Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = dsDNA-modified electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3852 KB  
Article
Nanoparticle-Based DNA Biosensor: Synthesis of Novel Manganese Nanoparticles Applied in the Development of a Sensitive Electrochemical Double-Stranded/Single-Stranded DNA Biosensor
by Dilsat Ozkan-Ariksoysal, Elpida Pantelidou, Catherine Dendrinou-Samara and Stella Girousi
Micromachines 2025, 16(2), 232; https://doi.org/10.3390/mi16020232 - 18 Feb 2025
Cited by 2 | Viewed by 1339
Abstract
The development of electrochemical DNA biosensors occurred by applying different organically coated Mn-NPs such as MnCO3@OAm, MnCO3@TEG and MnO2/Mn2O3@TEG, as well as naked MnCO3 NPs (where OAm = oleylamine and TEG = [...] Read more.
The development of electrochemical DNA biosensors occurred by applying different organically coated Mn-NPs such as MnCO3@OAm, MnCO3@TEG and MnO2/Mn2O3@TEG, as well as naked MnCO3 NPs (where OAm = oleylamine and TEG = tetraethylene glycol). The detection performances of PGEs were modified with different types of Mn-NPs, according to the guanine signal magnitudes obtained after double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) immobilization at these surfaces. DNA interaction studies were realized using UV-vis, circular dichroism (CD), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques. In addition, a 3- to 5.4-fold increase in guanine response in the presence of dsDNA and a 2.3-fold increase in the presence of ssDNA were obtained with the developed biosensor. The increased signals in DNA immobilization at the electrode surfaces modified with Mn-NPs compared to bare PGE clearly show that the modification of Mn-NPs increases the electroactive surface area of the electrode. The detection limit (LOD) of dsDNA was calculated as 7.86 μg·L−1 using the MnO2/Mn2O3@TEG type of the Mn-NP-modified biosensor, while the detection limit of ssDNA was calculated as 3.49 μg·L−1 with the MnCO3@OAm type Mn-NP-modified biosensor. The proposed sensor was applied to a human DNA sample where the amount of dsDNA extract was found to be 0.62 ± 0.03 mg·L−1 after applying the MnO2/Mn2O3@TEG type of Mn-NP-modified biosensor. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

14 pages, 3813 KB  
Article
An Electrochemical Biosensor Analysis of the Interaction of a Two-Vector Phospholipid Composition of Doxorubicin with dsDNA and Breast Cancer Cell Models In Vitro
by Lyubov V. Kostryukova, Anastasia S. Serdyukova, Veronica V. Pronina, Victoria V. Shumyantseva and Yulia A. Tereshkina
Pharmaceutics 2024, 16(11), 1412; https://doi.org/10.3390/pharmaceutics16111412 - 2 Nov 2024
Cited by 6 | Viewed by 1681
Abstract
Objectives: The main aim of our experiments was to demonstrate the suitability of cell-based biosensors for searching for new anticancer medicinal preparations. Methods: The effect of the substance doxorubicin, doxorubicin embedded in phospholipid nanoparticles, and doxorubicin with phospholipid nanoparticles modified by targeting vectors [...] Read more.
Objectives: The main aim of our experiments was to demonstrate the suitability of cell-based biosensors for searching for new anticancer medicinal preparations. Methods: The effect of the substance doxorubicin, doxorubicin embedded in phospholipid nanoparticles, and doxorubicin with phospholipid nanoparticles modified by targeting vectors (cRGD and folic acid) on dsDNA and breast cancer cell lines (MCF-7, MDA-MB-231) was studied. Results: In the obtained doxorubicin nanoforms, the particle size was less than 60 nm. Our study of the percentage of doxorubicin inclusion showed the almost complete embeddability of the substance into nanoparticles for all samples, with an average of 95.4 ± 4.6%. The calculation of the toxicity index of the studied doxorubicin samples showed that all substances were moderately toxic drugs in terms of adenine and guanine. The biosensor analysis using electrodes modified with carbon nanotubes showed an intercalation interaction between doxorubicin and its derivatives and dsDNA, except for the composition of doxorubicin with folic acid with a linker length of 2000 (NPh-Dox-Fol(2.0)). The results of the electroanalysis were normalized to the total cell protein (mg) and cell concentration. The highest intensity of the electrochemical signals was observed in intact control cells of the MCF-7 and MDA-MB-231 cell lines. Conclusions: The proposed electrochemical approach is useful for the analysis of cell line responses to the medicinal preparations. Full article
(This article belongs to the Special Issue Nanomedicines in Cancer Therapy)
Show Figures

Graphical abstract

13 pages, 1614 KB  
Article
Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils
by Vasiliki Keramari, Sotiria G. Papadimou, Evangelia E. Golia and Stella Girousi
Biosensors 2024, 14(6), 310; https://doi.org/10.3390/bios14060310 - 18 Jun 2024
Cited by 3 | Viewed by 2661
Abstract
Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged [...] Read more.
Heavy metals constitute pollutants that are particularly common in air, water, and soil. They are present in both urban and rural environments, on land, and in marine ecosystems, where they cause serious environmental problems since they do not degrade easily, remain almost unchanged for long periods, and bioaccumulate. The detection and especially the quantification of metals require a systematic process. Regular monitoring is necessary because of seasonal variations in metal levels. Consequently, there is a significant need for rapid and low-cost metal determination methods. In this study, we compare and analytically validate absorption spectrometry with a sensitive voltammetric method, which uses a bismuth film-plated electrode surface and applies stripping voltammetry. Atomic absorption spectroscopy (AAS) represents a well-established analytical technique, while the applicability of anodic stripping voltammetry (ASV) in complicated sample matrices such as soil samples is currently unknown. This sample-handling challenge is investigated in the present study. The results show that the AAS and ASV methods were satisfactorily correlated and showed that the metal concentration in soils was lower than the limit values but with an increasing trend. Therefore, continuous monitoring of metal levels in the urban complex of a city is necessary and a matter of great importance. The limits of detection of cadmium (Cd) were lower when using the stripping voltammetry (SWASV) graphite furnace technique compared with those obtained with AAS when using the graphite furnace. However, when using flame atomic absorption spectroscopy (flame-AAS), the measurements tended to overestimate the concentration of Cd compared with the values found using SWASV. This highlights the differences in sensitivity and accuracy between these analytical methods for detecting Cd. The SWASV method has the advantage of being cheaper and faster, enabling the simultaneous determination of heavy elements across the range of concentrations that these elements can occur in Mediterranean soils. Additionally, a dsDNA biosensor is suggested for the discrimination of Cu(I) along with Cu(II) based on the oxidation peak of guanine, and adenine residues can be applied in the redox speciation analysis of copper in soil, which represents an issue of great importance. Full article
Show Figures

Figure 1

17 pages, 3410 KB  
Article
Pharmacogenomic Studies of Antiviral Drug Favipiravir
by Victoria V. Shumyantseva, Tatiana V. Bulko, Alexey A. Chistov, Ekaterina F. Kolesanova and Lyubov E. Agafonova
Pharmaceutics 2024, 16(4), 503; https://doi.org/10.3390/pharmaceutics16040503 - 7 Apr 2024
Cited by 6 | Viewed by 2415
Abstract
In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV. The [...] Read more.
In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV. The determined concentrations correspond to therapeutically significant ones in the range of 50–500 µM (R2 = 0.943). We have shown that FAV can be electro-oxidized around the potential of +0.96 V ÷ +0.98 V (vs. Ag/AgCl). A mechanism for electrochemical oxidation of FAV was proposed. The effect of the drug on DNA was recorded as changes in the intensity of electrochemical oxidation of heterocyclic nucleobases (guanine, adenine and thymine) using screen-printed graphite electrodes modified with single-walled carbon nanotubes and titanium oxide nanoparticles. In this work, the binding constants (Kb) of FAV/dsDNA complexes for guanine, adenine and thymine were calculated. The values of the DNA-mediated electrochemical decline coefficient were calculated as the ratio of the intensity of signals for the electrochemical oxidation of guanine, adenine and thymine in the presence of FAV to the intensity of signals for the electro-oxidation of these bases without drug (S, %). Based on the analysis of electrochemical parameters, values of binding constants and spectral data, intercalation was proposed as the principal mechanism of the antiviral drug FAV interaction with DNA. The interaction with calf thymus DNA also confirmed the intercalation mechanism. However, an additional mode of interaction, such as a damage effect together with electrostatic interactions, was revealed in a prolonged exposure of DNA to FAV. Full article
(This article belongs to the Special Issue Advances in Pharmacogenomic Studies)
Show Figures

Figure 1

14 pages, 3779 KB  
Article
Interaction of Doxorubicin Embedded into Phospholipid Nanoparticles and Targeted Peptide-Modified Phospholipid Nanoparticles with DNA
by Veronica V. Pronina, Lyubov V. Kostryukova, Tatiana V. Bulko and Victoria V. Shumyantseva
Molecules 2023, 28(14), 5317; https://doi.org/10.3390/molecules28145317 - 10 Jul 2023
Cited by 10 | Viewed by 2511
Abstract
The interactions of dsDNA with new targeted drug delivery derivatives of doxorubicin (DOX), such as DOX embedded into phospholipid nanoparticles (NPhs) and DOX with the NGR targeted peptide-modified NPhs were studied electrochemically by differential pulse voltammetry technique. Screen-printed electrodes (SPEs), modified with stable [...] Read more.
The interactions of dsDNA with new targeted drug delivery derivatives of doxorubicin (DOX), such as DOX embedded into phospholipid nanoparticles (NPhs) and DOX with the NGR targeted peptide-modified NPhs were studied electrochemically by differential pulse voltammetry technique. Screen-printed electrodes (SPEs), modified with stable fine dispersions of carbon nanotubes (CNTs), were used for quantitative electrochemical investigations of direct electrochemical oxidation of guanine, adenine, and thymine heterocyclic bases of dsDNA, and their changes in the presence of DOX nanoderivatives. Analysing the shifts of peak potentials of nucleobases in the presence of drug, we have shown that the doxorubicin with NGR targeted peptide changed the mode of interaction in DNA–drug complexes from intercalative to electrostatic. Binding constants (Kb) of DNA–drug complexes were calculated in accordance with adenine, guanine, and thymine oxidation signals. Based on our experiments, we have proven that the surface modification of a drug delivery system with NGR targeted peptide dramatically changed the mechanism of interaction of drug with genetic material. DNA-mediated drug toxicity was calculated based on the concentration-dependent “response” of heterocyclic nucleobases on drug influence. DOX, DOX-loaded phospholipid nanoparticles (NPhs), and DOX with NGR addressed peptide-modified NPhs were moderately toxic in the concentration range of 0.5–290 µM. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

13 pages, 2767 KB  
Article
Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection
by Ning Xia, Jiayou Cheng, Linxu Tian, Shuo Zhang, Yunqiu Wang and Gang Li
Biosensors 2023, 13(5), 543; https://doi.org/10.3390/bios13050543 - 12 May 2023
Cited by 15 | Viewed by 3649
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy [...] Read more.
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin–biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes. Full article
(This article belongs to the Special Issue Biosensors Based on Streptavidin)
Show Figures

Figure 1

14 pages, 1669 KB  
Article
Comparative Analysis of the Interaction between the Antiviral Drug Umifenovir and Umifenovir Encapsulated in Phospholipids Micelles (Nanosome/Umifenovir) with dsDNA as a Model for Pharmacogenomic Analysis by Electrochemical Methods
by Victoria V. Shumyantseva, Tatiana V. Bulko, Lyubov E. Agafonova, Veronika V. Pronina and Lyubov V. Kostryukova
Processes 2023, 11(3), 922; https://doi.org/10.3390/pr11030922 - 17 Mar 2023
Cited by 7 | Viewed by 2746
Abstract
In the present study, the electrochemical behavior of antiviral drug umifenovir (Umi) and umifenovir encapsulated in phospholipids micelles (nanosome/umifenovir, NUmi) were investigated for the first time on screen-printed electrodes modified by carbon nanotubes. We have shown that Umi can be electro oxidized around [...] Read more.
In the present study, the electrochemical behavior of antiviral drug umifenovir (Umi) and umifenovir encapsulated in phospholipids micelles (nanosome/umifenovir, NUmi) were investigated for the first time on screen-printed electrodes modified by carbon nanotubes. We have shown that Umi can be electro oxidized around the potential of +0.4 V in the concentration range of 50–500 µM (R2 = 0.992). Non-overlapping signatures of DNA and umifenovir (10–150 µM) permit to register interaction between umifenovir (or umifenovir encapsulated in phospholipids micelles), purine, and pyrimidine heterocyclic bases of DNA separately. The type of interaction is most likely via electrostatic interactions and groove binding in drug-DNA formed complex, as was revealed based on the values of binding constants Kb and the cathodic shifts of oxidation potentials for heterocyclic bases with increasing Umi or NUmi concentration. The negative values of Gibbs free energy (ΔG) for all nucleobases confirm the process spontaneity. This study is the first one presenting the effect of antiviral drug umifenovir and umifenovir encapsulated in phospholipids micelles on dsDNA as a target of pharmacogenomics. Full article
Show Figures

Graphical abstract

17 pages, 3004 KB  
Article
Elucidation of DNA-Eltrombopag Binding: Electrochemical, Spectroscopic and Molecular Docking Techniques
by Somaye Cheraghi, Pelin Şenel, Burcu Dogan Topal, Soykan Agar, Mahsa Majidian, Mine Yurtsever, Esen Bellur Atici, Ayşegül Gölcü and Sibel A. Ozkan
Biosensors 2023, 13(3), 300; https://doi.org/10.3390/bios13030300 - 21 Feb 2023
Cited by 16 | Viewed by 3065
Abstract
Eltrombopag is a powerful adjuvant anticancer drug used in treating MS (myelodysplastic syndrome) and AML (acute myeloid leukemia) diseases. In this study, the interaction mechanism between eltrombopag and DNA was studied by voltammetry, spectroscopic techniques, and viscosity measurements. We developed a DNA-based biosensor [...] Read more.
Eltrombopag is a powerful adjuvant anticancer drug used in treating MS (myelodysplastic syndrome) and AML (acute myeloid leukemia) diseases. In this study, the interaction mechanism between eltrombopag and DNA was studied by voltammetry, spectroscopic techniques, and viscosity measurements. We developed a DNA-based biosensor and nano-biosensor using reduced graphene oxide-modified glassy carbon electrode to detect DNA-eltrombopag binding. The reduction of desoxyguanosine (dGuo) and desoxyadenosine (dAdo) oxidation signals in the presence of the drug demonstrated that a strong interaction could be established between the eltrombopag and dsDNA. The eltrombopag-DNA interaction was further investigated by UV absorption and fluorescence emission spectroscopy to gain more quantitative insight on binding. Viscosity measurements were utilized to characterize the binding mode of the drug. To shed light on the noncovalent interactions and binding mechanism of eltrombopag molecular docking and molecular dynamics (MD), simulations were performed. Through simultaneously carried out experimental and in silico studies, it was established that the eltrombopag binds onto the DNA via intercalation. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

18 pages, 4160 KB  
Article
Detection of a Double-Stranded MGMT Gene Using Electrochemically Reduced Graphene Oxide (ErGO) Electrodes Decorated with AuNPs and Peptide Nucleic Acids (PNA)
by Mina Safarzadeh and Genhua Pan
Biosensors 2022, 12(2), 98; https://doi.org/10.3390/bios12020098 - 5 Feb 2022
Cited by 11 | Viewed by 3976
Abstract
The ability to detect double-stranded DNA (dsDNA) as a biomarker without denaturing it to single-stranded DNA (ss-DNA) continues to be a major challenge. In this work, we report a sandwich biosensor for the detection of the ds-methylated MGMT gene, a potential biomarker for [...] Read more.
The ability to detect double-stranded DNA (dsDNA) as a biomarker without denaturing it to single-stranded DNA (ss-DNA) continues to be a major challenge. In this work, we report a sandwich biosensor for the detection of the ds-methylated MGMT gene, a potential biomarker for brain tumors and breast cancer. The purpose of this biosensor is to achieve simultaneous recognition of the gene sequence, as well as the presence of methylation. The biosensor is based on reduced graphene oxide (rGO) electrodes decorated with gold nanoparticles (AuNPs) and uses Peptide Nucleic Acid (PNA) that binds to the ds-MGMT gene. The reduction of GO was performed in two ways: electrochemically (ErGO) and thermally (TrGO). XPS and Raman spectroscopy, as well as voltammetry techniques, showed that the ErGO was more efficiently reduced, had a higher C/O ratio, showed a smaller crystallite size of the sp2 lattice, and was more stable during measurement. It was also revealed that the electro-deposition of the AuNPs was more successful on the ErGO surface due to the higher At% of Au on the ErGO electrode. Therefore, the ErGO/AuNPs electrode was used to develop biosensors to detect the ds-MGMT gene. PNA, which acts as a bio-recognition element, was used to form a self-assembled monolayer (SAM) on the ErGO/AuNPs surface via the amine-AuNPs interaction, recognizing the ds-MGMT gene sequence by its invasion of the double-stranded DNA and the formation of a triple helix. The methylation was then detected using biotinylated-anti-5mC, which was then measured using the amperometric technique. The selectivity study showed that the proposed biosensor was able to distinguish between blank, non-methylated, non-complementary, and target dsDNA spiked in mouse plasma. The LOD was calculated to be 0.86 pM with a wide linear range of 1 pM to 50 µM. To the best of our knowledge, this is the first report on using PNA to detect ds-methylated DNA. This sandwich design can be modified to detect other methylated genes, making it a promising platform to detect ds-methylated biomarkers. Full article
Show Figures

Figure 1

11 pages, 1536 KB  
Article
DNA-Based Electrodes and Computational Approaches on the Intercalation Study of Antitumoral Drugs
by Edson Silvio Batista Rodrigues, Isaac Yves Lopes de Macêdo, Giovanna Nascimento de Mello e Silva, Arthur de Carvalho e Silva, Henric Pietro Vicente Gil, Bruno Junior Neves and Eric de Souza Gil
Molecules 2021, 26(24), 7623; https://doi.org/10.3390/molecules26247623 - 16 Dec 2021
Cited by 6 | Viewed by 3286
Abstract
The binding between anticancer drugs and double-stranded DNA (dsDNA) is a key issue to understand their mechanism of action, and many chemical methods have been explored on this task. Molecular docking techniques successfully predict the affinity of small molecules into the DNA binding [...] Read more.
The binding between anticancer drugs and double-stranded DNA (dsDNA) is a key issue to understand their mechanism of action, and many chemical methods have been explored on this task. Molecular docking techniques successfully predict the affinity of small molecules into the DNA binding sites. In turn, various DNA-targeted drugs are electroactive; in this regard, their electrochemical behavior may change according to the nature and strength of interaction with DNA. A carbon paste electrode (CPE) modified with calf thymus ds-DNA (CPDE) and computational methods were used to evaluate the drug–DNA intercalation of doxorubicin (DOX), daunorubicin (DAU), idarubicin (IDA), dacarbazine (DAR), mitoxantrone (MIT), and methotrexate (MTX), aiming to evaluate eventual correlations. CPE and CPDE were immersed in pH 7 0.1 mM solutions of each drug with different incubation times. As expected, the CPDE response for all DNA-targeted drugs was higher than that of CPE, evidencing the drug–DNA interaction. A peak current increase of up to 10-fold was observed; the lowest increase was seen for MTX, and the highest increase for MIT. Although this increase in the sensitivity is certainly tied to preconcentration effects of DNA, the data did not agree entirely with docking studies, evidencing the participation of other factors, such as viscosity, interfacial electrostatic interactions, and coefficient of diffusion. Full article
Show Figures

Figure 1

14 pages, 3071 KB  
Article
The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical DNA Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode
by Leyla Karadurmus, Burcu Dogan-Topal, Sevinc Kurbanoglu, Afzal Shah and Sibel A. Ozkan
Micromachines 2021, 12(11), 1337; https://doi.org/10.3390/mi12111337 - 30 Oct 2021
Cited by 21 | Viewed by 2850
Abstract
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential [...] Read more.
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines–dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3–1.3 ppm EPI, 0.1–1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode. Full article
(This article belongs to the Special Issue Electrochemical Sensors in Biological Applications)
Show Figures

Graphical abstract

16 pages, 3271 KB  
Article
Electrochemical Resistive DNA Biosensor for the Detection of HPV Type 16
by José R. Espinosa, Marisol Galván, Arturo S. Quiñones, Jorge L. Ayala, Verónica Ávila and Sergio M. Durón
Molecules 2021, 26(11), 3436; https://doi.org/10.3390/molecules26113436 - 5 Jun 2021
Cited by 27 | Viewed by 4340
Abstract
In this work, a low-cost and rapid electrochemical resistive DNA biosensor based on the current relaxation method is described. A DNA probe, complementary to the specific human papillomavirus type 16 (HPV-16) sequence, was immobilized onto a screen-printed gold electrode. DNA hybridization was detected [...] Read more.
In this work, a low-cost and rapid electrochemical resistive DNA biosensor based on the current relaxation method is described. A DNA probe, complementary to the specific human papillomavirus type 16 (HPV-16) sequence, was immobilized onto a screen-printed gold electrode. DNA hybridization was detected by applying a potential step of 30 mV to the system, composed of an external capacitor and the modified electrode DNA/gold, for 750 µs and then relaxed back to the OCP, at which point the voltage and current discharging curves are registered for 25 ms. From the discharging curves, the potential and current relaxation were evaluated, and by using Ohm’s law, the charge transfer resistance through the DNA-modified electrode was calculated. The presence of a complementary sequence was detected by the change in resistance when the ssDNA is transformed in dsDNA due to the hybridization event. The target DNA concentration was detected in the range of 5 to 20 nM. The results showed a good fit to the regression equation ΔRtotal(Ω)=2.99 × [DNA]+81.55, and a detection limit of 2.39 nM was obtained. As the sensing approach uses a direct current, the electronic architecture of the biosensor is simple and allows for the separation of faradic and nonfaradaic contributions. The simple electrochemical resistive biosensor reported here is a good candidate for the point-of-care diagnosis of HPV at a low cost and in a short detection time. Full article
(This article belongs to the Special Issue Electrochemical Biosensors: Design and Applications)
Show Figures

Figure 1

12 pages, 2305 KB  
Article
Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay
by Eliska Sedlackova, Zuzana Bytesnikova, Eliska Birgusova, Pavel Svec, Amir M. Ashrafi, Pedro Estrela and Lukas Richtera
Materials 2020, 13(21), 4936; https://doi.org/10.3390/ma13214936 - 3 Nov 2020
Cited by 27 | Viewed by 3710
Abstract
This work reports the use of modified reduced graphene oxide (rGO) as a platform for a label-free DNA-based electrochemical biosensor as a possible diagnostic tool for a DNA methylation assay. The biosensor sensitivity was enhanced by variously modified rGO. The rGO decorated with [...] Read more.
This work reports the use of modified reduced graphene oxide (rGO) as a platform for a label-free DNA-based electrochemical biosensor as a possible diagnostic tool for a DNA methylation assay. The biosensor sensitivity was enhanced by variously modified rGO. The rGO decorated with three nanoparticles (NPs)—gold (AuNPs), silver (AgNPs), and copper (CuNPs)—was implemented to increase the electrode surface area. Subsequently, the thiolated DNA probe (single-stranded DNA, ssDNA−1) was hybridized with the target DNA sequence (ssDNA-2). After the hybridization, the double-stranded DNA (dsDNA) was methylated by M.SssI methyltransferase (MTase) and then digested via a HpaII endonuclease specific site sequence of CpG (5′-CCGG-3′) islands. For monitoring the MTase activity, differential pulse voltammetry (DPV) was used, whereas the best results were obtained by rGO-AuNPs. This assay is rapid, cost-effective, sensitive, selective, highly specific, and displays a low limit of detection (LOD) of 0.06 U·mL−1. Lastly, this study was enriched with the real serum sample, where a 0.19 U·mL−1 LOD was achieved. Moreover, the developed biosensor offers excellent potential in future applications in clinical diagnostics, as this approach can be used in the design of other biosensors. Full article
Show Figures

Figure 1

19 pages, 3329 KB  
Article
Rational Design of Amphiphilic Diblock Copolymer/MWCNT Surface Modifiers and Their Application for Direct Electrochemical Sensing of DNA
by Larisa V. Sigolaeva, Tatiana V. Bulko, Apollinariya Yu. Konyakhina, Alexey V. Kuzikov, Rami A. Masamrekh, Johannes B. Max, Moritz Köhler, Felix H. Schacher, Dmitry V. Pergushov and Victoria V. Shumyantseva
Polymers 2020, 12(7), 1514; https://doi.org/10.3390/polym12071514 - 8 Jul 2020
Cited by 11 | Viewed by 4606
Abstract
We demonstrate the application of amphiphilic ionic poly(n-butylmethacrylate)-block- poly(2-(dimethylamino)ethyl methacrylate) diblock copolymers (PnBMA40-b-PDMAEMA40, PnBMA40-b-PDMAEMA120, PnBMA70-b-PDMAEMA120) [...] Read more.
We demonstrate the application of amphiphilic ionic poly(n-butylmethacrylate)-block- poly(2-(dimethylamino)ethyl methacrylate) diblock copolymers (PnBMA40-b-PDMAEMA40, PnBMA40-b-PDMAEMA120, PnBMA70-b-PDMAEMA120) for dispersing multiwalled carbon nanotubes (MWCNTs) in aqueous media, a subsequent efficient surface modification of screen-printed electrodes (SPEs), and the application of the modified SPEs for DNA electrochemistry. Stable and fine aqueous dispersions of MWCNTs were obtained with PnBMAx-b-PDMAEMAy diblock copolymers, regardless of the structure of the copolymer and the amount of MWCNTs in the dispersions. The effect of the diblock copolymer structure was important when the dispersions of MWCNTs were deposited as modifying layers on surfaces of SPEs, resulting in considerable increases of the electroactive surface areas and great acceleration of the electron transfer rate. The SPE/(PnBMAx-b-PDMAEMAy + MWCNT) constructs were further exploited for direct electrochemical oxidation of the guanine (G) and adenine (A) residues in a model salmon sperm double-stranded DNA (dsDNA). Two well-defined irreversible oxidation peaks were observed at about +600 and +900 mV, corresponding to the electrochemical oxidation of G and A residues, respectively. A multi-parametric optimization of dsDNA electrochemistry enables one to get the limits of detection (LOD) as low as 5 μg/mL (0.25 μM) and 1 μg/mL (0.05 μM) for G and A residues, respectively. The achieved sensitivity of DNA assay enables quantification of the A and G residues of dsDNA in the presence of human serum and DNA in isolated human leukocytes. Full article
(This article belongs to the Special Issue Polyelectrolytes and Interpolyelectrolyte Complexes)
Show Figures

Graphical abstract

13 pages, 2058 KB  
Article
Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA
by Jingheng Ning, Long Liu, Xin Luo, Min Wang, Donglin Liu, Rong Hou, Donger Chen and Jianhui Wang
Molecules 2018, 23(10), 2688; https://doi.org/10.3390/molecules23102688 - 18 Oct 2018
Cited by 4 | Viewed by 3389
Abstract
Human epidermal growth factor receptor 2 (HER2) is a key tumor marker for several common and deadly cancers. It is of great importance to develop efficient detection methods for its over-expression. In this work, an electrochemical impedance spectroscopy (EIS) method adjustable by anionic [...] Read more.
Human epidermal growth factor receptor 2 (HER2) is a key tumor marker for several common and deadly cancers. It is of great importance to develop efficient detection methods for its over-expression. In this work, an electrochemical impedance spectroscopy (EIS) method adjustable by anionic porphyrin for HER2 gene detection has been proposed, based on the impedance difference between multi-walled carbon nanotubes (MWCNTs) and DNA. The interesting finding herein is that with the addition of anionic porphyrin, i.e., meso-tetra(4-sulfophenyl)-porphyrin (TSPP), the impedance value obtained at a glass carbon electrode (GCE) modified with MWCNTs and a single stranded DNA (ssDNA), the probe DNA that might be assembled tightly onto MWCNTs through π-π stacking interaction, gets a slight decrease; however, the impedance value from a GCE modified with MWCNTs and a double stranded DNA (dsDNA), the hybrid of the probe DNA with a target DNA, which might be assembled loosely onto MWCNTs for the screening effect of phosphate backbones in dsDNA, gets an obvious decrease. The reason may be that on the one hand, being rich in negative sulfonate groups, TSPP will try to push DNA far away from CNTs surface due to its strong electrostatic repulsion towards DNA; on the other hand, rich in planar phenyl or pyrrole rings, TSPP will compete with DNA for the surface of CNTs since it can also be assembled onto CNTs through conjugative interactions. In this way, the “loosely assembled” dsDNA will be repelled by this anionic porphyrin and released off CNTs surface much more than the “tightly assembled” ssDNA, leading to a bigger difference in the impedance value between dsDNA and ssDNA. Thus, through the amplification effect of TSPP on the impedance difference, the perfectly matched target DNA could be easily determined by EIS without any label. Under the optimized experimental conditions, this electrochemical sensor shows an excellent linear response to target DNA in a concentration range of 2.0 × 10−11–2.0 × 10−6 M with a limit of detection (LOD) of 6.34 × 10−11 M (S/N = 3). This abnormally sensitive electrochemical sensing performance resulting from anionic porphyrin for DNA sequences specific to HER2 gene will offer considerable promise for tumor diagnosis and treatment. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

Back to TopTop