Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = drug-loaded scaffolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2594 KiB  
Article
Cellulose-Based Scaffolds with Prolonged Dexamethasone Release for Bone Tissue Engineering
by Jolanta Liesienė, Odeta Baniukaitiene and Ieva Minseviciene
Molecules 2025, 30(13), 2760; https://doi.org/10.3390/molecules30132760 - 26 Jun 2025
Viewed by 382
Abstract
The implantation of bone substitutes is frequently accompanied by inflammation. To reduce the inflammatory response and enhance cell adhesion, proliferation, and differentiation, scaffolds are often loaded with anti-inflammatory drugs. In this study, cellulose and cellulose/hydroxyapatite (1:1 by weight) scaffolds were developed. Structural analysis [...] Read more.
The implantation of bone substitutes is frequently accompanied by inflammation. To reduce the inflammatory response and enhance cell adhesion, proliferation, and differentiation, scaffolds are often loaded with anti-inflammatory drugs. In this study, cellulose and cellulose/hydroxyapatite (1:1 by weight) scaffolds were developed. Structural analysis using SEM and micro-computed tomography revealed that the morphology of the scaffolds met the requirements for bone tissue engineering. The scaffolds were initially loaded with dexamethasone sodium phosphate; however, the drug was released very rapidly. To prolong its release, cationic groups were introduced into the cellulose macromolecules by amination with 2-chloro-N,N-diethylethylamine hydrochloride in an alkaline medium. Dexamethasone sodium phosphate was then immobilised on aminated cellulose and aminated cellulose/HAp scaffolds at concentrations of 157 mg/g and 87 mg/g, respectively. Due to ionic interactions between the cationic groups in the scaffolds and the anionic groups of the drug molecules, drug release was effectively prolonged. After 24 h, only about 6–7% of the drug had been released, with complete release occurring after 170 h. The cationic groups in the scaffold framework facilitated the adsorption and sustained release of dexamethasone sodium phosphate. Full article
Show Figures

Figure 1

26 pages, 14123 KiB  
Article
Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment
by Ei Mon Khaing, Napaphol Puyathorn, Nuttapon Yodsin, Nakharin Phonarwut, Warakon Thammasut, Catleya Rojviriya, Wiwat Pichayakorn, Supanut Phattarateera and Thawatchai Phaechamud
Polymers 2025, 17(11), 1551; https://doi.org/10.3390/polym17111551 - 2 Jun 2025
Viewed by 655
Abstract
Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) are biobased materials that are insoluble in water and present a potential alternative to fossil-based plastics. Solvent removal-induced in situ matrices are gaining attention as an innovative dosage form for localized drug delivery for [...] Read more.
Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) are biobased materials that are insoluble in water and present a potential alternative to fossil-based plastics. Solvent removal-induced in situ matrices are gaining attention as an innovative dosage form for localized drug delivery for periodontitis therapy. This study aims to develop levofloxacin hemihydrate (Lh)-loaded in situ matrices formed through solvent removal, incorporating various molecular weights (MWs) and concentrations of CAB and CAP. Increased MWs and higher concentrations of these cellulosic esters significantly improved formulation viscosity and injection force, contributing to enhanced phase inversion and greater matrix toughness. Microscopic analysis of interfacial phase changes revealed progressive thickening of the matrix over time, which was influenced by polymer concentration and limited solvent movement. The transformed matrices with high MW CAP and elevated CAB content demonstrated prolonged drug release, predominantly following first-order kinetics, suggesting drug dissolution and diffusion through the scaffold structure. CAB-based in situ matrices containing 15% and 20% polymer exhibited low viscosities suitable for injection, along with optimal gel formation for maintaining their shape, and adhered effectively to periodontal pockets. These matrices provided extended Lh release for up to 120 h and inhibited the growth of periodontopathic bacteria for over 15 days. Therefore, the developed Lh-loaded in situ matrices show promise as an effective treatment for periodontitis, warranting further research to explore their therapeutic potential. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Drug Delivery)
Show Figures

Graphical abstract

18 pages, 3937 KiB  
Article
Preliminary Evaluation of 3D-Printed Alginate/Gelatin Scaffolds for Protein Fast Release as Suitable Devices for Personalized Medicine
by Benedetta Ghezzi, Ruben Foresti, Luisa Pia Scialoia, Maddalena Botti, Arianna Mersanne, Fulvio Ratto, Francesca Rossi, Chiara Martini, Paolo Perini, Elda Favari and Antonio Freyrie
Biomedicines 2025, 13(6), 1365; https://doi.org/10.3390/biomedicines13061365 - 2 Jun 2025
Viewed by 733
Abstract
Background/Objectives: Drug-coated balloons (DCBs) are emerging as a promising treatment for peripheral artery disease; however, current technologies lack flexibility in customizing drug release profiles and composition, limiting their therapeutic potential. This study aims to develop a Gelatin (Gel) and Sodium Alginate (Alg) bioink [...] Read more.
Background/Objectives: Drug-coated balloons (DCBs) are emerging as a promising treatment for peripheral artery disease; however, current technologies lack flexibility in customizing drug release profiles and composition, limiting their therapeutic potential. This study aims to develop a Gelatin (Gel) and Sodium Alginate (Alg) bioink loaded with apolipoprotein A-I (apoA-I) for controlled drug delivery by using additive manufacturing technologies. Methods: We developed and printed via rapid freeze prototyping (RFP) a Gel and Alg bioink loaded with different concentrations of apoA-I. Mechanical properties related to compressional and tensile forces have been studied, as well as the structural stability and active release from the 3D structure of apoA-I (cholesterol efflux assays). The biological behavior of HUVEC cells with and without ApoA-I was assessed by proliferation assay, metabolic activity analysis, and fluorescence imaging. Results: The 3D structures presented breakpoint stress values consistent with the mechanical requirements for integration within a DCB, and the ability to effectively promote cholesterol transport in J774 cells. Moreover, in vitro studies on HUVECs revealed that the scaffolds exhibited no cytotoxic effects, leading to increased ATP levels and enhanced metabolic activity over time, confirming the possibility to obtain RFP-printed Alg/Gel scaffolds able to provide a stable structure capable of controlled apoA-I release. Conclusions: These findings support the potential of Alg/Gel+apoA-I scaffolds as biocompatible drug delivery systems for vascular applications. Their ability to maintain structural integrity while enabling controlled biomolecular release positions them as promising candidates for personalized cardiovascular therapy, facilitating the rapid customization of bioprinted therapeutic platforms. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

18 pages, 9645 KiB  
Article
Fabrication of Bio-Composite of Piezoelectric/Myrrh Nanofiber Scaffolds for Wound Healing via Portable Gyrospun
by Enfal Eser Alenezi, Amalina Amir, Hussain Ali Alenezi and Timucin Ugurlu
Pharmaceutics 2025, 17(6), 717; https://doi.org/10.3390/pharmaceutics17060717 - 29 May 2025
Viewed by 632
Abstract
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) [...] Read more.
Background/Objectives: Polymeric monoaxial nanofibers are gaining prominence due to their numerous applications, particularly in functional scenarios such as wound management. The study successfully developed and built a special-purpose vessel and device for fabricating polymeric nanofibers. Fabrication of composite scaffolds from piezoelectric poly(vinylidenefluoride-trifluoroethylene) copolymer (PVDF-TrFE) nanofibers encapsulated with myrrh extract was investigated. Methods: The gyrospun nanofibers were characterized using SEM, EDX, FTIR, XRD, and TGA to assess the properties of the composite materials. The study also investigated the release profile of myrrh extract from the nanofibers, demonstrating its potential for sustained drug delivery. The composite’s antimicrobial properties were evaluated using the disc diffusion method against various pathogenic microbes, showcasing their effectiveness. Results: It was found that an 18% (w/v) PVDF-TrFE concentration produces the best fiber mats compared to 20% and 25%, resulting in an average fiber diameter of 411 nm. Myrrh extract was added in varying amounts (10%, 15%, and 20%), with the best average fiber diameter identified at 10%, measuring 436 nm. The results indicated that the composite nanofibers were uniform, bead-free, and aligned without myrrh. The study observed a cumulative release of 79.66% myrrh over 72 h. The release profile showed an initial burst release of 46.85% within the first six hours, followed by a sustained release phase. Encapsulation efficiency was 89.8%, with a drug loading efficiency of 30%. Antibacterial activity peaked at 20% myrrh extract. S. mutans was the most sensitive pathogen to myrrh extract. Conclusions: Due to the piezoelectric effect of PVDF-TrFE and the significant antibacterial activity of myrrh, the prepared biohybrid nanofibers will open new avenues toward tissue engineering and wound healing applications. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 3rd Edition)
Show Figures

Graphical abstract

9 pages, 2612 KiB  
Communication
In Silico Simulation of Porous Geometry-Guided Diffusion for Drug-Coated Tissue Engineering Scaffold Design
by Eyad Awad, Matthew Bedding-Tyrrell, Alberto Coccarelli and Feihu Zhao
Organoids 2025, 4(2), 8; https://doi.org/10.3390/organoids4020008 - 27 Apr 2025
Viewed by 993
Abstract
Recent research works have shown the effect of nutrient concentration on cell activity, such as proliferation and differentiation. In 3D cell culture, the impact of scaffold geometry, including pore size, strut diameter, and pore shape, on the concentration gradient within scaffolds under two [...] Read more.
Recent research works have shown the effect of nutrient concentration on cell activity, such as proliferation and differentiation. In 3D cell culture, the impact of scaffold geometry, including pore size, strut diameter, and pore shape, on the concentration gradient within scaffolds under two different loading conditions—constant fluid perfusion and non-fluid perfusion—in a perfusion bioreactor is investigated by developing an in silico model of scaffolds. In this study, both triply periodic minimal surface (TPMS) (with gyroid struts) and non-TPMS (with cubic and spherical pores) scaffolds were investigated. Two types of criteria are applied to the scaffolds: static and perfusion culture conditions. In a static environment, the scaffold in a perfusion bioreactor is loaded with a fluid velocity of 0 mm/s, whereas in a dynamic environment, perfusion flow with a velocity of 1 mm/s is applied. The results of in silico simulation indicate that the concentration gradient within the scaffold is significantly influenced by pore size, strut diameter, pore shape, and fluid flow, which in turn affects the diffusion rate during drug delivery. Full article
Show Figures

Figure 1

18 pages, 1348 KiB  
Review
Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes
by Jakub Fiegler-Rudol, Katarzyna Kapłon, Kornela Kotucha, Magdalena Moś, Dariusz Skaba, Aleksandra Kawczyk-Krupka and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(9), 4038; https://doi.org/10.3390/ijms26094038 - 24 Apr 2025
Cited by 6 | Viewed by 726
Abstract
Photodynamic therapy (PDT) is a light-activated treatment that generates reactive oxygen species (ROS) to induce microbial cell death. As resistance to traditional antibiotics intensifies globally, PDT has emerged as a promising alternative or adjunctive antimicrobial strategy. Among various photosensitizers, Hypocrellin, a perylenequinone compound, [...] Read more.
Photodynamic therapy (PDT) is a light-activated treatment that generates reactive oxygen species (ROS) to induce microbial cell death. As resistance to traditional antibiotics intensifies globally, PDT has emerged as a promising alternative or adjunctive antimicrobial strategy. Among various photosensitizers, Hypocrellin, a perylenequinone compound, has shown high ROS yield and broad-spectrum activity against bacteria and fungi. This systematic review evaluated the efficacy, safety, and therapeutic potential of Hypocrellin-mediated antimicrobial photodynamic therapy. Following PRISMA 2020 guidelines, a comprehensive literature search was conducted in PubMed, Embase, Scopus, and the Cochrane Library for studies published between 2015 and 2025. Eligible studies included in vitro and preclinical in vivo research using Hypocrellin as a photosensitizer. Quality and risk of bias were assessed using a structured nine-item checklist. Ten eligible studies, all conducted in China, were included. Hypocrellin-mediated aPDT significantly reduced microbial loads in both planktonic and biofilm states of resistant pathogens such as Candida albicans, Candida auris, Cutibacterium acnes, and Staphylococcus aureus. The treatment acted via ROS-mediated apoptosis, membrane disruption, and mitochondrial dysfunction, with minimal cytotoxicity to mammalian cells. Studies also reported enhanced efficacy when Hypocrellin was incorporated into nanocarriers, polymeric scaffolds, or combined with chemodynamic or photothermal therapies. However, substantial heterogeneity was observed in Hypocrellin concentrations, irradiation parameters, and outcome measures. Hypocrellin-based PDT exhibits potent antimicrobial activity and favorable safety in preclinical settings, supporting its potential as an alternative to conventional antibiotics. However, standardized treatment protocols and robust clinical trials are urgently needed to validate long-term safety and translational feasibility. These findings underscore the broader promise of PDT in addressing drug-resistant infections through a mechanism unlikely to induce resistance. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection, 2nd Edition)
Show Figures

Figure 1

21 pages, 5152 KiB  
Review
Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds
by Haoran Jiang, Meng Zhang, Yang Qu, Bohan Xing, Bojiang Wang, Yanqun Liu and Peixun Zhang
J. Funct. Biomater. 2025, 16(4), 136; https://doi.org/10.3390/jfb16040136 - 9 Apr 2025
Cited by 2 | Viewed by 1049
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release [...] Read more.
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal. Full article
(This article belongs to the Special Issue Mesoporous Nanomaterials for Bone Tissue Engineering)
Show Figures

Graphical abstract

22 pages, 4611 KiB  
Article
Silk-Sericin Release from Polymeric Scaffold as Complementary Dermocosmetic Treatment for Acne
by Arianna Vargas González, Patricia Pérez Ramos, Eva María Pérez-Soriano, Francisco Javier Sola Dueñas, Denise Pérez Almazán, Jomarien García Couce and Gastón Fuentes Estévez
Polymers 2025, 17(6), 781; https://doi.org/10.3390/polym17060781 - 14 Mar 2025
Viewed by 1170
Abstract
Currently, acne therapy relies not only on specific drugs but also on complementary treatments, such as dermocosmetics. Several studies have reported the use of chitosan and alginate in scaffolds for drug delivery systems. These materials can be loaded with a product that exhibits [...] Read more.
Currently, acne therapy relies not only on specific drugs but also on complementary treatments, such as dermocosmetics. Several studies have reported the use of chitosan and alginate in scaffolds for drug delivery systems. These materials can be loaded with a product that exhibits anti-acne properties such as silk sericin, a protein with antioxidant, photoprotective, and moisturizing properties. Therefore, this study proposes the development of a chitosan/alginate scaffold, loaded with sericin, to serve as a dermocosmetic platform complementing the pharmacological treatment of acne. The moisture content of the alginate and chitosan was determined as 14.7 and 21%, respectively; the ash content, which is similar for both polymers, was approximately 5%. The employed chitosan had a deacetylation degree of 82%, as determined by infrared spectrometry and corroborated by potentiometry. This technique was also used to determine the mannuronic/guluronic ratio of the alginate [M/G = 1.3] and confirm the identity of each one of the polymers in the raw materials and the resulting scaffolds. The molecular weights of alginate, chitosan, and sericin were 85, 5.1, and 57.4 kDa, respectively. The pH [6.31] and total protein concentration of the sericin solution [c(SER) = 6.1 mg/mL] were determined using UV-visible spectrophotometry. Swelling and release studies indicated that, although there were varying degrees of cross-linking and certain variables to control, the mechanism that defines the nature of both processes (otherwise complementary) is the relaxation of the polymer chains. Full article
Show Figures

Figure 1

19 pages, 8242 KiB  
Article
Effects of Polyhydroxybutyrate-co-hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds
by Mercedes Pérez-Recalde, Evelina Pacheco, Beatriz Aráoz and Élida B. Hermida
Gels 2025, 11(3), 200; https://doi.org/10.3390/gels11030200 - 14 Mar 2025
Cited by 1 | Viewed by 893
Abstract
Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them [...] Read more.
Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them with their own cells and printing them with specified shapes and dimensions. The question is how the addition of such particles affects the rheological responsiveness of the hydrogels (which is critical during the printing process) as well as mechanical parameters like the elastic modulus. This study tries to answer this question using a specific system: an alginate-gelatine hydrogel containing polyhydroxybutyrate-co-hydroxyvalerate (PHBV) microparticles. Scaffolds were made by bioprinting and moulding incorporating PHBV microspheres (7–12 μm in diameter) into alginate–gelatine inks (4.5 to 9.0% w/v). The microparticles (MP) were predominantly located within the polymeric matrix at concentrations up to 10 mg MP/mL ink. Higher particle concentrations disrupted their spatial distribution. Inks pre-crosslinked with 15 mM calcium and containingMPat concentrations ranging from 0 to 10 mg/mL demonstrated rheological characteristics appropriate for bioprinting, such as solid-like behaviour (G′ = 1060–1300 Pa, G″ = 720–930 Pa), yield stresses of 320–400 Pa, and pseudoplastic behaviour (static viscosities of 4000–5600 Pa·s and ~100 Pa·s at bioprinting shear rates). Furthermore, these inks allow high printing quality, assessed through scaffold dimensions, filament widths, and printability (Pr > 0.94). The modulus of elasticity in compression (E) of the scaffolds varied according to the content of MP and the manufacturing technique, with values resembling those of soft tissues (200–600 kPa) and exhibiting a maximum reinforcement effect with 3 mg MP/mL ink (bioprinted E = 273 ± 28 kPa; moulded E = 541 ± 66 kPa). Over the course of six days, the sample’s mass and shape remained stable during degradation in simulated body fluid (SBF). Thus, the alginate–gelatine hydrogel loaded with PHBV microspheres inks shows promise for targeted drug delivery in soft tissue bioengineering applications. Full article
(This article belongs to the Special Issue 3D Printing of Gel-Based Materials)
Show Figures

Figure 1

43 pages, 13402 KiB  
Review
Hydrogels and Microgels: Driving Revolutionary Innovations in Targeted Drug Delivery, Strengthening Infection Management, and Advancing Tissue Repair and Regeneration
by Md. Shahriar Ahmed, Sua Yun, Hae-Yong Kim, Sunho Ko, Mobinul Islam and Kyung-Wan Nam
Gels 2025, 11(3), 179; https://doi.org/10.3390/gels11030179 - 3 Mar 2025
Cited by 5 | Viewed by 2712
Abstract
Hydrogels and microgels are emerging as pivotal platforms in biomedicine, with significant potential in targeted drug delivery, enhanced infection management, and tissue repair and regeneration. These gels, characterized by their high water content, unique structures, and adaptable mechanical properties, interact seamlessly with biological [...] Read more.
Hydrogels and microgels are emerging as pivotal platforms in biomedicine, with significant potential in targeted drug delivery, enhanced infection management, and tissue repair and regeneration. These gels, characterized by their high water content, unique structures, and adaptable mechanical properties, interact seamlessly with biological systems, making them invaluable for controlled and targeted drug release. In the realm of infection management, hydrogels and microgels can incorporate antimicrobial agents, offering robust defenses against bacterial infections. This capability is increasingly important in the fight against antibiotic resistance, providing innovative solutions for infection prevention in wound dressings, surgical implants, and medical devices. Additionally, the biocompatibility and customizable mechanical properties of these gels make them ideal scaffolds for tissue engineering, supporting the growth and repair of damaged tissues. Despite their promising applications, challenges such as ensuring long-term stability, enhancing therapeutic agent loading capacities, and scaling production must be addressed for widespread adoption. This review explores the current advancements, opportunities, and limitations of hydrogels and microgels, highlighting research and technological directions poised to revolutionize treatment strategies through personalized and regenerative approaches. Full article
Show Figures

Figure 1

23 pages, 475 KiB  
Review
Antibiotic-Loaded Platelet-Rich Fibrin (AL-PRF) as a New Carrier for Antimicrobials: A Systematic Review of In Vitro Studies
by Wojciech Niemczyk, Jacek Żurek, Stanisław Niemczyk, Małgorzata Kępa, Natalia Zięba, Maciej Misiołek and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(5), 2140; https://doi.org/10.3390/ijms26052140 - 27 Feb 2025
Cited by 7 | Viewed by 1273
Abstract
Platelet-rich fibrin (PRF) has emerged as a promising scaffold for drug delivery, particularly in the context of antimicrobial therapies. This systematic review evaluates the incorporation of antibiotics into PRF to determine its efficacy as a localized antimicrobial delivery system compared to plain PRF [...] Read more.
Platelet-rich fibrin (PRF) has emerged as a promising scaffold for drug delivery, particularly in the context of antimicrobial therapies. This systematic review evaluates the incorporation of antibiotics into PRF to determine its efficacy as a localized antimicrobial delivery system compared to plain PRF without antibiotics. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, including 13 in vitro studies with a moderate risk of bias. Antibiotics were incorporated into PRF using different methodologies, including systemic administration before blood collection, addition to blood before centrifugation, and injection into formed PRF matrices. Outcomes were analyzed regarding antibacterial efficacy, structural integrity of PRF, and release kinetics. Antibiotic-enhanced PRF demonstrated significant antibacterial activity against various bacterial strains. The efficacy of the enhanced PRF was dependent on the type of antibiotic, its concentration, and incorporation method. Encapsulation approaches facilitated a sustained antibiotic release, while higher antibiotic concentrations occasionally disrupted PRF integrity. Systemic administration of antibiotics before blood collection enriches PRF effectively, producing significant inhibition zones. The antibacterial effects of PRF outperformed alternative carriers, such as collagen sponges. Antibiotic-loaded PRF is a potent tool for localized antimicrobial delivery, with promising applications in clinical settings. Further research is needed to standardize preparation protocols and explore the impact of different antibiotic delivery methods on PRF’s regenerative properties. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

19 pages, 1066 KiB  
Review
Chitosan as a Plurivalent Biopolymer in Nanodelivery Systems
by Marius Gabriel Dabija, Iulia Olaru, Tudor Ciuhodaru, Alina Stefanache, Cozmin Mihai, Ionut Iulian Lungu, Gabriela Calin, Carmen Stadoleanu and Daniela Liliana Damir
Polymers 2025, 17(5), 558; https://doi.org/10.3390/polym17050558 - 20 Feb 2025
Cited by 1 | Viewed by 1017
Abstract
(1) Background: This review study will delve into the potential of chitosan nanoparticles (NPs) as adaptable carriers for targeted drug delivery in different therapeutic areas. Chitosan is a biopolymer derived from chitin that has attracted interest in drug delivery applications because of its [...] Read more.
(1) Background: This review study will delve into the potential of chitosan nanoparticles (NPs) as adaptable carriers for targeted drug delivery in different therapeutic areas. Chitosan is a biopolymer derived from chitin that has attracted interest in drug delivery applications because of its high biocompatibility and biodegradability. (2) Methods: A comprehensive literature review was conducted by following a careful systematized protocol for searching databases like PubMed, Google Scholar and ScienceDirect. (3) Results: Chitosan NPs are good drug delivery vehicles, notably for cancer. Studies reveal that doxorubicin-loaded chitosan NPs dramatically enhance toxicity to tumor cells compared to free medicines, yielding tumor suppression rates of up to 60%. Researchers found that chemotherapeutics had an 85% encapsulation efficiency (EE), lowering systemic toxicity. Magnetic and pH-responsive chitosan NPs boost drug accumulation by 63% and apoptosis by 54%. Chitosan also boosts medication retention in the lungs by 2.3×, per pulmonary delivery trials. Chitosan NPs also boost ocular medication bioavailability by 3× and improve nasal absorption by 30%, crossing the blood–brain barrier. For bone regeneration, chitosan scaffolds enhance bone mineral density by 46%, facilitating osteogenesis and healing. (4) Conclusions: NPs made of chitosan provide a solid foundation for improving drug delivery systems; yet there are still issues with material variability, scalability, and meeting regulatory requirements that need fixing. Research into combination treatments, ways to increase their specificity, and ways to optimize these NPs offers promising prospects for the creation of novel therapeutic approaches with the potential to improve patient outcomes. Full article
(This article belongs to the Special Issue Nanoparticles in Drug Delivery Systems)
Show Figures

Figure 1

30 pages, 5691 KiB  
Article
Implantable Polymer Scaffolds Loaded with Paclitaxel–Cyclodextrin Complexes for Post-Breast Cancer Tissue Reconstruction
by Liliana-Roxana Balahura (Stămat), Andreea Ioana Dinu, Adriana Lungu, Hildegard Herman, Cornel Balta, Anca Hermenean, Andreea Iren Șerban and Sorina Dinescu
Polymers 2025, 17(3), 402; https://doi.org/10.3390/polym17030402 - 3 Feb 2025
Cited by 1 | Viewed by 1815
Abstract
The side effects associated with the chemotherapy of triple-negative breast cancer (TNBC), such as nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome activity, are responsible for the treatment failure and high mortality rates. Therefore, advanced delivery [...] Read more.
The side effects associated with the chemotherapy of triple-negative breast cancer (TNBC), such as nucleotide-binding oligomerization domain (NOD)-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome activity, are responsible for the treatment failure and high mortality rates. Therefore, advanced delivery systems have been developed to improve the transport and targeted administration of anti-tumor agents at the tumor sites using tissue engineering approaches. Implantable delivery systems based on biodegradable polymers are an effective alternative due high biocompatibility, porosity, and mechanical strength. Moreover, the use of paclitaxel (PTX)-cyclodextrin complexes increases the solubility and permeability of PTX, enhancing the bioavailability and efficacy of the drug. All of these properties contribute to the efficient encapsulation and controlled release of drugs, preventing the damage of healthy tissues. In the current study, we detailed the synthesis process and evaluation of 3D scaffolds based on gelatin functionalized with methacryloyl groups (GelMA) and pectin loaded with PTX–cyclodextrin inclusion complexes on TNBC pathogenesis in vitro and in vivo. Bio-physio-chemical analysis of the proposed scaffolds revealed favorable mechanical and biological properties for the cellular component. To improve the drug solubility, a host–guest interaction was performed by the complexation of PTX with a cyclodextrin derivative prior to scaffold synthesis. The presence of PTX suppressed the growth of breast tumor cells and promoted caspase-1 activity, the release of interleukin (IL)-1β, and the production of reactive oxygen species (ROS), conditioning the expression levels of the genes and proteins associated with breast tumorigenesis and NLRP3 inflammasome. The in vivo experiments suggested the activation of pyroptosis tumor cell death, confirming the in vitro experiments. In conclusion, the bio-mechanical properties of the GelMA and pectin-based scaffolds as well as the addition of the PTX–cyclodextrin complexes allow for the targeted and efficient delivery of PTX, suppressing the viability of the breast tumor cells via pyroptosis cell death initiation. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

17 pages, 4281 KiB  
Article
Release Profile and Antibacterial Activity of Thymus sibthorpii Essential Oil-Incorporated, Optimally Stabilized Type I Collagen Hydrogels
by Caglar Ersanli, Ioannis Skoufos, Konstantina Fotou, Athina Tzora, Yves Bayon, Despoina Mari, Eleftheria Sarafi, Konstantina Nikolaou and Dimitrios I. Zeugolis
Bioengineering 2025, 12(1), 89; https://doi.org/10.3390/bioengineering12010089 - 19 Jan 2025
Cited by 1 | Viewed by 1036
Abstract
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong [...] Read more.
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong antimicrobial activity of various EOs has already been studied and revealed, their characteristic high sensitivity and volatility drives the need towards a more efficient drug administration method via a biomaterial system. Herein, the potential of Thymus sibthorpii EO incorporated in functionalized antibacterial collagen hydrogels was investigated. At first, the optimally stabilized type I collagen hydrogels via six different multi-arm poly (ethylene glycol) succinimidyl glutarate (starPEG) crosslinkers were determined by assessing the free amine content and the resistance to enzymatic degradation. Subsequently, 0.5, 1, and 2% v/v of EO were incorporated into optimized collagen hydrogels, and the release profile, as well as release kinetics, were studied. Finally, biomaterial cytocompatibility tests were performed. Thymus sibthorpii EO was released from the hydrogel matrix via Fickian diffusion and showed sustained release and 0.5% v/v EO-loaded hydrogels showed adequate antibacterial activity against Staphylococcus aureus and did not show any statistically significant difference compared to penicillin (p < 0.05). Moreover, none of the fabricated composite antibacterial scaffolds displayed any cytotoxicity on NIH-3T3 fibroblasts. In conclusion, this work presents an innovative antibacterial biomaterial system for tissue engineering applications, which could serve as a promising alternative to antibiotics, contributing to coping with the issue of antimicrobial resistance. Full article
Show Figures

Graphical abstract

20 pages, 6017 KiB  
Article
Comparison of Two Synthesis Methods for 3D PLA-Ibuprofen Nanofibrillar Scaffolds
by Esteban Mena-Porras, Annaby Contreras-Aleman, María Francinie Guevara-Hidalgo, Esteban Avendaño Soto, Diego Batista Menezes, Marco Antonio Alvarez-Perez and Daniel Chavarría-Bolaños
Pharmaceutics 2025, 17(1), 106; https://doi.org/10.3390/pharmaceutics17010106 - 14 Jan 2025
Viewed by 1522
Abstract
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications. [...] Read more.
Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications. Methods: Solutions of 10% (w/v) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS. The scaffolds were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-transformed infrared (FT-IR) spectroscopy. The drug release profile was assessed by ultraviolet-visible spectrophotometry (UV-Vis), and cell adhesion and viability were evaluated using fibroblast culture assays. Statistical analyses included qualitative analyses, t-tests, and Likelihood ratio tests. Results: SEM revealed randomly arranged nanofibers forming reticulated meshes, with more uniform dimensions observed in the AJS group. TGA and DSC analyses confirmed the thermodynamic stability of the scaffolds and enthalpy changes consistent with IBU incorporation, which FT-IR and UV-Vis validated. Drug release was sustained over 384 h, showing no significant differences between ES and AJS scaffolds (p > 0.05). Cytotoxicity and cell viability assays confirmed scaffold biocompatibility, with cellular responses proportional to drug concentration but within safe limits. Conclusions: PLA-IBU nanofibrillar scaffolds were successfully synthesized using ES and AJS. Both methods yielded biocompatible systems with stable properties and controlled drug release. Further, in vivo studies are necessary to confirm their clinical potential. Full article
(This article belongs to the Special Issue Recent Advancements in the 3D Printing of Pharmaceutics)
Show Figures

Figure 1

Back to TopTop