Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = dual-targeting CAR-Ts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 691 KiB  
Review
Engineering Innate Immunity: Recent Advances and Future Directions for CAR-NK and CAR–Macrophage Therapies in Solid Tumors
by Behzad Amoozgar, Ayrton Bangolo, Charlene Mansour, Daniel Elias, Abdifitah Mohamed, Danielle C. Thor, Syed Usman Ehsanullah, Hadrian Hoang-Vu Tran, Izage Kianifar Aguilar and Simcha Weissman
Cancers 2025, 17(14), 2397; https://doi.org/10.3390/cancers17142397 - 19 Jul 2025
Viewed by 311
Abstract
Adoptive cell therapies have transformed the treatment landscape for hematologic malignancies. Yet, translation to solid tumors remains constrained by antigen heterogeneity, an immunosuppressive tumor microenvironment (TME), and poor persistence of conventional CAR-T cells. In response, innate immune cell platforms, particularly chimeric antigen receptor–engineered [...] Read more.
Adoptive cell therapies have transformed the treatment landscape for hematologic malignancies. Yet, translation to solid tumors remains constrained by antigen heterogeneity, an immunosuppressive tumor microenvironment (TME), and poor persistence of conventional CAR-T cells. In response, innate immune cell platforms, particularly chimeric antigen receptor–engineered natural killer (CAR-NK) cells and chimeric antigen receptor–macrophages (CAR-MΦ), have emerged as promising alternatives. This review summarizes recent advances in the design and application of CAR-NK and CAR-MΦ therapies for solid tumors. We highlight key innovations, including the use of lineage-specific intracellular signaling domains (e.g., DAP12, 2B4, FcRγ), novel effector constructs (e.g., NKG7-overexpressing CARs, TME-responsive CARs), and scalable induced pluripotent stem cell (iPSC)-derived platforms. Preclinical data support enhanced antitumor activity through mechanisms such as major histocompatibility complex (MHC)-unrestricted cytotoxicity, phagocytosis, trogocytosis, cytokine secretion, and cross-talk with adaptive immunity. Early-phase clinical studies (e.g., CT-0508) demonstrate feasibility and TME remodeling with CAR-MΦ. However, persistent challenges remain, including transient in vivo survival, manufacturing complexity, and risks of off-target inflammation. Emerging combinatorial strategies, such as dual-effector regimens (CAR-NK+ CAR-MΦ), cytokine-modulated cross-support, and bispecific or logic-gated CARs, may overcome these barriers and provide more durable, tumor-selective responses. Taken together, CAR-NK and CAR-MΦ platforms are poised to expand the reach of engineered cell therapy into the solid tumor domain. Full article
(This article belongs to the Special Issue Cell Therapy in Solid Cancers: Current and Future Landscape)
Show Figures

Figure 1

12 pages, 1593 KiB  
Review
Next-Generation CAR-T and TCR-T Cell Therapies for Solid Tumors: Innovations, Challenges, and Global Development Trends
by Tomomi Sanomachi, Yuki Katsuya, Tetsuya Nakatsura and Takafumi Koyama
Cancers 2025, 17(12), 1945; https://doi.org/10.3390/cancers17121945 - 11 Jun 2025
Viewed by 1833
Abstract
Chimeric antigen receptor (CAR)-T and T-cell receptor (TCR)-engineered T-cell (TCR-T) therapies have revolutionized the treatment of hematological malignancies; however, their application to solid tumors remains a formidable challenge. The immunosuppressive tumor microenvironment, antigen heterogeneity, and manufacturing complexity limit the clinical efficacy and scalability [...] Read more.
Chimeric antigen receptor (CAR)-T and T-cell receptor (TCR)-engineered T-cell (TCR-T) therapies have revolutionized the treatment of hematological malignancies; however, their application to solid tumors remains a formidable challenge. The immunosuppressive tumor microenvironment, antigen heterogeneity, and manufacturing complexity limit the clinical efficacy and scalability of these treatment modalities. This review provides a comprehensive analysis of the current clinical development strategies for CAR-T and TCR-T cell therapies for solid tumors. Herein, we discuss recent breakthroughs and highlight the potential of TCR-T cell therapy. Furthermore, innovative approaches for enhancing CAR-T cell function in solid tumors (e.g., in vivo engineering; induced pluripotent stem cell-derived allogeneic CAR-T cells; armored CAR constructs; dual-antigen targeting; and combination regimens with checkpoint inhibitors, chemotherapy, radiotherapy, and oncolytic viruses) are explored. We also present trends in global patent activity, revealing a marked acceleration in CAR-T- and TCR-T-related innovations, with the United States and China leading with respect to application volumes. This field is increasingly characterized by multidisciplinary collaborations between academia and industry, driving the development of next-generation platforms, including messenger RNA-based and off-the-shelf cell therapies. Although no CAR-T product has been approved for solid tumors, these findings underscore the accelerating momentum and translational promise of adoptive cell therapies. Addressing the unique biological and logistical challenges of solid tumors is essential for realizing the full potential of these transformative immunotherapies. Full article
Show Figures

Figure 1

22 pages, 5264 KiB  
Article
miR-143-3p Promotes TSCM Differentiation and Inhibits Progressive T Cell Differentiation via Inhibiting ABL2 and PAG1
by Wenkai Shi, Jieming Hu, Hongqiong Wang, Huishan Zhong, Wenfeng Zhang, Jinquan Wang, Hongwei Shao, Han Shen, Huaben Bo, Changli Tao and Fenglin Wu
Genes 2025, 16(4), 466; https://doi.org/10.3390/genes16040466 - 19 Apr 2025
Viewed by 750
Abstract
Background: Adoptive cell therapy (ACT), including CAR-T and TCR-T therapies, shows promise for cancer treatment, depending on infused T cell expansion, persistence and activity. We previously characterized four T-cell subsets (TN, TSCM, TCM and TEM) and [...] Read more.
Background: Adoptive cell therapy (ACT), including CAR-T and TCR-T therapies, shows promise for cancer treatment, depending on infused T cell expansion, persistence and activity. We previously characterized four T-cell subsets (TN, TSCM, TCM and TEM) and their miRNA profiles. Objectives: This study investigates miR-143-3p’s role in T cell differentiation. Methods: Using qPCR, we analyzed miR-143-3p expression. Target genes were validated by dual-luciferase assays. Functional assays assessed differentiation markers, proliferation, apoptosis and cytokine secretion. Results: miR-143-3p was upregulated in early-differentiated TSCM but downregulated during progression. We confirmed ABL2 and PAG1 as direct targets suppressed by miR-143-3p. Overexpression increased early markers (LEF1, CCR7 and CD62L) while decreasing late markers (EOMES, KLRG1 and CD45RO). It also enhanced proliferation, reduced apoptosis and suppressed cytokine secretion. Conclusions: miR-143-3p promotes TSCM differentiation and inhibits progressive differentiation by targeting ABL2/PAG1, suggesting new ACT optimization strategies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2464 KiB  
Article
Reduction in Brain Parenchymal Volume Correlates with Depression and Cognitive Decline in HIV-Positive Males
by Radmila Perić, Duško Kozić, Snežana Brkić, Dajana Lendak, Jelena Ostojić, Vojislava Bugarski Ignjatović and Jasmina Boban
Medicina 2025, 61(4), 632; https://doi.org/10.3390/medicina61040632 - 30 Mar 2025
Viewed by 575
Abstract
Background and Objectives: Human immunodeficiency virus (HIV) has a profound impact on the central nervous system (CNS), contributing to cognitive impairment and depressive symptoms even in individuals receiving combination antiretroviral therapy (cART). This study aimed to investigate the associations between brain parenchymal [...] Read more.
Background and Objectives: Human immunodeficiency virus (HIV) has a profound impact on the central nervous system (CNS), contributing to cognitive impairment and depressive symptoms even in individuals receiving combination antiretroviral therapy (cART). This study aimed to investigate the associations between brain parenchymal volumes and neuropsychological outcomes, specifically focusing on cognitive function and depressive symptoms in HIV-positive males. Materials and Methods: A total of 48 male participants underwent cognitive assessment using the Mini-Mental State Examination (MMSE), while depressive symptoms were evaluated in 35 participants using the Beck Depression Inventory (BDI). Volumetric brain analysis was conducted through automated imaging software, volBrain (Version 1.0, published on 23 November 2021), ensuring high consistency and accuracy. Statistical analyses included Pearson correlation to identify relationships between brain volumes and neuropsychological outcomes, emphasizing key regions like the basal forebrain and cingulate gyrus. Results: Significant trends were observed between basal forebrain volume and MMSE scores, emphasizing the role of this region in cognitive regulation. Additional correlations were found with the anterior and middle cingulate gyri, which are crucial for executive functioning and attentional control. Notably, smaller right basal forebrain volumes were associated with greater depressive symptom severity, suggesting the region’s specific involvement in mood regulation. These findings highlight the dual impact of HIV on cognitive and emotional health, with structural vulnerabilities in key brain regions playing a central role. Conclusions: This study underscores the selective vulnerability of certain brain regions, such as the basal forebrain and cingulate gyrus, to HIV-associated neurodegeneration. The results highlight the importance of integrating neuroimaging and neuropsychological assessments in routine clinical care for HIV-positive individuals. The study emphasizes the importance of early detection and targeted interventions to address neuropsychological challenges in this population, with a call for further research in larger and more diverse cohorts. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

32 pages, 1461 KiB  
Review
Significant Advancements and Evolutions in Chimeric Antigen Receptor Design
by Anna Gaimari, Anna De Lucia, Fabio Nicolini, Lucia Mazzotti, Roberta Maltoni, Giovanna Rughi, Matteo Zurlo, Matteo Marchesini, Manel Juan, Daniel Parras, Claudio Cerchione, Giovanni Martinelli, Sara Bravaccini, Sarah Tettamanti, Anna Pasetto, Luigi Pasini, Chiara Magnoni, Luca Gazzola, Patricia Borges de Souza and Massimiliano Mazza
Int. J. Mol. Sci. 2024, 25(22), 12201; https://doi.org/10.3390/ijms252212201 - 13 Nov 2024
Cited by 3 | Viewed by 2926
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells [...] Read more.
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients. Full article
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Overcoming Antigen Escape and T-Cell Exhaustion in CAR-T Therapy for Leukemia
by Elżbieta Bartoszewska, Maciej Tota, Monika Kisielewska, Izabela Skowron, Kamil Sebastianka, Oliwia Stefaniak, Klaudia Molik, Jakub Rubin, Karolina Kraska and Anna Choromańska
Cells 2024, 13(18), 1596; https://doi.org/10.3390/cells13181596 - 23 Sep 2024
Cited by 10 | Viewed by 4461
Abstract
Leukemia is a prevalent pediatric cancer with significant challenges, particularly in relapsed or refractory cases. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a personalized cancer treatment, modifying patients’ T cells to target and destroy resistant cancer cells. This study reviews the [...] Read more.
Leukemia is a prevalent pediatric cancer with significant challenges, particularly in relapsed or refractory cases. Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a personalized cancer treatment, modifying patients’ T cells to target and destroy resistant cancer cells. This study reviews the current therapeutic options of CAR-T therapy for leukemia, addressing the primary obstacles such as antigen escape and T-cell exhaustion. We explore dual-targeting strategies and their potential to improve treatment outcomes by preventing the loss of target antigens. Additionally, we examine the mechanisms of T-cell exhaustion and strategies to enhance CAR-T persistence and effectiveness. Despite remarkable clinical successes, CAR-T therapy poses risks such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Our findings highlight the need for ongoing research to optimize CAR-T applications, reduce toxicities, and extend this innovative therapy to a broader range of hematologic malignancies. This comprehensive review aims to provide valuable insights for improving leukemia treatment and advancing the field of cancer immunotherapy. Full article
Show Figures

Figure 1

21 pages, 3652 KiB  
Review
Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy
by Dharambir Kashyap and Huda Salman
Int. J. Mol. Sci. 2024, 25(7), 3780; https://doi.org/10.3390/ijms25073780 - 28 Mar 2024
Cited by 2 | Viewed by 2487
Abstract
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their [...] Read more.
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies. Full article
Show Figures

Figure 1

23 pages, 643 KiB  
Review
Chimeric Antigen Receptor-T Cell Therapy for Lymphoma: New Settings and Future Directions
by Corrado Benevolo Savelli, Michele Clerico, Barbara Botto, Carolina Secreto, Federica Cavallo, Chiara Dellacasa, Alessandro Busca, Benedetto Bruno, Roberto Freilone, Marco Cerrano and Mattia Novo
Cancers 2024, 16(1), 46; https://doi.org/10.3390/cancers16010046 - 21 Dec 2023
Cited by 6 | Viewed by 3201
Abstract
In the last decade, anti-CD19 CAR-T cell therapy has led to a treatment paradigm shift for B-cell non-Hodgkin lymphomas, first with the approval for relapsed/refractory (R/R) large B-cell lymphomas and subsequently for R/R mantle cell and follicular lymphoma. Many efforts are continuously being [...] Read more.
In the last decade, anti-CD19 CAR-T cell therapy has led to a treatment paradigm shift for B-cell non-Hodgkin lymphomas, first with the approval for relapsed/refractory (R/R) large B-cell lymphomas and subsequently for R/R mantle cell and follicular lymphoma. Many efforts are continuously being made to extend the therapeutic setting in the lymphoma field. Several reports are supporting the safety and efficacy of CAR-T cells in patients with central nervous system disease involvement. Anti-CD30 CAR-T cells for the treatment of Hodgkin lymphoma are in development and early studies looking for the optimal target for T-cell malignancies are ongoing. Anti-CD19/CD20 and CD19/CD22 dual targeting CAR-T cells are under investigation in order to increase anti-lymphoma activity and overcome tumor immune escape. Allogeneic CAR product engineering is on the way, representing a rapidly accessible ‘off-the-shelf’ and potentially more fit product. In the present manuscript, we will focus on recent advances in CAR-T cell therapy for lymphomas, including new settings and future perspectives in the field, reviewing data reported in literature in the last decade up to October 2023. Full article
(This article belongs to the Special Issue CAR T-cell Therapy for Lymphoma Research)
Show Figures

Figure 1

40 pages, 10519 KiB  
Review
Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)
by Murugesan Vanangamudi, Senthilkumar Palaniappan, Muthu Kumaradoss Kathiravan and Vigneshwaran Namasivayam
Viruses 2023, 15(10), 1992; https://doi.org/10.3390/v15101992 - 25 Sep 2023
Cited by 7 | Viewed by 4496
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the [...] Read more.
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects. Full article
(This article belongs to the Special Issue Viral Reverse Transcriptases)
Show Figures

Graphical abstract

16 pages, 2109 KiB  
Article
Targeted Delivery of Chimeric Antigen Receptor into T Cells via CRISPR-Mediated Homology-Directed Repair with a Dual-AAV6 Transduction System
by Pablo D. Moço, Omar Farnós, David Sharon and Amine A. Kamen
Curr. Issues Mol. Biol. 2023, 45(10), 7705-7720; https://doi.org/10.3390/cimb45100486 - 22 Sep 2023
Cited by 5 | Viewed by 3721
Abstract
CAR-T cell therapy involves genetically engineering T cells to recognize and attack tumour cells by adding a chimeric antigen receptor (CAR) to their surface. In this study, we have used dual transduction with AAV serotype 6 (AAV6) to integrate an anti-CD19 CAR into [...] Read more.
CAR-T cell therapy involves genetically engineering T cells to recognize and attack tumour cells by adding a chimeric antigen receptor (CAR) to their surface. In this study, we have used dual transduction with AAV serotype 6 (AAV6) to integrate an anti-CD19 CAR into human T cells at a known genomic location. The first viral vector expresses the Cas9 endonuclease and a guide RNA (gRNA) targeting the T cell receptor alpha constant locus, while the second vector carries the DNA template for homology-mediated CAR insertion. We evaluated three gRNA candidates and determined their efficiency in generating indels. The AAV6 successfully delivered the CRISPR/Cas9 machinery in vitro, and molecular analysis of the dual transduction showed the integration of the CAR transgene into the desired location. In contrast to the random integration methods typically used to generate CAR-T cells, targeted integration into a known genomic locus can potentially lower the risk of insertional mutagenesis and provide more stable levels of CAR expression. Critically, this method also results in the knockout of the endogenous T cell receptor, allowing target cells to be derived from allogeneic donors. This raises the exciting possibility of “off-the-shelf” universal immunotherapies that would greatly simplify the production and administration of CAR-T cells. Full article
(This article belongs to the Special Issue Advanced Molecular Solutions for Cancer Therapy)
Show Figures

Figure 1

18 pages, 2850 KiB  
Article
Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs
by Elin M. V. Forsberg, Rebecca Riise, Sara Saellström, Joakim Karlsson, Samuel Alsén, Valentina Bucher, Akseli E. Hemminki, Roger Olofsson Bagge, Lars Ny, Lisa M. Nilsson, Henrik Rönnberg and Jonas A. Nilsson
Cancers 2023, 15(3), 648; https://doi.org/10.3390/cancers15030648 - 20 Jan 2023
Cited by 16 | Viewed by 4621
Abstract
Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients [...] Read more.
Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma. Full article
Show Figures

Figure 1

16 pages, 332 KiB  
Review
Therapeutic Management of Metastatic Clear Cell Renal Cell Carcinoma: A Revolution in Every Decade
by Mathieu Larroquette, Félix Lefort, Luc Heraudet, Jean-Christophe Bernhard, Alain Ravaud, Charlotte Domblides and Marine Gross-Goupil
Cancers 2022, 14(24), 6230; https://doi.org/10.3390/cancers14246230 - 17 Dec 2022
Cited by 8 | Viewed by 2797
Abstract
Clear cell renal cell carcinoma (RCC) oncogenesis is mainly driven by VHL gene inactivation, leading to overexpression of vascular endothelial growth factor (VEGF). The use of tyrosine-kinase inhibitors (TKIs) directed against VEGF and its receptor (VEGFR) revolutionised the management of metastatic renal cancer [...] Read more.
Clear cell renal cell carcinoma (RCC) oncogenesis is mainly driven by VHL gene inactivation, leading to overexpression of vascular endothelial growth factor (VEGF). The use of tyrosine-kinase inhibitors (TKIs) directed against VEGF and its receptor (VEGFR) revolutionised the management of metastatic renal cancer in the 2000s. The more recent development of next-generation TKIs such as cabozantinib or lenvatinib has made it possible to bypass some of the mechanisms of resistance to first-generation anti-VEGFR TKIs. During the decade 2010–2020, the development of immune checkpoint blockade (ICB) therapies revolutionised the management of many solid cancers, including RCC, in first- and subsequent-line settings. Dual ICB or ICB plus anti-VEGFR TKI combinations are now the standard of care for patients with advanced clear cell RCC. To optimise these combination therapies while preserving patient quality of life, escalation and de-escalation strategies are being evaluated in prospective randomised trials, based on patient selection according to their prognosis risk. Finally, new therapeutic approaches, such as targeting hypoxia-inducible factor (HIF) and the development of innovative treatments using antibody-drug conjugates (ADCs), CAR-T cells, or radiopharmaceuticals, are all potential candidates to improve further patient survival. Full article
(This article belongs to the Special Issue Novel Therapeutics for Genitourinary Tumors)
26 pages, 921 KiB  
Review
Therapeutic Advances in Immunotherapies for Hematological Malignancies
by Ayako Nogami and Koji Sasaki
Int. J. Mol. Sci. 2022, 23(19), 11526; https://doi.org/10.3390/ijms231911526 - 29 Sep 2022
Cited by 11 | Viewed by 4543
Abstract
Following the success of immunotherapies such as chimeric antigen receptor transgenic T-cell (CAR-T) therapy, bispecific T-cell engager therapy, and immune checkpoint inhibitors in the treatment of hematologic malignancies, further studies are underway to improve the efficacy of these immunotherapies and to reduce the [...] Read more.
Following the success of immunotherapies such as chimeric antigen receptor transgenic T-cell (CAR-T) therapy, bispecific T-cell engager therapy, and immune checkpoint inhibitors in the treatment of hematologic malignancies, further studies are underway to improve the efficacy of these immunotherapies and to reduce the complications associated with their use in combination with other immune checkpoint inhibitors and conventional chemotherapy. Studies of novel therapeutic strategies such as bispecific (tandem or dual) CAR-T, bispecific killer cell engager, trispecific killer cell engager, and dual affinity retargeting therapies are also underway. Because of these studies and the discovery of novel immunotherapeutic target molecules, the use of immunotherapy for diseases initially thought to be less promising to treat with this treatment method, such as acute myeloid leukemia and T-cell hematologic tumors, has become a reality. Thus, in this coming era of new transplantation- and chemotherapy-free treatment strategies, it is imperative for both scientists and clinicians to understand the molecular immunity of hematologic malignancies. In this review, we focus on the remarkable development of immunotherapies that could change the prognosis of hematologic diseases. We also review the molecular mechanisms, development processes, clinical efficacies, and problems of new agents. Full article
Show Figures

Figure 1

13 pages, 644 KiB  
Review
Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection
by Gabriel Siracusano and Lucia Lopalco
Cells 2022, 11(1), 77; https://doi.org/10.3390/cells11010077 - 28 Dec 2021
Cited by 2 | Viewed by 4529
Abstract
Since its discovery 35 years ago, there have been no therapeutic interventions shown to enable full HIV-1 remission. Combined antiretroviral therapy (cART) has achieved the sustained control of HIV-1 replication, however, the life-long treatment does not eradicate long-lived latently infected reservoirs and can [...] Read more.
Since its discovery 35 years ago, there have been no therapeutic interventions shown to enable full HIV-1 remission. Combined antiretroviral therapy (cART) has achieved the sustained control of HIV-1 replication, however, the life-long treatment does not eradicate long-lived latently infected reservoirs and can result in multiple side effects including the development of multidrug-resistant escape mutants. Antibody-based treatments have emerged as alternative approaches for a HIV-1 cure. Here, we will review clinical advances in coreceptor-targeting antibodies, with respect to anti-CCR5 antibodies in particular, which are currently being generated to target the early stages of infection. Among the Env-specific antibodies widely accepted as relevant in cure strategies, the potential role of those targeting CD4-induced (CD4i) epitopes of the CD4-binding site (CD4bs) in eliminating HIV-1 infected cells has gained increasing interest and will be presented. Together, with approaches targeting the HIV-1 replication cycle, we will discuss the strategies aimed at boosting and modulating specific HIV-1 immune responses, highlighting the harnessing of TLR agonists for their dual role as latency reverting agents (LRAs) and immune-modulatory compounds. The synergistic combinations of different approaches have shown promising results to ultimately enable a HIV-1 cure. Full article
(This article belongs to the Special Issue HIV and Host Interactions Ⅱ)
Show Figures

Figure 1

19 pages, 1020 KiB  
Review
CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma
by Massimo Martino, Filippo Antonio Canale, Caterina Alati, Iolanda Donatella Vincelli, Tiziana Moscato, Gaetana Porto, Barbara Loteta, Virginia Naso, Massimiliano Mazza, Fabio Nicolini, Andrea Ghelli Luserna di Rorà, Giorgia Simonetti, Sonia Ronconi, Michela Ceccolini, Gerardo Musuraca, Giovanni Martinelli and Claudio Cerchione
Cancers 2021, 13(11), 2639; https://doi.org/10.3390/cancers13112639 - 27 May 2021
Cited by 28 | Viewed by 8230
Abstract
Despite the improvement in survival outcomes, multiple myeloma (MM) remains an incurable disease. Chimeric antigen receptor (CAR) T-cell therapy targeting B-cell maturation antigen (BCMA) represents a new strategy for the treatment of relapsed/refractory MM (R/R). In this paper, we describe several recent advances [...] Read more.
Despite the improvement in survival outcomes, multiple myeloma (MM) remains an incurable disease. Chimeric antigen receptor (CAR) T-cell therapy targeting B-cell maturation antigen (BCMA) represents a new strategy for the treatment of relapsed/refractory MM (R/R). In this paper, we describe several recent advances in the field of anti-BCMA CAR T-cell therapy and MM. Currently, available data on anti-BCMA CART-cell therapy has demonstrated efficacy and manageable toxicity in heavily pretreated R/R MM patients. Despite this, the main issues remain to be addressed. First of all, a significant proportion of patients eventually relapse. The potential strategy to prevent relapse includes sequential or combined infusion with CAR T-cells against targets other than BCMA, CAR T-cells with novel dual-targeting vector design, and BCMA expression upregulation. Another dark side of CART therapy is safety. Cytokine release syndrome (CRS) andneurologic toxicity are well-described adverse effects. In the MM trials, most CRS events tended to be grade 1 or 2, with fewer patients experiencing grade 3 or higher. Another critical point is the extended timeline of the manufacturing process. Allo-CARs offers the potential for scalable manufacturing for on-demand treatment with shorter waiting days. Another issue is undoubtedly going to be access to this therapy. Currently, only a few academic centers can perform these procedures. Recognizing these issues, the excellent response with BCMA-targeted CAR T-cell therapy makes it a treatment strategy of great promise. Full article
(This article belongs to the Special Issue Multiple Myeloma: Targeted Therapy and Immunotherapy)
Show Figures

Figure 1

Back to TopTop