concentrations ranging from 10 to 50% to elaborate hollow fiber membranes for dye removal. The membranes were elaborated by non-solvent-induced [...] Read more.
Expanded polystyrene (EPS) waste was chemically modified by sulfonation to obtain sulfonated EPS (sEPS), which was subsequently blended with virgin polyphenylsulfone (PPSU) at concentrations ranging from 10 to 50% to elaborate hollow fiber membranes for dye removal. The membranes were elaborated by non-solvent-induced phase separation and characterized by scanning electron microscopy, mechanical properties, antifouling, water flux measurements, and dye rejection performance. Scanning electron microscopy images of PPSU/sEPS blends showed well-defined membrane cross-sections with no polymer segregation up to 30% recycled EPS content, indicating improved compatibility due to EPS sulfonation. The HFMs present mean pore radii ranging from 4.2 ± 0.5 to 11.1 ± 1.0 nm with porosity up to 80%. Water flux improved significantly from 3.1 to 21.2 L m−2 h−1 at 2 bar as sEPS content increased. Dye rejection performance was promising, with Reactive Black 5 rejection ranging from 77% to 99%. The 80/20s PPSU/sEPS membrane showed the highest Reactive Black 5 rejection at 98.3% and revealed a 70.3% rejection in a 24 h dye mixture test. Furthermore, the 70/30s displayed superior anti-fouling properties, achieving a 99.3% flux recovery ratio in a xanthan gum solution at 2 bar. This study demonstrates a novel approach to transform EPS waste into high-performance hollow fiber membrane with competitive antifouling and dye separation properties. Full article
Show Figures

Figure 1

19 pages, 4945 KB  
Article
Covalent Organic Framework-Based Nanomembrane with Co-Immobilized Dual Enzymes for Micropollutant Removal
by Junda Zhao, Guanhua Liu, Xiaobing Zheng, Liya Zhou, Li Ma, Ying He, Xiaoyang Yue and Yanjun Jiang
Nanomaterials 2025, 15(18), 1431; https://doi.org/10.3390/nano15181431 - 18 Sep 2025
Viewed by 828
Abstract
Biocatalytic nanomembranes have emerged as promising platforms for micropollutant remediation, yet their practical application is hindered by limitations in removal efficiency and operational stability. This study presents an innovative approach for fabricating highly stable and efficient biocatalytic nanomembranes through the co-immobilization of horseradish [...] Read more.
Biocatalytic nanomembranes have emerged as promising platforms for micropollutant remediation, yet their practical application is hindered by limitations in removal efficiency and operational stability. This study presents an innovative approach for fabricating highly stable and efficient biocatalytic nanomembranes through the co-immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOx) within a covalent organic framework (COF) nanocrystal. Capitalizing on the dynamic covalent chemistry of COFs during their self-healing and self-crystallization processes, we achieved simultaneous enzyme immobilization and framework formation. This unique confinement strategy preserved enzymatic activity while significantly enhancing stability. HRP/GOx@COF biocatalytic membrane was prepared through the loading of immobilized enzymes (HRP/GOx@COF) onto a macroporous polymeric substrate membrane pre-coated with a polydopamine (PDA) adhesive layer. At HRP and GOx dosages of 4 mg and 4.5 mg, respectively, and a glucose concentration of 5 mM, the removal rate of bisphenol A (BPA) reached 99% through the combined functions of catalysis, adsorption, and rejection. The BPA removal rate of the biocatalytic membrane remained high under both acidic and alkaline conditions. Additionally, the removal rate of dyes with different properties exceeded 88%. The removal efficiencies of doxycycline hydrochloride, 2,4-dichlorophenol, and 8-hydroxyquinoline surpassed 95%. In this study, the enzyme was confined in the ordered and stable COF, which endowed the biocatalytic membrane with good stability and reusability over multiple batch cycles. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

20 pages, 1999 KB  
Article
Membranes from Carboxymethyl Cellulose/Carboxylated Graphene Oxide for Sustainable Water Treatment by Pervaporation and Nanofiltration
by Mariia Dmitrenko, Olga Mikhailovskaya, Anna Kuzminova, Anton Mazur, Rongxin Su and Anastasia Penkova
Molecules 2025, 30(18), 3751; https://doi.org/10.3390/molecules30183751 - 15 Sep 2025
Cited by 1 | Viewed by 1146
Abstract
Developing efficient bio-based membranes is key to sustainable wastewater treatment, especially when they can be applied across multiple separation processes for components of varying molecular weights. This study reports the development and characterization of bio-based mixed matrix membranes from carboxymethyl cellulose (CMC) modified [...] Read more.
Developing efficient bio-based membranes is key to sustainable wastewater treatment, especially when they can be applied across multiple separation processes for components of varying molecular weights. This study reports the development and characterization of bio-based mixed matrix membranes from carboxymethyl cellulose (CMC) modified with synthesized carboxylated graphene oxide (GOCOOH), aimed at improving performance in both pervaporation and nanofiltration for water treatment. Membrane design was optimized by adjusting the GOCOOH content, applying chemical cross-linking (by immersing in glutaraldehyde with H2SO4), and developing highly effective supported membranes (by the deposition of a thin selective CMC-based layer onto a porous substrate). Comprehensive characterization was performed using spectroscopic, microscopic, and thermogravimetric analyses and contact angle measurements. The optimized cross-linked supported CMC/GOCOOH (5%) membrane demonstrated significantly improved transport properties: a 2.5-fold increased permeation flux and over 99.9 wt.% water in permeate in pervaporation dehydration of isopropanol, and high rejection rates—above 98.5% for anionic dyes and over 99.8% for heavy metal ions in nanofiltration. These findings demonstrate that CMC/GOCOOH membranes are promising, sustainable materials suitable for multiple separation processes involving components of varying molecular weights, contributing to more efficient and eco-friendly wastewater treatment solutions. Full article
Show Figures

Figure 1

20 pages, 3847 KB  
Article
Metal–Porphyrin-Based Covalent Organic Framework Composite Membrane for Salts and Dyes Separation
by Fatimah Al-Ghazzawi, Mohammed Mahdi Al-Mossawi and Hadeel K. Allayeith
Compounds 2025, 5(3), 34; https://doi.org/10.3390/compounds5030034 - 28 Aug 2025
Cited by 1 | Viewed by 1538
Abstract
Covalent organic framework (COF) membranes are eminent candidates in filtration and separation applications due to their high porosity, ordered pore size, versatile molecular structure, inherent mechanical properties, and excellent stability. However, large-scale COF membranes suffer from several issues, including stacking and crystal defects, [...] Read more.
Covalent organic framework (COF) membranes are eminent candidates in filtration and separation applications due to their high porosity, ordered pore size, versatile molecular structure, inherent mechanical properties, and excellent stability. However, large-scale COF membranes suffer from several issues, including stacking and crystal defects, which negatively impact their rejection performance. In this study, a continuous thin film of porphyrinic-based COF (i.e., COF-TCPP (Fe)) with various thicknesses was fabricated on a PVDF support layer via a vacuum-assisted interfacial polymerization method. The composite membranes were then characterized, and their filtration and dye/salt separation performance were evaluated using a dead-end filtration cell. The results showed that the rejection efficiencies of Congo red and acid fuchsin for the optimal proposed membrane were 99.5% and 95.8%, respectively. In comparison, the corresponding values for the pristine membrane were 73.3% and 62.8%. The results also showed that with an increase in the COF loading concentration during synthesis, the membrane flux decreased, while the rejection efficiency increased. This study proposes a simple and effective method to mitigate the large-scale issues of COF-based membranes and to enhance the separation performance of existing polymeric membranes. Full article
Show Figures

Figure 1

20 pages, 3419 KB  
Article
Anionic Azo Dyes: Wastewater Pollutants as Functionalizing Agents for Porous Polycarbonate Membranes Aiding in Water Decolorization
by Alan Jarrett Messinger, Isabella S. Mays, Brennon Craigo, Jeffrey Joering and Sean P. McBride
Sustainability 2025, 17(17), 7696; https://doi.org/10.3390/su17177696 - 26 Aug 2025
Viewed by 1018
Abstract
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves [...] Read more.
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves were used to functionalize track-etched porous polycarbonate filtration membranes with decolorized water obtained as a byproduct. The objective of this research is to determine whether the observed dye rejection is dependent on the magnitude of the intrinsic charge of the dye molecule or on its structure, using two selectively chosen anionic azo dye series during functionalization. The first group is a negative two intrinsic charge series with six dyes, each differing in structure, and the second group is a five-dye series that increases from −1 to −6 in intrinsic charge. Rejection measurements as a function of both time and concentration during functionalization are made using ultraviolet-visible light spectroscopy. For 100 µM aqueous dyes, comparing pre- and post-functionalization, a systematically increasing trend in the ability to functionalize porous polycarbonate based on the number of double 6-carbon ring structures in the dyes is illustrated and found to be independent of intrinsic charge. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Graphical abstract

20 pages, 4874 KB  
Article
Preparation of pH-Responsive PET TeMs by Controlled Graft Block Copolymerisation of Styrene and Methacrylic Acid for the Separation of Water–Oil Emulsions
by Indira B. Muslimova, Dias D. Omertassov, Nurdaulet Zhumanazar, Nazerke Assan, Zhanna K. Zhatkanbayeva and Ilya V. Korolkov
Polymers 2025, 17(16), 2221; https://doi.org/10.3390/polym17162221 - 14 Aug 2025
Cited by 1 | Viewed by 936
Abstract
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, [...] Read more.
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9. Successful grafting was confirmed by FTIR, AFM, SEM, TGA, and TB dye sorption. The membranes showed high degree of rejection (up to 98%) for both direct and reverse emulsions. In direct emulsions, stable flux values (70 ± 2.8 to 60 ± 2.9 L m−2 h−1 for cetane-in-water and 195 ± 8.2 to 120 ± 6.9 L m−2 h−1 for o-xylene-in-water) were maintained over five cycles at 900 mbar, indicating excellent antifouling performance. Reverse emulsions initially exhibited higher flux, but stronger fouling; however, flux recovery reached 91% after cleaning. These findings demonstrate the potential of PET TeMs-g-PS-g-PMAA as switchable, pH-responsive membranes for robust emulsion separation. Full article
Show Figures

Figure 1

21 pages, 12700 KB  
Article
Optimization of Developed TiO2 NWs-Fe2O3 Modified PES Membranes for Efficient NBB Dye Removal
by Mouna Mansor Hussein, Qusay F. Alsalhy, Mohamed Gar Alalm and M. M. El-Halwany
ChemEngineering 2025, 9(4), 82; https://doi.org/10.3390/chemengineering9040082 - 1 Aug 2025
Cited by 1 | Viewed by 1038
Abstract
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. [...] Read more.
Current work investigates the fabrication and performance of nanocomposite membranes, modified with varying concentrations of hybrid nanostructures comprising titanium nanowires coated with iron nanoparticles (TiO2 NWs-Fe2O3), for the removal of Naphthol Blue Black (NBB) dye from industrial wastewater. A series of analytical tools were employed to confirm the successful modification including scanning electron microscopy and EDX analysis, porosity and hydrophilicity measurements, Fourier-transform infrared spectroscopy, and X-Ray Diffraction. The incorporation of TiO2 NWs-Fe2O3 has enhanced membrane performance significantly by increasing the PWF and improving dye retention rates of nanocomposite membranes. At 0.7 g of nanostructure content, the modified membrane (M8) achieved a PWF of 93 L/m2·h and NBB dye rejection of over 98%. The flux recovery ratio (FRR) analysis disclosed improved antifouling properties, with the M8 membrane demonstrating a 73.4% FRR. This study confirms the potential of TiO2 NWs-Fe2O3-modified membranes in enhancing water treatment processes, offering a promising solution for industrial wastewater treatment. These outstanding results highlight the potential of the novel PES-TiO2 NWs-Fe2O3 membranes for dye removal and present adequate guidance for the modification of membrane physical properties in the field of wastewater treatment. Full article
(This article belongs to the Collection New Advances in Chemical Engineering)
Show Figures

Figure 1

Back to TopTop