Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = dry direct seeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1466 KiB  
Article
A Discrete Element Model for Characterizing Soil-Cotton Seeding Equipment Interactions Using the JKR and Bonding Contact Models
by Xuyang Ran, Long Wang, Jianfei Xing, Lu Shi, Dewei Wang, Wensong Guo and Xufeng Wang
Agriculture 2025, 15(15), 1693; https://doi.org/10.3390/agriculture15151693 - 5 Aug 2025
Abstract
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction [...] Read more.
Due to the increasing demand for agricultural water, the water availability for winter and spring irrigation of cotton fields has decreased. Consequently, dry seeding followed by irrigation (DSSI) has become a widespread cotton cultivation technique in Xinjiang. This study focused on the interaction between soil particles and cotton seeding equipment under DSSI in Xinjiang. The discrete element method (DEM) simulation framework was employed to compare the performance of the Johnson-Kendall-Roberts (JKR) model and Bonding model in simulating contact between soil particles. The models’ ability to simulate the angle of repose was investigated, and shear tests were conducted. The simulation results showed that both models had comparable repose angles, with relative errors of 0.59% for the JKR model and 0.36% for the contact model. However, the contact model demonstrated superior predictive accuracy in simulating direct shear test results, predicting an internal friction angle of 35.8°, with a relative error of 5.8% compared to experimental measurements. In contrast, the JKR model exhibited a larger error. The Bonding model provides a more accurate description of soil particle contact. Subsoiler penetration tests showed that the maximum penetration force was 467.2 N, closely matching the simulation result of 485.3 N, which validates the reliability of the model parameters. The proposed soil simulation framework and calibrated parameters accurately represented soil mechanical properties, providing a robust basis for discrete element modeling and structural optimization of soil-tool interactions in cotton field tillage machinery. Full article
(This article belongs to the Section Agricultural Technology)
14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 245
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

14 pages, 3779 KiB  
Article
Technological Parameter Optimization of Double-Press Precision Depth-Control Seeding and Its Application in Rice Production
by Yangjie Shi, Xingye Shen, Xinhui Cheng, Jintao Xu, Jiawang Hong, Lianjie Han, Xiaobo Xi and Ruihong Zhang
Agronomy 2025, 15(7), 1704; https://doi.org/10.3390/agronomy15071704 - 15 Jul 2025
Viewed by 290
Abstract
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was [...] Read more.
Current rice cultivation relies on mechanical transplanting, which is costly and complex, and direct seeding, which suffers from poor quality and low efficiency. To address these issues, a double-press precision depth-control seeding method was developed in this study. Discrete element modeling (DEM) was employed to optimize key operational parameters—compaction force, soil covering cutter rotational speed, and penetration depth—using qualified seeding depth and missed seeding rates as performance metrics. Optimal results were achieved at a 60 kPa compaction force, a 300 rpm rotational speed, and a 7 cm penetration depth. A prototype seeder was manufactured and evaluated in three-year field trials against conventional dry direct seeders and mechanical transplanters. The double-press seeder demonstrated significantly superior performance compared to conventional direct seeding. It optimized the crop population structure by maintaining a high tiller number while increasing the productive tiller rate, resulting in stable annual yields exceeding 10.11 t·hm−2. Although its yield was slightly lower than that of mechanical transplanting, the double-press seeder offers a compelling practical alternative due to its operational convenience and economic benefits. Full article
Show Figures

Figure 1

13 pages, 1296 KiB  
Article
Economic Assessment of Herbicide Use in Rice Under Different Establishment Methods in Northwest India
by Navjot Singh Brar, Parminder Singh Sandhu, Anil Kumar, Prabjeet Singh and Simerjeet Kaur
Agrochemicals 2025, 4(2), 7; https://doi.org/10.3390/agrochemicals4020007 - 20 May 2025
Viewed by 798
Abstract
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of [...] Read more.
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of water resources and food by herbicides is a major health issue. In the present study, the use of herbicides in three different establishment methods of rice was examined with the objective to present and discuss the herbicide use pattern and cost of weed control. For this, a field-wide survey was conducted over an area of 165.4 ha in eight villages of the Tarn Taran District of Punjab, India. For two DSR methods, during the initial stage of crop growth, the weed infestation was reported to be less in moist fields sown with direct seeding (soil moisture in the field capacity stage) after pre-sowing irrigation (DSR-PSI). The herbicide use and cost of weed control under DSR-PSI conditions were similar to that of puddled transplanted rice, but were significantly lower than that of direct seeding in dry fields (rice seeds are sown in dry fields, and irrigation is applied immediately after sowing), i.e., DSR-IAS. Therefore, the DSR-PSI method of rice establishment can ensure minimum dependence on herbicides, as well as other benefits of direct seeding. Thus, there is a need to promote the DSR-PSI method over the DSR-IAS method among farmers in order to reduce herbicide use in DSR and ensure environmental safety. Full article
Show Figures

Figure 1

18 pages, 5784 KiB  
Article
Application of Gellan Hydrogel and Kaz-6 in Wheat Seed Coating for Improved Productivity and Environmental Resilience
by Bagila Tursynova, Tolganay Zharkynbek, Rauash Mangazbayeva, Nurzhan Mukhamadiyev, Raushan Koizhaiganova, Gulnaz Mengdibayeva, Assel Ten, Bayana Yermukhambetova, Grigoriy Mun and Valentina Yu
Polymers 2025, 17(10), 1330; https://doi.org/10.3390/polym17101330 - 14 May 2025
Viewed by 578
Abstract
Drought is a major environmental constraint that negatively affects crop germination, seedling establishment, and overall yield. This study presents a sustainable approach to improving wheat productivity under water-deficit conditions through the application of a gellan gum-based hydrogel enriched with the growth stimulant. The [...] Read more.
Drought is a major environmental constraint that negatively affects crop germination, seedling establishment, and overall yield. This study presents a sustainable approach to improving wheat productivity under water-deficit conditions through the application of a gellan gum-based hydrogel enriched with the growth stimulant. The hydrogel was synthesized by inducing ionic gelation of gellan gum using potassium chloride and ammonium sulfate, forming a robust, cross-linked polymer network. Wheat seeds were coated with one to eight layers of the hydrogel using a sequential dipping and drying process. Optimal seedling performance was achieved with a two-layer coating, balancing sufficient water retention with adequate gas exchange. FTIR spectroscopy and pH analysis confirmed ionic interactions between Kaz-6 and the carboxyl groups of gellan, supporting its stable incorporation within the polymer matrix. Mechanical characterization showed that ammonium sulfate significantly enhanced gel strength and cross-linking density compared to potassium chloride. Laboratory germination assays and greenhouse trials demonstrated that seeds coated with gellan hydrogel containing Kaz-6 showed enhanced germination rates, greater biomass accumulation, and significantly improved drought tolerance—surviving up to 10 days longer than controls under water-limited conditions. These findings highlight the potential of biopolymer-based hydrogels as eco-friendly seed coating materials that can improve crop resilience and productivity in arid environments. The proposed formulation aligns with sustainable agriculture goals and represents a promising direction for future field-scale applications in climate-adaptive farming systems. Full article
Show Figures

Figure 1

27 pages, 28696 KiB  
Article
Numerical Simulation of Dry and Wet Rice Seeds in an Air-Suction Seed Metering Device
by Cheng Qian, Zhuorong Fan, Daoqing Yan, Wei Qin, Youcong Jiang, Zishun Huang, He Xing, Zaiman Wang and Ying Zang
Agronomy 2025, 15(5), 1145; https://doi.org/10.3390/agronomy15051145 - 7 May 2025
Viewed by 661
Abstract
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in [...] Read more.
Rice direct seeding for bunch planting is a sustainable agricultural production method that reduces production costs, improves rice lodging resistance, and conserves irrigation water in the field. However, there are notable differences in seed treatment between direct seeding on dry land and in paddy fields, which can impact the seeding process’s accuracy. This study employs the numerical simulation methods of computational fluid dynamics (CFDs) and discrete element method (DEM) to examine the motion characteristics of dry and wet rice seeds in a fluid–solid coupled domain and their impact on seeding accuracy. The aim is to guide the optimization of the rice air-suction seed metering device. Rice seeds were divided into dry and wet groups, and their physical properties were measured. Discrete element models of rice seeds were constructed and calibrated using a polyhedral method. The results show that the static friction coefficient between the seed meter and the seed ranged from 0.902 to 0.950, and the thousand-grain weights ranged from 25.89 to 32.42 g, which were higher than those of the dry rice seed, which ranged from 0.774 to 0.839, and from 25.89 to 32.42 g. After calibration, the errors between the simulated dynamic stacking angles of HHZD, HYD, YLYD, HHZW, HYW, and YLYW and the physical–dynamic stacking angles were 0.12%, 0.13%, 0.75%, 0.62%, 0.08%, 0.75%, 0.59%, and 1.24%, respectively, which indicated that the discrete element model for rice was reliable. Additionally, a seeding accuracy test revealed that wet seeds of the same variety had higher missing and single indices, while dry seeds had higher triple and multiple indices. Furthermore, CFD-DEM simulations demonstrated that wet seeds’ normal and tangential forces were more significant than those on dry seeds during the seed-filling process. At 40 rpm, the normal and tangential forces during the seed-filling process of HYW are 37.69 × 10−3 N and 12.47 × 10−3 N, respectively, which are higher than those of HYD (25.18 × 10−3 N and 9.19 × 10−3 N). The action force of suctioned rice seeds was directly proportional to the missing and single indices. The primary factors contributing to the discrepancy in seeding accuracy between dry and wet rice are the thousand-grain weight, the static friction coefficient between the seed meter and the seed, and the action force exerted between the rice seeds. In addition, using a shaped hole structure and optimizing the seed chamber structure can reduce normal and tangential forces and improve seeding accuracy. This study provides a reference for the simulation of rice seed flow-solid coupling and optimization of air-suction seed metering devices. Full article
Show Figures

Figure 1

25 pages, 4423 KiB  
Article
Weed Abundance, Seed Bank in Different Soil Tillage Systems, and Straw Retention
by Sinkevičienė Aušra, Bogužas Vaclovas, Sinkevičius Alfredas, Steponavičienė Vaida, Anicetas Lenkis and Kimbirauskienė Rasa
Agronomy 2025, 15(5), 1105; https://doi.org/10.3390/agronomy15051105 - 30 Apr 2025
Cited by 1 | Viewed by 462
Abstract
Comprehensive studies are needed to investigate the diversity, abundance, and seed bank of weeds in winter wheat, spring barley, and spring oilseed rape crops due to a lack of experimental studies. Tillage has a long-term impact on agroecosystems. Since 1999, a long-term field [...] Read more.
Comprehensive studies are needed to investigate the diversity, abundance, and seed bank of weeds in winter wheat, spring barley, and spring oilseed rape crops due to a lack of experimental studies. Tillage has a long-term impact on agroecosystems. Since 1999, a long-term field experiment has been conducted at the Experimental Station of Vytautas Magnus University. The soil of the experimental site is classified as Epieutric Endocalcaric Planosol (Endoclayic, Episiltic, Aric, Drainic, Endoraptic, Uterquic), according to the World Reference Base. Treatments were arranged using a split-plot design. According to the factorial field experiment, the straw was removed from one part of the experimental field, and on the other part of the field, the straw was chopped and spread at harvesting (factor A). Six tillage systems, conventional (deep) and shallow plowing, shallow loosening, shallow rotovation, catch cropping and rotovation, and no tillage, were used as a subplot (factor B). The current study results show that the number of annual, perennial, and total weeds and the dry matter biomass decreased in shallow-plowed plots compared to deep-plowed plots. Different applied tillage treatments had different effects on perennial weeds. In the upper (0–10 cm) soil layer studied, the number of annual, perennial, and total weed seeds decreased in the fields where the straw was chopped and spread compared to the fields where the straw was removed. In the deeper soil layer (10–25 cm), no tillage with cover crops and direct seeding without cover crops reduced the number of annual and perennial weed seeds compared to deep tillage. The aim of this experiment was to investigate the effects of long-term tillage of different intensities and straw retention systems on weeds in crop fields. The results were obtained in 2019 and 2021 (winter wheat, spring barley, spring oilseed rape). Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

23 pages, 12441 KiB  
Article
Interaction of Microplastics with Emerging Organic Pollutants: A Study on Atrazine Adsorption and Phytotoxicity
by Luan Gabriel Xavier de Souza, Francisco Javier Cuba Teran, Renata Medici Frayne Cuba, Andréa Rodrigues Chaves and Kellen Cristina da Silva
Toxics 2025, 13(4), 257; https://doi.org/10.3390/toxics13040257 - 29 Mar 2025
Viewed by 614
Abstract
The adsorption of atrazine (ATZ) onto pristine and aged polyethylene microplastics (MPs) was investigated in distilled water (DW) and hydroponic nutrient-enriched water (EW) to evaluate its phytotoxic effects on Lactuca sativa germination. Aged microplastics (AMPs) exhibited higher ATZ adsorption in both conditions: 0.646 [...] Read more.
The adsorption of atrazine (ATZ) onto pristine and aged polyethylene microplastics (MPs) was investigated in distilled water (DW) and hydroponic nutrient-enriched water (EW) to evaluate its phytotoxic effects on Lactuca sativa germination. Aged microplastics (AMPs) exhibited higher ATZ adsorption in both conditions: 0.646 mg/g (14.49%) in DW and 0.742 mg/g (15.87%) in EW, compared to 0.405 mg/g (9.08%) and 0.504 mg/g (10.78%) for pristine microplastics (PMPs), respectively. This increase was attributed to photodegradation-induced surface modifications on MP, including increased roughness and the formation of oxygenated functional groups. The phytotoxicity assays showed that ATZ adsorbed onto AMPs inhibited seed germination more severely, with a maximum inhibition of 34% at 2 mg/L, evidencing that microplastic aging enhances ATZ adsorption and increases toxicity risks in aquatic environments, particularly under eutrophic conditions. The combined presence of MP and ATZ resulted in greater toxicity, attributed to a synergistic effect, as observed in dry and wet mass inhibition. These findings indicate that pollutant interactions amplify negative impacts on plant development. Furthermore, ATZ primarily affects root growth through direct physical contact with MP rather than via desorption into water. Full article
Show Figures

Graphical abstract

26 pages, 913 KiB  
Article
Phenotypic Diversity and Abiotic Stress Tolerance Among Vicia ervilia (L.) Willd. Accessions
by Sofiya Petrova, Tsvetelina Stoilova, Valentin Velinov, Irina I. Vaseva and Lyudmila Simova-Stoilova
Plants 2025, 14(7), 1008; https://doi.org/10.3390/plants14071008 - 24 Mar 2025
Viewed by 601
Abstract
Bitter vetch (Vicia ervilia L. Willd.) is an ancient Mediterranean legume, well adapted to dry climates, that has recently gained attention for its potential in organic farming and as a suitable source of bioactive compounds. This study analyzed the agrobiological variability of [...] Read more.
Bitter vetch (Vicia ervilia L. Willd.) is an ancient Mediterranean legume, well adapted to dry climates, that has recently gained attention for its potential in organic farming and as a suitable source of bioactive compounds. This study analyzed the agrobiological variability of 12 bitter vetch accessions from the IPGR-Sadovo genebank in two-year field trials. Yield-related traits were recorded, and grains were assessed for protein, sugar, starch, free amino acids, phenols, and antitrypsin content. Statistical analyses included variance, correlation, cluster, principal component, and path-coefficient methods. Significant variation was observed in plant branching, pod and grain numbers, and grain weight per plant. Grain yield correlated strongly with pod number (r = 0.910**), grains per pod (r = 0.867**) and per plant (r = 0.965**), and pod size. Positive direct effects on grain yield had the traits germination−50% flowering, number of seeds per plant, height to first pod, and harvest index. An indirect impact was found for the number of pods per plant, number of seeds per pod, and seed starch content. Accessions formed four main clusters. BGR6207, B9E0168, and C3000003 showed high yield potential. C3000001, C3000003, C3000007, and C3000006 exhibited early maturity. C3E0118, C3000007, and C3000003 seeds had lower amounts of phenols. BGR13526 presented lower protein and antitrypsin but higher carbohydrate and phenol levels. Tolerance to moderate osmotic stress (150 mM NaCl or 10% Polyethylene glycol 6000) varied. BGR3052, BGR13526, and A3BM0178 were found to be resistant to both stressors, while accessions C3000001 and C3000007 were identified as sensitive to both adversities. C3000006 was determined as sensitive to salinity but resistant to drought, and BGR3051and C3000003 were relatively sensitive to drought but resistant to salinity. Root elongation and thinning were observed in half of the accessions as adaptive responses to stress. These findings highlight some of the advantages of the evaluated bitter vetch accessions for breeding and reintroduction into sustainable agricultural practices. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

19 pages, 4762 KiB  
Review
Historical, Technological, Biochemical, and Microbiological Aspects of Pastirma, an Ethnic Meat Product from Asia to Anatolia: A Narrative Literature Review
by Alper Güngören
Sustainability 2025, 17(7), 2801; https://doi.org/10.3390/su17072801 - 21 Mar 2025
Cited by 2 | Viewed by 994
Abstract
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, [...] Read more.
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, the history of pastirma, its definition and classification, detailed production steps, composition and yield, chemical and microbiological properties, pastirma fraud, and customer concerns are mentioned. In this narrative review, relevant studies were identified by searching Scopus, Science Direct, Web of Science, Trdizin, and Google Scholar, including articles, online reports, books, and electronic books in English or Turkish. The keywords “pastirma, cemen, cemening, cemen paste, fenugreek” were used. The results of this review indicate that future studies on pastirma may focus on the related cultural aspects, the elimination of unpleasant odor from fenugreek, providing a detailed grading guide, the histological and chemical effects of pressing meat parts, the kinetics of drying, osmotic dehydration, and developing new starter combinations. Additionally, this is the first article to provide information on grading and food fraud in pastirma. Full article
Show Figures

Figure 1

14 pages, 2219 KiB  
Article
Determining the Dormancy Type of the Endangered Linum mulleri by Testing 7000 Seeds
by Ludovica Dessì, Marco Porceddu, Lina Podda, Alba Cuena Lombraña and Gianluigi Bacchetta
Plants 2025, 14(7), 984; https://doi.org/10.3390/plants14070984 - 21 Mar 2025
Viewed by 660
Abstract
Linum mulleri is an endemic taxon of southwestern Sardinia (Italy), categorised as Endangered (EN) on the IUCN Red List and included in Annexes II and IV of the Habitats Directive (92/43/EEC) as priority species for conservation. This study investigated the germination ecophysiology of [...] Read more.
Linum mulleri is an endemic taxon of southwestern Sardinia (Italy), categorised as Endangered (EN) on the IUCN Red List and included in Annexes II and IV of the Habitats Directive (92/43/EEC) as priority species for conservation. This study investigated the germination ecophysiology of L. mulleri and the possible presence of dormancy by using 7000 seeds, providing useful information for conservation strategies. The germination response of fresh seeds was evaluated under different temperatures, photoperiods, pre-treatments [cold stratification (C); warm stratification (W); W+C; C+W+C; dry after-ripening (DAR)], and different gibberellic acid (GA3) concentrations. L. mulleri germinated under controlled conditions, particularly at 15 and 20 °C, while germination percentages (GP) never exceeded 5% at 5 and 30 °C. C and C+W+C induced secondary dormancy, delaying germination, whereas W, DAR, and GA3 stimulate it. Light and dark incubation showed no significant differences in regards to GP. W, DAR, and 250 mg/L GA3 effectively overcame physiological dormancy (PD), expanding the germination temperature range to below 10 and above 25 °C. These responses suggested type 3 non-deep PD, as germination temperatures extended from a moderate range to both low and high temperatures. Analyzing 7000 seeds provided crucial information regarding dormancy and germination strategies, supporting both ex situ and in situ conservation efforts. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

89 pages, 38659 KiB  
Review
Morphinan Alkaloids and Their Transformations: A Historical Perspective of a Century of Opioid Research in Hungary
by János Marton, Paul Cumming, Kenner C. Rice and Joannes T. M. Linders
Int. J. Mol. Sci. 2025, 26(6), 2736; https://doi.org/10.3390/ijms26062736 - 18 Mar 2025
Viewed by 2441
Abstract
The word opium derives from the ancient Greek word ὄπιον (ópion) for the juice of any plant, but today means the air-dried seed capsule latex of Papaver somniferum. Alkaloid chemistry began with the isolation of morphine from crude opium by Friedrich Wilhelm [...] Read more.
The word opium derives from the ancient Greek word ὄπιον (ópion) for the juice of any plant, but today means the air-dried seed capsule latex of Papaver somniferum. Alkaloid chemistry began with the isolation of morphine from crude opium by Friedrich Wilhelm Adam Sertürner in 1804. More than a century later, Hungarian pharmacist János Kabay opened new perspectives for the direct isolation of morphine from dry poppy heads and straw without the labor-intensive harvesting of opium. In 2015, Kabay’s life and achievements obtained official recognition as constituting a «Hungarikum», thereby entering the national repository of matters of unique cultural value. To this day, the study of Papaver alkaloids is a focus of medicinal chemistry, the (perhaps unstated) aspiration of which is to obtain an opioid with lesser abuse potential and side effects, while retaining good analgesic properties. We begin this review with a brief account of opiate biosynthesis, followed by a detailed presentation of semisynthetic opioids, emphasizing the efforts of the Alkaloida Chemical Company, founded in 1927 by János Kabay, and the morphine alkaloid group of the University of Debrecen. Full article
Show Figures

Figure 1

12 pages, 763 KiB  
Article
A Different Way to Sow: Seed Enhancements Involving Gelatin Encapsulation with Controlled-Released Fertilizers Improve Seedling Growth in Tomato (Solanum lycopersicum L.)
by Brant W. Touchette, Daniel S. Cox, Rebecca L. Carranza and Harriette Palms
Agrochemicals 2025, 4(1), 2; https://doi.org/10.3390/agrochemicals4010002 - 20 Feb 2025
Viewed by 897
Abstract
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability [...] Read more.
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability of small or irregularly shaped seeds. Seed encapsulation using pharmaceutical capsules can be viewed as an extension of seed coatings where seeds and other beneficial agrichemicals can be combined into a single plantable unit. For many crops, direct contact with high levels of conventional fertilizers may induce some level of phytotoxicity, and early studies involving fertilizer-enriched seed coatings resulted in decreased seedling emergence and diminished plant performance. Encapsulation, however, provides greater delivery volumes compared to other coatings and may offer some degree of separation between seeds and potentially phytotoxic agrochemicals. This study considered tomato seed encapsulation with controlled-release fertilizers. In general, seed exposure to gelatin-based capsules delayed germination by 2- to 3- days. Nevertheless, seed encapsulation improved plant performance including increased plant height and dry mass production by as much as 75 and 460%, respectively. These growth responses mitigated any effects attributed to germination delays. Moreover, higher levels of controlled-release fertilizers (≥800 mg) fostered earlier flower induction by up to 3 weeks. Collectively, the results suggest that seed encapsulation can be an effective way to deliver fertilizers to plants in a manner that could reduce overall fertilizer application rates and possibly lessen the quantity of plant nutrient input necessary for tomato cultivation. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

16 pages, 3925 KiB  
Article
Inhibitory Effect and Mechanism of Dryocrassin ABBA Against Fusarium oxysporum
by Wenzhong Wang, Dongrui Zhang, Pia Heltoft Thomsen, Meng Sun and Ying Chang
Int. J. Mol. Sci. 2025, 26(4), 1573; https://doi.org/10.3390/ijms26041573 - 13 Feb 2025
Cited by 1 | Viewed by 634
Abstract
Potato Fusarium dry rot and wilt are the most important soil- and seed-borne diseases in potatoes. They cause high economic losses during potato growth and storage across the world. Previous observations have shown that dryocrassin ABBA can induce resistance in potatoes. However, little [...] Read more.
Potato Fusarium dry rot and wilt are the most important soil- and seed-borne diseases in potatoes. They cause high economic losses during potato growth and storage across the world. Previous observations have shown that dryocrassin ABBA can induce resistance in potatoes. However, little is known about whether dryocrassin ABBA can suppress Fusarium oxysporum. In this research, we determined that exogenous dryocrassin ABBA significantly inhibited the mycelial growth, changed the cell ultrastructure, increased the MDA content, and decreased the antioxidant enzyme activity of F. oxysporum. The transcriptome analysis of F. oxysporum with or without dryocrassin ABBA indicated that 1244 differentially expressed genes (DEGs) were identified, of which 594 were upregulated and 650 were downregulated. GO term analysis showed that the DEGs were mostly related to biological processes. The KEGG pathway was mainly related to carbohydrate, amino acid, and lipid metabolism. Moreover, most of the expressions of PCWDEs, HSPs, and MFS were downregulated, decreasing the stress capacity and weakening the pathogenicity of F. oxysporum with dryocrassin ABBA treatment. These findings contribute to a new understanding of the direct functions of dryocrassin ABBA on F. oxysporum and provide a potential ecofriendly biocontrol approach for potato Fusarium dry rot and wilt. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

31 pages, 17599 KiB  
Review
Lebanese Medicinal Plants with Ophthalmic Properties
by Jeanne Andary, Haitham El Ballouz and Rony Abou-Khalil
Pharmaceuticals 2025, 18(2), 155; https://doi.org/10.3390/ph18020155 - 24 Jan 2025
Cited by 1 | Viewed by 1883
Abstract
Lebanon benefits from a rich biodiversity, with medicinal and aromatic plants (MAPs) representing an important part of the country’s natural wealth; however, limited data are available documenting medicinal plants being employed in eye health. This review is the first to document Lebanese medicinal [...] Read more.
Lebanon benefits from a rich biodiversity, with medicinal and aromatic plants (MAPs) representing an important part of the country’s natural wealth; however, limited data are available documenting medicinal plants being employed in eye health. This review is the first to document Lebanese medicinal plants with ophthalmic characteristics and phytochemistry that might be beneficial in the development of new, accessible, and efficient ocular medications. In this study, we searched for studies on ocular therapeutic plants using known resources, including PubMed, ScienceDirect, and Google Scholar, and confirmed these plants’ presence within the Lebanese flora. The efficacy of 52 species from 28 families, including two endemic species (Crepis libanotica and Salvia libanotica), has been documented. Their Latin names, regional names, ocular medical applications, the plant parts used, and preparation forms are detailed below. The largest number of species belongs to the Lamiaceae family (21%), followed by Asteraceae (14%) and Solanaceae (7%). The most commonly used plant parts are the stems, leaves, and seeds. Ocular treatments fall into several categories: inflammation, infection, irritation, dry-eye, eyewash, the prevention or delay of cataracts, and general eye problems. A significant percentage (68%) of the medicinal plants target the anterior part of the eye. Some of the reported plants can be harmful to the eyes and should be handled with caution. The Lebanese medicinal plants listed, constituting a local heritage with global importance, could be used for treating ophthalmic ailments and require special screening and preservation. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop