Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Handling of Samples
- Plating: The electrode surface is prepared by applying an acetate buffer, Bi(III), and H2O2. The electrode is then plated at a deposition potential of −0.3 V for 60 s. This step creates a bismuth film on the electrode surface, which enhances the sensitivity of the measurements.
- Preconcentration: Metal ions (cadmium, lead, copper, and zinc) are preconcentrated onto the plated electrode surface with a deposition potential of −1.4 V for 60 s. This step accumulates the metal ions on the electrode, followed by an equilibration period of 10 s to stabilize the system before measurement.
- Conditioning: After preconcentration, the electrode is conditioned by applying a potential of 0.3 V for 30 s. This step prepares the electrode for square wave voltammetry (SWV) experiments, ensuring that the surface is in an optimal state for the accurate detection of metal ions.
2.2. dsDNA-Modified Electrode
3. Results and Discussion
3.1. Physico-Chemical Features of Soil Samples
3.2. Voltammetric Determination
3.2.1. Bismuth Film-Modified Electrode
- -
- Plating bismuth film in a supporting electrolyte solution different from that of measurement (ex situ).
- -
- Plating bismuth film in the same supporting electrolyte solution as that of measurement (in situ) [47].
- (a)
- It causes a noticeable shift in the redissolution peak of copper to more positive potential values (at +0.212 V) than expected (at −0.100 V) [redissolution improvement].
- (b)
- It eliminates competition between Bi(III) and Cu(II) for free electrode surface sites (interference minimization).
- (c)
- It ensures an excellent improved correlation between the copper concentration and its peak current (r > 0.99).
- (d)
- It achieves lower limits of detection Cu(II).
- (e)
- It gives satisfactory repeatability for consecutive measurements (n = 10).
- (f)
- It guarantees excellent recovery performance (96–108%).
3.2.2. dsDNA-Modified Electrode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alloway, B.J. (Ed.) Heavy Metals in Soils Trace—Metals and Metalloids in Soils and their Bioavailability, 3rd ed.; Choice Reviews Online; Blackie Academic and Professional: London, UK, 2013; Volume 50, ISBN 9789400744691. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Press, C., Ed.; Taylor and Francis Group: Ann Arbor, MI, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Mawari, G.; Kumar, N.; Sarkar, S.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Khan, N.A. Heavy Metal Accumulation in Fruits and Vegetables and Human Health Risk Assessment: Findings from Maharashtra, India. Environ. Heal. Insights 2022, 16, 11786302221119151. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Heidari, K.; Meshkinian, A.; Kamani, H.; Mohammadi, A.A.; Conti, G.O. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven, Iran: Spatial distribution, monte-carlo simulation, sensitive analysis. Environ. Res. 2022, 204, 112002. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, R.; Li, H.; Zhao, X.; Liu, X. Heavy Metal Pollution and Soil Quality Assessment under Different Land Uses in the Red Soil Region, Southern China. Int. J. Environ. Res. Public Heal. 2022, 19, 4125. [Google Scholar] [CrossRef]
- Eid, M.H.; Eissa, M.; Mohamed, E.A.; Ramadan, H.S.; Tamás, M.; Kovács, A.; Szűcs, P. New approach into human health risk assessment associated with heavy metals in surface water and groundwater using Monte Carlo Method. Sci. Rep. 2024, 14, 1008. [Google Scholar] [CrossRef]
- Golia, E.E.; Diakoloukas, V. Soil parameters affecting the levels of potentially harmful metals in Thessaly area, Greece: A robust quadratic regression approach of soil pollution prediction. Environ. Sci. Pollut. Res. 2022, 29, 29544–29561. [Google Scholar] [CrossRef]
- Mónok, D.; Kardos, L.; Pabar, S.A.; Kotroczó, Z.; Tóth, E.; Végvári, G. Comparison of soil properties in urban and non-urban grasslands in Budapest area. Soil Use Manag. 2021, 37, 790–801. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Trammell, T.L.; Paltseva, A.; Livesley, S.J.; Edmondson, J. Editorial: Urban soil formation, properties, classification, management, and function. Front. Ecol. Evol. 2022, 10, 987903. [Google Scholar] [CrossRef]
- Meng, Z.H.; Zheng, Y.F.; Xiao, H.F. Distribution and Ecological Risk Assessment of Heavy Metal Elements in Soil. Adv. Mater. Res. 2011, 183–185, 82–87. [Google Scholar] [CrossRef]
- Liu, R.P.; Xu, Y.N.; Zhang, J.H.; Wang, W.K.; Elwardany, R.M. Effects of Heavy Metal Pollution on Farmland Soils and Crops: A Case Study of the Xiaoqinling Gold Belt, China. China Geol. 2020, 3, 402–410. [Google Scholar]
- Koelmel, J.; Amarasiriwardena, D. Imaging of metal bioaccumulation in Hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS. Environ. Pollut. 2012, 168, 62–70. [Google Scholar] [CrossRef]
- Zhou, L.; Sekar, S.; Chen, J.; Lee, S.; Kim, D.Y.; Manikandan, R. A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II)ions in environmental samples. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129082. [Google Scholar] [CrossRef]
- Massadeh, A.M.; Alomary, A.A.; Mir, S.; Momani, F.A.; Haddad, H.I.; Hadad, Y.A. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES. Environ. Sci. Pollut. Res. 2016, 23, 13424–13431. [Google Scholar] [CrossRef]
- Daşbaşı, T.; Saçmacı, Ş.; Çankaya, N.; Soykan, C. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS. Food Chem. 2016, 203, 283–291. [Google Scholar] [CrossRef]
- Al-Hamad, A.A.; Ghrefat, H.; Howari, F.; Khawaja, M.A.-A.; Zoubi, A. Assessment of roadside pollution by heavy metals: A case study from the District of Bani Kinanah, Irbid, Northern Jordan. Environ. Monit. Assess. 2023, 195, 1076. [Google Scholar] [CrossRef]
- Khan, M.N.; Wasim, A.A.; Sarwar, A.; Rasheed, M.F. Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environ. Monit. Assess. 2011, 182, 587–595. [Google Scholar] [CrossRef]
- Siraj, K.; Kitte, S.A. Analysis of Copper, Zinc and Lead using Atomic Absorption Spectrophotometer in ground water of Jimma town of Southwestern Ethiopia. Int. J. Chem. Anal. Sci. 2013, 4, 201–204. [Google Scholar] [CrossRef]
- Anemana, T.; Osei, O.; Yeboah, E.; Pekař, M. Simultaneous Determination of Heavy Metals in Competitive Aqueous Solutions and Contaminated Soil Systems. Int. J. Mech. Eng. 2022, 7, 6820–6831. [Google Scholar]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.; Kovsh, N.; Paolesse, R.; Lvova, L. Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors 2022, 10, 35. [Google Scholar] [CrossRef]
- El Hamdouni, Y.; El Hajjaji, S.; Szabó, T.; Trif, L.; Felhősi, I.; Abbi, K.; Labjar, N.; Harmouche, L.; Shaban, A. Biomass valorization of walnut shell into biochar as a resource for electrochemical simultaneous detection of heavy metal ions in water and soil samples: Preparation, characterization, and applications. Arab. J. Chem. 2022, 15, 104252. [Google Scholar] [CrossRef]
- Salih, F.E.; Ouarzane, A.; El Rhazi, M. Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arab. J. Chem. 2017, 10, 596–603. [Google Scholar] [CrossRef]
- Silva, J.J.; Paim, L.L.; Stradiotto, N.R. Simultaneous Determination of Iron and Copper in Ethanol Fuel Using Nafion/Carbon Nanotubes Electrode. Electroanalysis 2014, 26, 1794–1800. [Google Scholar] [CrossRef]
- Osteryoung, J.G.; Osteryoung, R.A. Square Wave Voltammetry. Anal. Chem. 1985, 57, 101A–110A. [Google Scholar] [CrossRef]
- Thanh, N.M.; Van Hop, N.; Luyen, N.D.; Phong, N.H.; Toan, T.T.T. Simultaneous Determination of Zn(II), Cd(II), Pb(II), and Cu(II) Using Differential Pulse Anodic Stripping Voltammetry at a Bismuth Film-Modified Electrode. Adv. Mater. Sci. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Ye, W.; Liu, N.; Zhao, G.; Liu, G. Accurate Detection of Cd2+ and Pb2+ Concentrations in Soils by Stripping Voltammetry Peak Areas under the Mutual Interference of Multiple Heavy Metals. Metals 2023, 13, 270. [Google Scholar] [CrossRef]
- Keramari, V.; Karastogianni, S.; Girousi, S. New Prospects in the Electroanalysis of Heavy Metal Ions (Cd, Pb, Zn, Cu): Development and Application of Novel Electrode Surfaces. Methods Protoc. 2023, 6, 60. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Golia, E.E.; Emmanouil, C.; Charizani, A.; Koropouli, A.; Kungolos, A. Assessment of Cu and Zn contamination and associated human health risks in urban soils from public green spaces in the city of Thessaloniki, Northern Greece. Euro-Mediterr. J. Environ. Integr. 2023, 8, 517–525. [Google Scholar] [CrossRef]
- Papadimou, S.G.; Barbayiannis, N.; Golia, E.E. Preliminary investigation of the use of Silybum marianum (L.) Gaertn. as a Cd accumulator in contaminated Mediterranean soils: The relationships among cadmium (Cd) soil fractions and plant Cd content. Euro-Mediterr. J. Environ. Integr. 2024, 9, 405–417. [Google Scholar] [CrossRef]
- Dimirkou, A.; Ioannou, Z.; Golia, E.E.; Danalatos, N.; Mitsios, I.K. Sorption of Cadmium and Arsenic by Goethite and Clinoptilolite. Commun. Soil Sci. Plant Anal. 2009, 40, 259–272. [Google Scholar] [CrossRef]
- ISO/ISO 10390:2005; Soil Quality, Determination of PH. International Standards Organization: Geneve, Switzerland, 2005.
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984; Volume 6, ISBN 9788578110796. [Google Scholar]
- ISO/DIS 11466; Environment Soil Quality. International Standards Organization: Geneva, Switzerland, 1994.
- Stanić, Z.; Girousi, S. Electrochemical study of the interaction between dsDNA and copper(I) using carbon paste and hanging mercury drop electrode. Talanta 2008, 76, 116–121. [Google Scholar] [CrossRef]
- Stanić, Z.; Girousi, S. Electrochemical study of the interaction between dsDNA and copper(II) using carbon paste and hanging mercury drop electrodes. Microchim. Acta 2009, 164, 479–485. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Firinguetti-Limone, L.; Gallardo, D.I.; Gómez, H.W. An Extension of the Akash Distribution: Properties, Inference and Application. Mathematics 2024, 12, 31. [Google Scholar] [CrossRef]
- Lu, H.-L.; Li, K.-W.; Nkoh, J.N.; He, X.; Xu, R.-K.; Qian, W.; Shi, R.-Y.; Hong, Z.-N. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(II) speciation in paddy soils during submerging/draining alternation. Ecotoxicol. Environ. Saf. 2022, 234, 113409. [Google Scholar] [CrossRef]
- Medriano, C.A.; Chan, A.; De Sotto, R.; Bae, S. Different Types of Land Use Influence Soil Physiochemical Properties, the Abundance of Nitrifying Bacteria, and Microbial Interactions in Tropical Urban Soil. Sci. Total Environ. 2022, 869, 161722. [Google Scholar] [CrossRef]
- Council of the European Communities. The Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture. Council Directive of 12 June 1986. Official Journal of the European Communities No L 181/6. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC019147/ (accessed on 12 June 1986).
- Luo, S.; Chen, R.; Han, J.; Zhang, W.; Petropoulos, E.; Liu, Y.; Feng, Y. Urban green space area mitigates the accumulation of heavy metals in urban soils. Chemosphere 2024, 352, 141266. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Rogowska, W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals 2021, 11, 1290. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; He, X.; Li, W.; Zhang, M.; Cai, Q. Evaluation of heavy metal contamination of soil and the health risks in four potato-producing areas. Front. Environ. Sci. 2023, 11, 1071353. [Google Scholar] [CrossRef]
- Tang, S.; Wang, C.; Song, J.; Ihenetu, S.C.; Li, G. Advances in Studies on Heavy Metals in Urban Soil: A Bibliometric Analysis. Sustainability 2024, 16, 860. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Arduini, F.; Calvo, J.Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-modified electrodes for lead detection. TrAC Trends Anal. Chem. 2010, 29, 1295–1304. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Kirgöz, A.; Hocevar, S.B.; Ogorevc, B. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal. Chim. Acta 2001, 434, 29–34. [Google Scholar] [CrossRef]
- Demetriades, D.; Economou, A.; Voulgaropoulos, A. A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Anal. Chim. Acta 2004, 519, 167–172. [Google Scholar] [CrossRef]
- Pauliukaitė, R.; Hočevar, S.B.; Ogorevc, B.; Wang, J. Characterization and Applications of a Bismuth Bulk Electrode. Electroanalysis 2004, 16, 719–723. [Google Scholar] [CrossRef]
- Hočevar, S.B.; Švancara, I.; Vytřas, K.; Ogorevc, B. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim. Acta 2005, 51, 706–710. [Google Scholar] [CrossRef]
- Chuanuwatanakul, S.; Dungchai, W.; Chailapakul, O.; Motomizu, S. Determination of trace heavy Metals by Sequential Injection-anodic Stripping Voltammetry using Bismuth Film Screen-printed Carbon Electrode. Anal. Sci. 2008, 24, 589–594. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Efstathiou, C.E. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry. Electrochim. Acta 2008, 53, 5294–5299. [Google Scholar] [CrossRef]
- Zou, Z.; Jang, A.; MacKnight, E.; Wu, P.-M.; Do, J.; Bishop, P.L.; Ahn, C.H. Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens. Actuators B Chem. 2008, 134, 18–24. [Google Scholar] [CrossRef]
- Rico, M.G.; Olivares-Marín, M.; Gil, E.P. A Novel Cell Design for the Improved Stripping Voltammetric Detection of Zn(II), Cd(II), and Pb(II) on Commercial Screen-Printed Strips by Bismuth Codeposition in Stirred Solutions. Electroanalysis 2008, 20, 2608–2613. [Google Scholar] [CrossRef]
- Rico, M.G.; Olivares-Marín, M.; Gil, E.P. Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Talanta 2009, 80, 631–635. [Google Scholar] [CrossRef]
- Keawkim, K.; Chuanuwatanakul, S.; Chailapakul, O.; Motomizu, S. Determination of lead and cadmium in rice samples by sequential injection/anodic stripping voltammetry using a bismuth film/crown ether/Nafion modified screen-printed carbon electrode. Food Control 2013, 31, 14–21. [Google Scholar] [CrossRef]
- Βaltima, A.; Panagopoulou, H.; Economou, A.; Kokkinos, C. 3D-printed fluidic electrochemical microcell for sequential injection/stripping analysis of heavy metals. Anal. Chim. Acta 2021, 1159, 338426. [Google Scholar] [CrossRef]
- Bahinting, S.E.D.; Rollon, A.P.; Garcia-Segura, S.; Garcia, V.C.C.; Ensano, B.M.B.; Abarca, R.R.M.; Yee, J.-J.; de Luna, M.D.G. Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry. Sensors 2021, 21, 1811. [Google Scholar] [CrossRef]
- Alves, G.M.S.; Rocha, L.S.; Soares, H.M.V.M. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta 2017, 175, 53–68. [Google Scholar] [CrossRef]
- Anastasiadou, Z.D.; Jannakoudakis, P.D.; Girousi, S.T. Square wave anodic stripping voltammetry determination of eco-toxic metals in samples of biological and environmental importance. Open Chem. 2010, 8, 999–1008. [Google Scholar] [CrossRef]
- Anastasiadou, Z.D.; Sipaki, I.; Jannakoudakis, P.D.; Girousi, S.T. Square-Wave Anodic Stripping Voltammetry (SWASV) for the Determination of Ecotoxic Metals, Using a Bismuth-Film Electrode. Anal. Lett. 2011, 44, 761–777. [Google Scholar] [CrossRef]
pH (1:1) | EC (μS cm−1) | OM (%) | Clay (%) | Sand (%) | CaCO3 (%) | |
---|---|---|---|---|---|---|
Minimum value | 7.12 | 1224 | 0.55 | 11 | 21 | 8.65 |
Maximum value | 8.82 | 4431 | 3.43 | 56 | 67 | 19.34 |
Mean value | 7.49 | 2205 | 1.97 | 24 | 44 | 11.33 |
Relative standard deviation | 0.55 | 11.13 | 0.88 | 2.30 | 6.43 | 1.33 |
Kurtosis coefficient | 1.339 | −0.385 | −0.543 | −0.008 | −0.082 | −0.760 |
Skewness coefficient | 0.690 | 0.643 | −0.213 | 1.0088 | −0.944 | 0.331 |
N | P | K | Cu | Zn | Pb | Cd | |
---|---|---|---|---|---|---|---|
(%) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | (mg·kg−1) | |
Minimum value | 0.1 | 7.81 | 45.12 | 17.44 | 28.13 | 4.54 | 0.17 |
10th perc a | 0.12 | 10.41 | 57.61 | 19.45 | 33.14 | 9.15 | 0.24 |
50th perc b | 0.15 | 14.66 | 66.87 | 26.78 | 47.31 | 28.55 | 0.76 |
Average | 0.19 | 16.62 | 71.77 | 29.88 | 49.02 | 29.93 | 0.88 |
90th perc c | 0.2 | 17.67 | 88.89 | 32.45 | 52.07 | 39.72 | 0.91 |
Maximum value | 0.22 | 22.77 | 97.73 | 34.76 | 69.11 | 43.54 | 1.05 |
EU Limits d | 140 | 300 | 300 | 3 |
Detection Limit (μg·L−1) | Metals for Detection | |||||
---|---|---|---|---|---|---|
R.S.D.s (%) | Cd | Pb | Zn | Cu | ||
This work | SWASV | LOD | 0.14 | 0.03 | 0.70 | 0.38 |
sr% | 4.75 | 5.68 | 8.60 | 5.38 | ||
References | [48] | LOD | - | 0.3 | - | - |
sr% | - | 7.4 | - | - | ||
[49] | LOD | - | - | - | 5.00 | |
sr% | - | - | - | 2.00 | ||
[50] | LOD | 0.30 | 0.40 | 0.40 | - | |
sr% | 3.00 | 3.20 | 2.60 | |||
[51] | LOD | 3.20 | - | - | - | |
sr% | 3.90 | - | - | - | ||
[52] | LOD | 1.20 | 0.90 | - | - | |
sr% | 5.60 | 6.00 | - | - | ||
[53] | LOD | 0.69 | 0.89 | 54.00 | - | |
sr% | 5.40 | 6.30 | 8.80 | - | ||
[54] | LOD | 1.00 | 0.5 | - | - | |
sr% | 3.70 | 4.40 | - | - | ||
[55] | LOD | 9.30 | 8.00 | - | - | |
sr% | 2.00 | 7.00 | - | - | ||
[56] | LOD | 3.60 | 2.50 | 8.20 | - | |
sr% | 2.20 | 1.50 | 4.90 | - | ||
[57] | LOD | 0.45 | 0.41 | 0.52 | - | |
sr% | 7.50 | 10.50 | 6.00 | - | ||
[58] | LOD | 0.27 | 0.11 | - | - | |
sr% | 8.70 | 3.67 | - | - | ||
[59] | LOD | 0.57 | 0.38 | - | - | |
sr% | 9.00 | 4.50 | - | - | ||
[60] | LOD | 7.00 | 5.00 | - | - | |
sr% | 10.14 | 11.18 | - | - | ||
[61] | LOD | 0.003 | 0.037 | 0.05 | - | |
sr% | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramari, V.; Papadimou, S.G.; Golia, E.E.; Girousi, S. Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils. Biosensors 2024, 14, 310. https://doi.org/10.3390/bios14060310
Keramari V, Papadimou SG, Golia EE, Girousi S. Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils. Biosensors. 2024; 14(6):310. https://doi.org/10.3390/bios14060310
Chicago/Turabian StyleKeramari, Vasiliki, Sotiria G. Papadimou, Evangelia E. Golia, and Stella Girousi. 2024. "Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils" Biosensors 14, no. 6: 310. https://doi.org/10.3390/bios14060310
APA StyleKeramari, V., Papadimou, S. G., Golia, E. E., & Girousi, S. (2024). Bismuth Film along with dsDNA-Modified Electrode Surfaces as Promising (bio)Sensors in the Analysis of Heavy Metals in Soils. Biosensors, 14(6), 310. https://doi.org/10.3390/bios14060310