Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of SA-Covered Electrode
2.3. Preparation of SA-GOx Conjugates
2.4. Assays of DNA
2.5. Detection of miRNA-21
2.6. Extraction of Total RNA from Cancer Cells
3. Results and Discussion
3.1. Detection Principle
3.2. Feasibility of This Method
3.3. Analytical Performances for DNA Detection
3.4. Assays of DNA in Serum Samples
3.5. Quantification of miRNA-21
3.6. Assays of miRNA-21 in Cellular Lysates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278. [Google Scholar] [CrossRef]
- Chai, H.; Cheng, W.; Jin, D.; Miao, P. Recent progress in DNA hybridization chain reaction strategies for amplified biosensing. ACS Appl. Mater. Interfaces 2021, 13, 38931–38946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, J.; Sun, R.; Huang, Z.; Luo, Z.; Zhou, C.; Wu, M.; Duan, Y.; Li, Y. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens. 2020, 5, 2977–3000. [Google Scholar] [CrossRef] [PubMed]
- Park, C.R.; Park, S.J.; Lee, W.G.; Hwang, B.H. Biosensors using hybridization chain reaction—Design and signal amplification strategies of hybridization chain reaction. Biotech. Bioproc. Eng. 2018, 23, 355–370. [Google Scholar] [CrossRef]
- Yang, D.; Tang, Y.; Miao, P. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. TrAC-Trend. Anal. Chem. 2017, 94, 1–13. [Google Scholar] [CrossRef]
- Liu, N.; Huang, F.; Lou, X.; Xia, F. DNA hybridization chain reaction and DNA supersand wich self-assembly for ultrasensitive detection. Sci. China Chem. 2016, 60, 311–318. [Google Scholar] [CrossRef]
- Augspurger, E.E.; Rana, M.; Yigit, M.V. Chemical and biological sensing using hybridization chain reaction. ACS Sens. 2018, 3, 878–902. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, H.; Zhou, B. Progress in hybridization chain reaction-based photoelectrochemical biosensors. Int. J. Electrochem. Sci. 2022, 17, 220641. [Google Scholar] [CrossRef]
- Sun, T.; Du, J.; Li, Z.; Zhao, F. Recent Advancement in the development of hybridization chain reaction-based electrochemiluminescence biosensors. Int. J. Electrochem. Sci. 2022, 17, 220650. [Google Scholar] [CrossRef]
- Zhang, Q. Application of hybridization chain reaction (HCR) in electrochemical analysis. Int. J. Electrochem. Sci. 2022, 17, 220227. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Li, S.; Shang, Z.; Li, H.; Xia, F. Electrochemical biosensors employing hybridization chain reaction: From structural design to applications. Adv. Mater. Interfaces 2022, 9, 2101523. [Google Scholar] [CrossRef]
- Qing, M.; Chen, S.L.; Sun, Z.; Fan, Y.; Luo, H.Q.; Li, N.B. Universal and programmable rolling circle amplification-CRISPR/Cas12a-mediated immobilization-free electrochemical biosensor. Anal. Chem. 2021, 93, 7499–7507. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Z.; Zhou, M.; Xing, Y.; Chen, Y.; Huang, J.; Cai, K.A.; Zhang, J. Redox host–guest nanosensors installed with DNA gatekeepers for immobilization-free and ratiometric electrochemical detection of miRNA. Small Methods 2021, 5, 2101072. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, F.P.; Chen, Z.X.; Yang, Y.H.; Yang, T.; Hu, R. Ratiometrically homogeneous electrochemical biosensor based on the signal amplified strategy of dual DNA nanomachines for microRNA analysis. Talanta 2023, 254, 124191. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.M.; Yin, X.H.; An, B.; Li, F. Precise capture and direct quantification of tumor exosomes via highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal. Chem. 2021, 93, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qi, H.; Chang, J.; Gai, P.; Li, F. Recent progress in homogeneous electrochemical sensors and their designs and applications. TrAC-Trend. Anal. Chem. 2022, 156, 116712. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, L.; Zhou, Y.; Zhang, X. Immobilization-free DNA-based homogeneous electrochemical biosensors. TrAC Trends Anal. Chem. 2016, 85, 17–32. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, L.; Yang, X. Electrochemical-based DNA logic devices regulated by the diffusion and intercalation of electroactive dyes. ACS Appl. Mater. Interfaces 2021, 13, 42250–42257. [Google Scholar] [CrossRef]
- Hou, T.; Li, W.; Liu, X.; Li, F. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: A facile, sensitive, and highly specific microRNA assay. Anal. Chem. 2015, 87, 11368–11374. [Google Scholar] [CrossRef]
- Wang, H.; Yang, C.; Tang, H.; Li, Y. Stochastic collision electrochemistry from single G-quadruplex/hemin: Electrochemical amplification and microRNA sensing. Anal. Chem. 2021, 93, 4593–4600. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, C.; Machuki, J.O.; Wen, X.; Chen, D.; Tang, Q.; Gao, F. Proximity hybridization triggered hybridization chain reaction for label-free electrochemical homogeneous aptasensors. Talanta 2021, 226, 122058. [Google Scholar] [CrossRef] [PubMed]
- Xuan, F.; Luo, X.; Hsing, I.-M. Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III assisted target recycling. Anal. Chem. 2012, 84, 5216–5220. [Google Scholar] [CrossRef]
- Liu, S.; Lin, Y.; Wang, L.; Liu, T.; Cheng, C.; Wei, W.; Tang, B. Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein. Anal. Chem. 2014, 86, 4008–4015. [Google Scholar] [CrossRef]
- Lu, L.; Su, H.; Li, F. Ultrasensitive homogeneous electrochemical detection of transcription factor by coupled isothermal cleavage reaction and cycling amplification based on exonuclease III. Anal. Chem. 2017, 89, 8328–8334. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Liu, Z.-J.; Wang, X.-W.; Ye, C.-L.; Zheng, Y.-J.; Peng, H.-P.; Zhong, G.-X.; Liu, A.-L.; Chen, W.; Lin, X.-H. Ultrasensitive electrochemical biosensor developed by probe lengthening for detection of genomic DNA in human serum. Anal. Chem. 2019, 91, 4552–4558. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.F.; Wang, X.; Wang, J.; Li, H.Y.; Li, F. Nucleic acid functionalized MOFs-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal. Chem. 2019, 91, 3604–3610. [Google Scholar] [CrossRef]
- Chang, J.F.; Lv, W.X.; Li, Q.; Li, H.Y.; Li, F. One-step synthesis of methylene blue-encapsulated ZIF for dual-signal fluorescent and homogeneous electrochemical biosensing. Anal. Chem. 2020, 92, 8959–8964. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chang, Y.; Ji, X.; Chen, J.; Zhang, M.; Yang, S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta 2023, 253, 123597. [Google Scholar] [CrossRef]
- Xia, N.; Sun, T.; Liu, L.; Tian, L.; Sun, Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022, 237, 122949. [Google Scholar] [CrossRef]
- Xia, N.; Sun, Z.; Ding, F.; Wang, Y.; Sun, W.; Liu, L. Protease biosensor by conversion of a homogeneous assay into a surface-tethered electrochemical analysis based on streptavidin-biotin interactions. ACS Sens. 2021, 6, 1166–1173. [Google Scholar] [CrossRef]
- Liu, L.; Deng, D.; Wu, D.; Hou, W.; Wang, L.; Li, N.; Sun, Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal. Chim. Acta 2021, 1149, 338199. [Google Scholar] [CrossRef] [PubMed]
- Cai, A.; Yang, L.; Kang, X.; Liu, J.; Wang, F.; Ji, H.; Wang, Q.; Wu, M.; Li, G.; Zhou, X.; et al. Target recognition- and HCR amplification-induced in situ electrochemical signal probe synthesis strategy for trace ctDNA analysis. Biosensors 2022, 12, 989. [Google Scholar] [CrossRef]
- Grabowska, I.; Hepel, M.; Kurzątkowska-Adaszyńs, K. Advances in design strategies of multiplex electrochemical aptasensors. Sensors 2022, 22, 161. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Burciu, B.; Filipe, C.D.M.; Li, Y.; Dellinger, K.; Didar, T.F. DNAzyme-based biosensors: Immobilization strategies, applications, and future prospective. ACS Nano 2021, 15, 13943–13969. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Ma, X.; Sun, T.; Liu, L.; Hao, Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021, 234, 122649. [Google Scholar] [CrossRef]
- Povedano, E.; Montiel, V.R.V.; Gamella, M.; Pedrero, M.; Barderas, R.; Pelaez-Garcia, A.; Mendiola, M.; Hardisson, D.; Feliu, J.; Yanez-Sedeno, P.; et al. Amperometric bioplatforms to detect regional DNA methylation with single-base sensitivity. Anal. Chem. 2020, 92, 5604–5612. [Google Scholar] [CrossRef]
- Yu, S.; Chen, S.; Dang, Y.; Zhou, Y.; Zhu, J.-J. An ultrasensitive electrochemical biosensor integrated by nicking endonuclease-assisted primer exchange reaction cascade amplification and DNA nanosphere-mediated electrochemical signal-enhanced system for microRNA detection. Anal. Chem. 2022, 94, 14349–14357. [Google Scholar] [CrossRef]
- Li, Y.; Ling, L. Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim. Acta 2015, 182, 1849–1854. [Google Scholar] [CrossRef]
- Liu, X.; Shuai, H.-L.; Liu, Y.-J.; Huang, K.-J. An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification. Sens. Actuat. B Chem. 2016, 235, 603–613. [Google Scholar] [CrossRef]
- Ge, Z.; Lin, M.; Wang, P.; Pei, H.; Yan, J.; Shi, J.; Huang, Q.; He, D.; Fan, C.; Zuo, X. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 2014, 86, 2124–2130. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, H.; Ji, J.; Kang, K.; Yang, M.; Huang, Y.; Su, Y.; Ma, K.; Zhu, L.; Deng, S. Zippering DNA tetrahedral hyperlink for ultrasensitive electrochemical microRNA detection. Anal. Chem. 2020, 92, 15137–15144. [Google Scholar] [CrossRef]
- Zhai, F.; Yu, Q.; Zhou, H.; Liu, J.; Yang, W.; You, J. Electrochemical selective detection of carnitine enantiomers coupling copper ion dependent DNAzyme with DNA assistant hybridization chain reaction. J. Electroanal. Chem. 2019, 837, 137–142. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H.; Zhu, W.; Li, H.; Jiang, J.; Shen, G.; Yu, R. Ultrasensitive electrochemical DNA detection based on dual amplification of circular strand-displacement polymerase reaction and hybridization chain reaction. Biosens. Bioelectron. 2013, 47, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, Y.; Huang, G.; Situ, B.; Ye, X.; Tao, M.; Huang, Y.; Li, B.; Jiang, X.; Wang, Q.; et al. An enzyme-free amplification strategy for sensitive assay of circulating tumor DNA based on wheel-like catalytic hairpin assembly and frame hybridization chain reaction. Sens. Actuat. B Chem. 2021, 338, 129857. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Yin, J. MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem. Commun. 2015, 51, 15629–15632. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.H.; Wu, Y.D.; Chi, B.Z.; Wen, S.H.; Liang, R.P.; Qiu, J.D. Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens. Bioelectron. 2017, 97, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Xin, C.; Zhao, J.; Liu, S. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Biosens. Bioelectron. 2018, 113, 1–8. [Google Scholar] [CrossRef]
- Yang, C.; Shi, K.; Dou, B.; Xiang, Y.; Chai, Y.; Yuan, R. In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS Appl. Mater. Interfaces 2015, 7, 1188–1193. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Xu, M.; Ge, S.; Wang, Y.; Yu, J. Ultrasensitive lab-on-paper device via Cu/Co double-doped CeO2 nanospheres as signal amplifiers for electrochemical/visual sensing of miRNA-155. Sens. Actuat. B Chem. 2020, 321, 128499. [Google Scholar] [CrossRef]
- Ren, W.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III catalysis and hybridization chain reaction amplification. Biosens. Bioelectron. 2015, 63, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, W.; Duan, S.; Peng, J.; Liu, J.; Ma, W.; Wang, H.; He, X.; Wang, K. Mesoporous silica containers and programmed catalytic hairpin assembly/hybridization chain reaction based electrochemical sensing platform for microRNA ultrasensitive detection with low background. Anal. Chem. 2019, 91, 10672–10678. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, Y.; Zhang, H.; Cai, C.; Shen, Q. Electrochemical sensing of exosomal microRNA based on hybridization chain reaction signal amplification with reduced false-positive signals. Anal. Chem. 2020, 92, 5302–5310. [Google Scholar] [CrossRef]
- Negahdary, M.; Angnes, L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord. Chem. Rev. 2022, 464, 214565. [Google Scholar] [CrossRef]
- Aziz, N.B.; Mahmudunnabi, R.G.G.; Umer, M.; Sharma, S.; Rashid, M.A.; Alhamhoom, Y.; Shim, Y.B.; Salomon, C.; Shiddiky, M.J.A. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020, 145, 2038–2057. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, P.; Ladame, S.; O’Hare, D. Molecular methods in electrochemical microRNA detection. Analyst 2019, 144, 114–129. [Google Scholar] [CrossRef]
- Liang, T.; Qin, X.; Xiang, Y.; Tang, Y.; Yang, F. Advances in nucleic acids-scaffolded electrical sensing of extracellular vesicle biomarkers. TrAC-Trend. Anal. Chem. 2022, 148, 116532. [Google Scholar] [CrossRef]
- Dong, J.; Yang, H.; Zhao, J.; Wen, L.; He, C.; Hu, Z.; Li, J.; Huo, D.; Hou, C. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Microchim. Acta 2022, 189, 49. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, M.; Jiang, J.; Shen, Q.; Cai, C.; Shen, J. Sensitive electrochemical biosensor for MicroRNAs based on duplexspecific nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal. Chim. Acta. 2019, 1064, 33–39. [Google Scholar] [CrossRef]
- Fang, C.S.; Kim, K.-s.; Yu, B.; Jon, S.; Kim, M.-S.; Yang, H. Ultrasensitive electrochemical detection of miRNA-21 using a zinc finger protein specific to DNA–RNA hybrids. Anal. Chem. 2017, 89, 2024–2031. [Google Scholar] [CrossRef]
- Xia, N.; Zhang, Y.; Wei, X.; Huang, Y.; Liu, L. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical–chemical–chemical redox cycling. Anal. Chim. Acta 2015, 878, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Zhang, C.; Wang, C.; Zhou, C.; Gong, N.; Wang, Q.; Zhu, Y. DNA self-assembled FeNxC nanocatalytic network for ultrasensitive electrochemical detection of microRNA. Anal. Chim. Acta 2022, 1223, 340218. [Google Scholar] [CrossRef]
- Cui, Y.; Fan, S.; Yuan, Z.; Song, M.; Hu, J.; Qian, D.; Zhen, D.; Li, J.; Zhu, B. Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 2021, 224, 121878. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Li, J.; Jin, X.; Liu, Y.; Huang, S. Ultrasensitive electrochemical microRNA-21 biosensor coupling with carboxylate-reduced graphene oxide-based signal-enhancing and duplexspecific nuclease-assisted target recycling. Sens. Actuat. B Chem. 2019, 297, 126740. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, X.; Yuan, R.; Chai, Y. Y-shaped walker with abundant recognition domians mediated ultrasensitive electrochemical biosensor for miRNA-21 detection. Sens. Actuat. B Chem. 2023, 375, 132901. [Google Scholar] [CrossRef]
- Wang, F.; Cai, R.; Tan, W. Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay. Anal. Chem. 2023, 95, 6046–6052. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Z.; Chang, Y.; Qing, M.; Yuan, R.; Chai, Y. A novel 2D DNA nanoprobe mediated enzyme-free target recycling amplification for ultrasensitive electrochemical detection of microRNA. Anal. Chem. 2018, 90, 9538–9544. [Google Scholar] [CrossRef]
Signal Amplification | Target | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
HRP | DNA | 2.5 fM | 10 fM~0.1 nM | [40] |
HRP | miRNA | 10 aM | 10 aM~1 pM | [41] |
DNATT + HRP | miRNA | 0.1 fM | 0.1 fM~1 nM | [42] |
ALP | miRNA | 0.56 fM | 1 fM~100 pM | [43] |
CSDPR + ALP | DNA | 8 fM | 10 fM~1 nM | [44] |
WCHA + ALP | DNA | 8.3 fM | 10 fM~5 nM | [45] |
AuNPs + AgNPs | miRNA | 2 aM | 100 aM~100 pM | [46] |
Fe3O4/Thi or Fe3O4/Fc | miRNA | 0.44 fM | 1 fM~1 nM | [47] |
ASDA + AgNCs | DNA | 0.16 fM | 0.2 fM~1 pM | [48] |
TAPNR + AgNCs | miRNA | 0.64 fM | 1.0 fM~0.1 nM | [49] |
CuCo-CeO2 | miRNA | 0.05 fM | 0.1 fM~10 nM | [50] |
Exo-III/RuHex | DNA | 0.2 fM | 1 fM~1.0 nM | [51] |
CHA + MB | DNA | 0.037 fM | 0.1 fM to 5.0 pM | [52] |
Exo I/RuHex | miRNA | 53 aM | 0.1 fM to 0.1 μM | [53] |
GOx | DNA | 0.6 fM | 1~500 fM | This work |
Signal Amplification | Linear Range | Detection Limit | Ref. |
---|---|---|---|
AuNPs-HRP | 5 fM~0.5 μM | 0.54 fM | [58] |
DSN + AuNPs-HRP | 0.1 fM~0.1 nM | 43.3 aM | [59] |
ALP + redox cycling | 2 fM~1 nM | 2 fM | [60] |
ALP + redox cycling | 0.5 fM~1 pM | 0.2 fM | [61] |
DSN + FeNxC network | 0.5 fM~1 pM | 0.2805 fM | [62] |
CRISPR-Cas13a + CHA | 10 fM~1 nM | 2.6 fM | [63] |
DSN + rGO | 0.05 fM~5 fM | 0.01 fM | [64] |
T4 ligase + phi29 | 0.1 fM~100 pM | 10.6 aM | [65] |
EBFCs + CHA + HCR | 0.5 fM~10 pM | 0.15 fM | [66] |
HCR + GOx | 1 fM | 1~500 fM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, N.; Cheng, J.; Tian, L.; Zhang, S.; Wang, Y.; Li, G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. Biosensors 2023, 13, 543. https://doi.org/10.3390/bios13050543
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. Biosensors. 2023; 13(5):543. https://doi.org/10.3390/bios13050543
Chicago/Turabian StyleXia, Ning, Jiayou Cheng, Linxu Tian, Shuo Zhang, Yunqiu Wang, and Gang Li. 2023. "Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection" Biosensors 13, no. 5: 543. https://doi.org/10.3390/bios13050543
APA StyleXia, N., Cheng, J., Tian, L., Zhang, S., Wang, Y., & Li, G. (2023). Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. Biosensors, 13(5), 543. https://doi.org/10.3390/bios13050543