Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes
Abstract
1. Introduction
Objectives
2. Methods
2.1. Focused Question
2.2. Search Strategy
2.3. Study Selection Process
2.4. Risk of Bias in Individual Studies
2.5. Quality Assessment
- Was the concentration of Hypocrellin used in the aPDT protocol explicitly stated?
- Was the source or manufacturer of Hypocrellin clearly identified?
- Was the incubation or pre-irradiation time prior to light activation described in detail?
- Were full technical specifications of the light source provided (e.g., type, wavelength, power output, fluence, power density)?
- Was a power meter used to validate the delivered light dose?
- Did the study include an appropriate negative or untreated control group?
- Were quantitative outcomes presented using valid statistical analysis?
- Was outcome reporting complete, with no missing or selectively reported data?
- Was the study free from apparent conflicts of interest or influence from funding sources?
2.6. Data Extraction
3. Results
3.1. Study Selection
3.2. Data Presentation
3.3. Overview of Study Characteristics
3.4. Characteristics of Light Sources Used in PDT
Author and Year | Light Source | Wavelength (nm) | Energy Density (Fluence) (J/cm2) | Power Output (mW/cm2) | Irradiation Time (s) |
---|---|---|---|---|---|
Niu et al., 2020 [31] | LED red light | 630 | Not stated | 5.68 | 600 |
Niu et al., 2021 [32] | LED red light | 630 | 3 | 5.68 | Not stated |
Yang et al., 2019 [33] | 8 W incandescent lamp | 400–780 | Not stated | Not stated | Not stated |
Zhang et al., 2025 [34] | LED light | 470 | 30 | Not stated | Not explicitly stated |
Jan et al., 2019 [35] | Xenon lamp with optical filter | 400–780 | 72 | 80 | 900 |
Liu et al., 2022a [36] | 470 nm laser | 470 | Not stated | Not stated | 1800 |
Liu et al., 2022b [37] | Laser | 470 | 180 | 100 | 1800 |
Lan et al., 2024 [38] | 980 nm NIR laser (via UCNPs upconversion) | Not stated | Not explicitly stated | 2000 | Variable (up to 1200 s) |
Ding et al., 2020 [39] | 671 nm laser | 671 | Not explicitly stated | 100 | Not stated |
Guo et al., 2020 [40] | Laser (assumed, red light) | Not stated | Not explicitly stated | Not stated | Not stated |
Author and Year | Hypocrellin Concentration |
---|---|
Niu et al., 2020 [31] | 0–1 μM |
Niu et al., 2021 [32] | 0.25 μM |
Yang et al., 2019 [33] | 0.5–1.0 μg/mL |
Zhang et al., 2025 [34] | 1 μg/mL, 0.125 μg/mL, 0.03125 μg/mL |
Jan et al., 2019 [35] | 0.1, 1, 10, and 100 μM |
Liu et al., 2022a [36] | Not stated |
Liu et al., 2022b [37] | 0.078–2.5 μg/mL |
Lan et al., 2024 [38] | 0, 5, 10, 50, 100, 200, 300, 400 μM |
Ding et al., 2020 [39] | 7.7 μM |
Guo et al., 2020 [40] | 0.69 and 1.38 mg/L, 250 and 500 mg/L |
4. Discussion
4.1. Results in the Context of Other Evidence
4.2. Limitations of the Evidence
4.3. Limitations of the Review Process
4.4. Implications for Practice, Policy, and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
aPDT | Antimicrobial Photodynamic Therapy |
ATP | Adenosine Triphosphate |
Ca2+ | Calcium Ion |
CDT | Chemodynamic Therapy |
COP1T | Cage-Organic Polymer 1T |
DNA | Deoxyribonucleic Acid |
ECM | Extracellular Matrix |
ERK | Extracellular signal-Regulated Kinase |
HA | Hypocrellin A |
HA-aPDT | Hypocrellin A-mediated Antimicrobial Photodynamic Therapy |
HA-PDT | Hypocrellin A-mediated Photodynamic Therapy |
HA-R-PDT | Hypocrellin A with Red Light-mediated Photodynamic Therapy |
HB | Hypocrellin B |
HB-aPDT | Hypocrellin B-mediated Antimicrobial Photodynamic Therapy |
HE | Hypocrellin B derivative E |
HE-PEG-NPs | HE-loaded PEGylated Nanoparticles |
HF | Hypocrellin B derivative F |
H2O2 | Hydrogen Peroxide |
JNK | c-Jun N-terminal Kinase |
LED | Light-Emitting Diode |
MBC | Minimum Bactericidal Concentration |
MIC | Minimum Inhibitory Concentration |
MMP | Matrix Metalloproteinase |
MnO2 | Manganese Dioxide |
MRSA | Methicillin-Resistant Staphylococcus aureus |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NIR | Near-Infrared |
ORCID | Open Researcher and Contributor ID |
PBS | Phosphate-Buffered Saline |
PDT | Photodynamic Therapy |
PEG | Polyethylene Glycol |
PICO | Population, Intervention, Comparison, Outcome |
PLA | Polylactic Acid |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PS | Photosensitizer |
PTT | Photothermal Therapy |
ROS | Reactive Oxygen Species |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
TGF-β1 | Transforming Growth Factor Beta 1 |
TIMP | Tissue Inhibitor of Metalloproteinases |
UCNPs | Upconversion Nanoparticles |
α-SMA | Alpha-Smooth Muscle Actin |
μg/mL | Micrograms per Milliliter |
μM | Micromolar |
mPEG-PCL | methoxy Poly(ethylene glycol)-b-Poly(ε-caprolactone) |
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Antimicrobial Resistance [Internet]. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 March 2025).
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; Dias da Silva, D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations [Internet]. Review on Antimicrobial Resistance. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 23 March 2025).
- Figueiredo-Godoi, L.M.A.; Garcia, M.T.; Pinto, J.G.; Ferreira-Strixino, J.; Faustino, E.G.; Pedroso, L.L.C.; Junqueira, J.C. Antimicrobial Photodynamic Therapy Mediated by Fotenticine and Methylene Blue on Planktonic Growth, Biofilms, and Burn Infections of Acinetobacter baumannii. Antibiotics 2022, 11, 619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eze, E.C.; Chenia, H.Y.; El Zowalaty, M.E. Acinetobacter Baumannii Biofilms: Effects of Physicochemical Factors, Virulence, Antibiotic Resistance Determinants, Gene Regulation, and Future Antimicrobial Treatments. Infect. Drug Resist. 2018, 11, 2277–2299. [Google Scholar] [CrossRef]
- Abdi, S.N.; Ghotaslou, R.; Ganbarov, K.; Mobed, A.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Acinetobacter Baumannii Efflux Pumps and Antibiotic Resistance. Infect. Drug Resist. 2020, 13, 423–434. [Google Scholar] [CrossRef]
- Łopaciński, M.; Fiegler-Rudol, J.; Niemczyk, W.; Skaba, D.; Wiench, R. Riboflavin- and Hypericin-Mediated Antimicrobial Photodynamic Therapy as Alternative Treatments for Oral Candidiasis: A Systematic Review. Pharmaceutics 2025, 17, 33. [Google Scholar] [CrossRef]
- Dembicka-Mączka, D.; Kępa, M.; Fiegler-Rudol, J.; Grzech-Leśniak, Z.; Matys, J.; Grzech-Leśniak, K.; Wiench, R. Evaluation of the Disinfection Efficacy of Er: YAG Laser Light on Single-Species Candida Biofilms—An In Vitro Study. Dent. J. 2025, 13, 88. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, M.; Liu, Z.; Wu, C.; Pan, X.; Huang, Z.; Lu, C.; Quan, G. Photodynamic therapy for cancer: Mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm 2024, 5, e603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiegler-Rudol, J.; Łopaciński, M.; Los, A.; Skaba, D.; Wiench, R. Riboflavin-Mediated Photodynamic Therapy in Periodontology: A Systematic Review of Applications and Outcomes. Pharmaceutics 2025, 17, 217. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins Antunes de Melo, W.C.; Celiešiūtė-Germanienė, R.; Šimonis, P.; Stirkė, A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021, 12, 2247–2272. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization. 2014. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 3 February 2025).
- Ziental, D.; Mlynarczyk, D.T.; Czarczynska-Goslinska, B.; Lewandowski, K.; Sobotta, L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. Nanomaterials 2021, 11, 2883. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Baron, E.D.; Scull, H.; Hsia, A.; Berlin, J.C.; McCormick, T.; Colussi, V.; Kenney, M.E.; Cooper, K.D.; Oleinick, N.L. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-translational studies. Toxicol. Appl. Pharmacol. 2007, 224, 290–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- ScienceDirect. Hypocrellin A [Internet]. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/hypocrellin-a (accessed on 23 March 2025).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 12004204, Hypocrellin D. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hypocrellin-D (accessed on 1 March 2025).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 119305, Hypocrellin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hypocrellin (accessed on 1 March 2025).
- Gao, R.; Xu, Z.; Deng, H.; Guan, Z.; Liao, X.; Zhao, Y.; Zheng, X.; Cai, Y. Enhanced hypocrellin production of Shiraia sp. SUPER-H168 by overexpression of alpha-amylase gene. PLoS ONE 2018, 13, e0196519. [Google Scholar] [CrossRef]
- Pachydaki, S.; Sobrin, L.; Miller, J.W. Photodynamic therapy and combination treatments. Int. Ophthalmol. Clin. 2007, 47, 95–115. [Google Scholar] [CrossRef]
- Merlin, J.P.J.; Rupasinghe, H.P.V.; Dellaire, G.; Murphy, K. Role of dietary antioxidants in p53-mediated cancer chemoprevention and tumor suppression. Oxid. Med. Cell Longev. 2021, 2021, 9924328. [Google Scholar] [CrossRef]
- Rajan, S.S.; Chandran, R.; Abrahamse, H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WIREs Nanomed. Nanobiotechnol. 2024, 16, e1942. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Feng, Y.; Wei, S.; Zhou, J.; Yu, B.; Shen, J. Delivering a hydrophobic anticancer drug for photodynamic therapy by amorphous formulation. Bioorg. Med. Chem. Lett. 2010, 20, 6172–6174. [Google Scholar] [CrossRef] [PubMed]
- Olivo, M.; Chin, W. Perylenequinones in photodynamic therapy: Cellular versus vascular response. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F.; Petrie, A. Method Agreement Analysis: A Review of Correct Methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2019. [Google Scholar] [CrossRef]
- Niu, T.; Tian, Y.; Wang, G.; Guo, G.; Tong, Y.; Shi, Y. Inhibition of ROS–NF-κB-dependent autophagy enhances Hypocrellin A united LED red light-induced apoptosis in squamous carcinoma A431 cells. Cell Signal. 2020, 69, 109550. [Google Scholar] [CrossRef]
- Niu, T.; Tian, Y.; Shi, Y.; Guo, G.; Tong, Y.; Wang, G. Antifibrotic effects of Hypocrellin A combined with LED red light irradiation on keloid fibroblasts by counteracting the TGF-β/Smad/autophagy/apoptosis signalling pathway. Photodiagn. Photodyn. Ther. 2021, 34, 102202. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, C.; Zhuge, Y.; Zhang, J.; Xu, K.; Zhang, Q.; Zhang, H.; Chen, H.; Chu, M.; Jia, C. Photodynamic antifungal activity of hypocrellin A against Candida albicans. Front. Microbiol. 2019, 10, 1810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, X.; Ran, X.; Gao, R.; Sun, J.; Zhuang, K.; You, Z.; Zhang, Z.; Ran, Y. Hypocrellin A-mediated photodynamic antibacterial activity against Cutibacterium acnes: An in vitro study. Photodiagn. Photodyn. Ther. 2025, 51, 104467. [Google Scholar] [CrossRef]
- Jan, A.; Liu, C.; Deng, H.; Li, J.; Ma, W.; Zeng, X.; Ji, Y. In vitro photodynamic inactivation effects of hypocrellin B on azole-sensitive and resistant Candida albicans. Photodiagn. Photodyn. Ther. 2019, 27, 419–427. [Google Scholar] [CrossRef]
- Liu, X.; Guo, C.; Zhuang, K.; Chen, W.; Zhang, M.; Dai, Y.; Tan, L. A recyclable and light-triggered nanofibrous membrane against the emerging fungal pathogen Candida auris. PLoS Pathog. 2022, 18, e1010534. [Google Scholar] [CrossRef]
- Liu, X.; Fang, R.; Feng, R.; Li, Q.; Su, M.; Hou, C.; Zhuang, K.; Dai, Y.; Lei, N.; Jiang, Y.; et al. Cage-modified hypocrellin against multidrug-resistant Candida spp. with unprecedented activity in light-triggered combinational photodynamic therapy. Drug Resist. Updates 2022, 65, 100887. [Google Scholar] [CrossRef]
- Lan, J.; Chen, S.; Chen, Z.; Luo, D.; Yu, C.; Zeng, L.; Sun, W.; Zhang, X.; Yao, X.; Wu, F.; et al. Chemo-photodynamic antitumour therapy based on Er-doped upconversion nanoparticles coated with hypocrellin B and MnO2. Biomater. Adv. 2024, 161, 213891. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, W.; Wu, J.; Zheng, X.; Ge, J.; Ren, H.; Zhang, W.; Lee, C.; Wang, P. Novel near-infrared hypocrellin derivatives for synergistic photodynamic and photothermal therapy. Chem. Asian J. 2020, 15, 3462–3468. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-Y.; Yan, S.-Z.; Tao, X.; Yang, Q.; Li, Q.; Wang, T.-S.; Yu, S.-Q.; Chen, S.-L. Evaluation of hypocrellin A-loaded lipase sensitive polymer micelles for intervening methicillin-resistant Staphylococcus aureus antibiotic-resistant bacterial infection. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110230. [Google Scholar] [CrossRef]
- Wang, X.; Ip, M.; Leung, A.W.; Wang, P.; Zhang, H.; Hua, H.; Xu, C. Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus. Ultrasonics 2016, 65, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Rajan, S.S.; Chandran, R.; Abrahamse, H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Int. J. Nanomed. 2024, 19, 11023–11038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Xu, Y.; Liao, Q.; Xie, M.; Tao, H.; Wang, H.L. Synergistic effect of hypocrellin B and curcumin on photodynamic inactivation of Staphylococcus aureus. Microb. Biotechnol. 2021, 14, 692–707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez, C.; Zúñiga, T.; Palavecino, C.E. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagn. Photodyn. Ther. 2021, 34, 102285. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhou, J.H.; Dong, C.; Ma, F.; Wei, S.H.; Shen, J. Water-soluble hypocrellin A nanoparticles as a photodynamic therapy delivery system. Dye. Pigment. 2009, 82, 90–94. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Q.; Tian, L.; Huang, Z.; Tang, Y.; Wen, Y.; Yu, F.; Yan, X.; Zhao, Y.; Wu, Z.; et al. Advancements and Future Prospects in Hypocrellins Production and Modification for Photodynamic Therapy. Fermentation 2024, 10, 559. [Google Scholar] [CrossRef]
- Moan, J.; Pettersen, E.O.; Christensen, T. The mechanism of photodynamic inactivation of human cells in vitro in the presence of haematoporphyrin. Br. J. Cancer 1979, 39, 398–407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rahman, M.A.; Jalouli, M.; Yadab, M.K.; Al-Zharani, M. Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities. Cancers 2025, 17, 701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahmoudi, H.; Bahador, A.; Pourhajibagher, M.; Alikhani, M.Y. Antimicrobial Photodynamic Therapy: An Effective Alternative Approach to Control Bacterial Infections. J. Lasers Med. Sci. 2018, 9, 154–160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiegler-Rudol, J.; Zięba, N.; Turski, R.; Misiołek, M.; Wiench, R. Hypericin-Mediated Photodynamic Therapy for Head and Neck Cancers: A Systematic Review. Biomedicines 2025, 13, 181. [Google Scholar] [CrossRef]
- Kruczek-Kazibudzka, A.; Lipka, B.; Fiegler-Rudol, J.; Tkaczyk, M.; Skaba, D.; Wiench, R. Toluidine Blue and Chlorin-e6 Mediated Photodynamic Therapy in the Treatment of Oral Potentially Malignant Disorders: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 2528. [Google Scholar] [CrossRef]
- Warakomska, A.; Fiegler-Rudol, J.; Kubizna, M.; Skaba, D.; Wiench, R. The Role of Photodynamic Therapy Mediated by Natural Photosensitisers in the Management of Peri-Implantitis: A Systematic Review. Pharmaceutics 2025, 17, 443. [Google Scholar] [CrossRef]
- Li, R.; Yang, T.; Peng, X.; Feng, Q.; Hou, Y.; Zhu, J.; Chu, D.; Duan, X.; Zhang, Y.; Zhang, M. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host–Guest Complexation for Photodynamic Therapy. Nano-Micro Lett. 2024, 16, 226. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Fekrazad, R.; Zhang, L.; Jiang, X.; He, G.; Wen, X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: Recent advances and future prospects. Front. Immunol. 2023, 14, 1275859. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramalho, M.J.; Loureiro, J.A.; Coelho, M.A.N.; Pereira, M.C. Transferrin Receptor-Targeted Nanocarriers: Overcoming Barriers to Treat Glioblastoma. Pharmaceutics 2022, 14, 279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 776–791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajkhowa, S.; Hussain, S.Z.; Agarwal, M.; Zaheen, A.; Al-Hussain, S.A.; Zaki, M.E.A. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024, 16, 1160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Willis, J.A.; Cheburkanov, V.; Chen, S.; Soares, J.M.; Kassab, G.; Blanco, K.C.; Bagnato, V.S.; de Figueiredo, P.; Yakovlev, V.V. Breaking down antibiotic resistance in methicillin-resistant Staphylococcus aureus: Combining antimicrobial photodynamic and antibiotic treatments. Proc. Natl. Acad. Sci. USA 2022, 119, e2208378119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Source | Search Term | Filters | Number of Results |
---|---|---|---|
PubMed | (hypocrellin) AND (“photodynamic therapy” OR “photodynamic treatment” OR aPDT) AND (antimicrobial OR “microbial infection” OR bacteria OR fungi OR “Candida albicans”) | English language Publication years: 2015–2025 Full text | 83 |
Embase | (‘hypocrellin’:ti,ab,kw) AND (‘photodynamic therapy’:ti,ab,kw OR ‘photodynamic treatment’:ti,ab,kw OR ‘apdt’:ti,ab,kw OR ‘antimicrobial photodynamic therapy’:ti,ab,kw OR ‘photodynamic inactivation’:ti,ab,kw) AND (‘antimicrobial’:ti,ab,kw OR ‘microbial infection’:ti,ab,kw OR ‘bacteria’:ti,ab,kw OR ‘fungi’:ti,ab,kw OR ‘candida albicans’:ti,ab,kw OR ‘c. albicans’:ti,ab,kw) | Publication years: 2015–2025 Controlled Clinical Trial Randomized Controlled Trial | 26 |
Scopus | TITLE-ABS-KEY(hypocrellin) AND (TITLE-ABS-KEY(“photodynamic therapy”) OR TITLE-ABS-KEY(“photodynamic treatment”) OR TITLE-ABS-KEY(“apdt”) OR TITLE-ABS-KEY(“antimicrobial photodynamic therapy”) OR TITLE-ABS-KEY(“photodynamic inactivation”)) AND (TITLE-ABS-KEY(antimicrobial) OR TITLE-ABS-KEY(“microbial infection”) OR TITLE-ABS-KEY(bacteria) OR TITLE-ABS-KEY(fungi) OR TITLE-ABS-KEY(“candida albicans”) OR TITLE-ABS-KEY(“c. albicans”)) | Article Publication years: 2015–2025 | 57 |
Cochrane | (“hypocrellin” OR “hypocrellin-mediated photodynamic therapy” OR “hypocrellin apdt”) AND (“candida albicans” OR “c. albicans”) AND (“antimicrobial photodynamic therapy” OR “apdt” OR “photodynamic inactivation” OR “photodynamic therapy” OR “photodynamic treatment”) | Publication years: 2015–2025 | 0 |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total | Risk |
---|---|---|---|---|---|---|---|---|---|---|---|
Niu et al., 2020 [31] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Niu et al., 2021 [32] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 | Low |
Yang et al., 2019 [33] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 | Low |
Zhang et al., 2025 [34] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Jan et al., 2019 [35] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 8 | Low |
Liu et al., 2022a [36] | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 7 | Low |
Liu et al., 2022b [37] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Lan et al., 2024 [38] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Ding et al., 2020 [39] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Guo et al., 2020 [40] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | Low |
Author | Country | Study Type |
---|---|---|
Niu et al., 2020 [31] | China | In vitro |
Niu et al., 2021 [32] | China | In vitro |
Yang et al., 2019 [33] | China | In vitro |
Zhang et al., 2025 [34] | China | In vitro |
Jan et al., 2019 [35] | China | In vitro |
Liu et al., 2022a [36] | China | In vitro and in vivo |
Liu et al., 2022b [37] | China | In vitro and in vivo |
Lan et al., 2024 [38] | China | In vitro |
Ding et al., 2020 [39] | China | In vitro and in vivo |
Guo et al., 2020 [40] | China | In vitro and in vivo |
Reference Number | Author and Year | Cells Evaluated | Study Groups | Outcomes |
---|---|---|---|---|
[31] | Niu et al., 2020 | Human squamous carcinoma A431 cells |
|
|
[32] | Niu et al., 2021 | Primary human keloid fibroblasts |
|
|
[33] | Yang et al., 2019 | Candida albicans—SC5314 reference strain and two clinical isolates (ATCC18804 and 07318) |
|
|
[34] | Zhang et al., 2025 | Cutibacterium acnes—strain ATCC 11j827 HaCaT human keratinocyte cells |
|
|
[35] | Jan et al., 2019 | Candida albicans ATCC 10231—standard laboratory strain Azole-sensitive clinical isolate Azole-resistant clinical isolate |
|
|
[36] | Liu et al., 2022a | HeLa cells (a human cervical cancer cell line) for in vitro experiments and 4T1 tumor-bearing mice (a murine breast cancer model) for in vivo studies | In vitro (HeLa cells):
|
|
[37] | Liu et al., 2022b | Candida auris (strain BJCA001) fungal cells in both planktonic and biofilm forms. L929 mouse fibroblast cells | In vitro:
|
|
[38] | Lan et al., 2024 | Candida spp.: Candida albicans (HXCB152) Candida auris (BJCA001) Candida tropicalis (HXCT010) Candida metapsilosis (HXCM055) Human keratinocytes (HaCaT cells) and mouse fibroblasts (L929 cells) were also used for cytotoxicity and wound healing evaluations. A rat model was employed to assess in vivo antifungal efficacy and wound healing. | In vitro:
|
|
[39] | Ding et al., 2020 | HeLa cells and 4T1 cells | In vitro study groups (HeLa cells):
|
|
[40] | Guo et al., 2020 | Methicillin-resistant Staphylococcus aureus | In Vitro Study Groups: MRSA treated with:
Mice with induced acute peritonitis by MRSA, treated with:
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiegler-Rudol, J.; Kapłon, K.; Kotucha, K.; Moś, M.; Skaba, D.; Kawczyk-Krupka, A.; Wiench, R. Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes. Int. J. Mol. Sci. 2025, 26, 4038. https://doi.org/10.3390/ijms26094038
Fiegler-Rudol J, Kapłon K, Kotucha K, Moś M, Skaba D, Kawczyk-Krupka A, Wiench R. Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes. International Journal of Molecular Sciences. 2025; 26(9):4038. https://doi.org/10.3390/ijms26094038
Chicago/Turabian StyleFiegler-Rudol, Jakub, Katarzyna Kapłon, Kornela Kotucha, Magdalena Moś, Dariusz Skaba, Aleksandra Kawczyk-Krupka, and Rafał Wiench. 2025. "Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes" International Journal of Molecular Sciences 26, no. 9: 4038. https://doi.org/10.3390/ijms26094038
APA StyleFiegler-Rudol, J., Kapłon, K., Kotucha, K., Moś, M., Skaba, D., Kawczyk-Krupka, A., & Wiench, R. (2025). Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes. International Journal of Molecular Sciences, 26(9), 4038. https://doi.org/10.3390/ijms26094038