Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of In Situ Matrix Systems
2.3. Evaluations
2.3.1. Physical Appearance and Viscosity Measurement
2.3.2. Injectability Test
2.3.3. Determination of Contact Angle
2.3.4. Study of Mechanical Property
2.3.5. Test of Gel Formation in an Aqueous Environment
2.3.6. Microscopic Interfacial Change
2.3.7. Drug Content and In Vitro Drug Release Test
2.3.8. In Vitro Degradability Study
2.3.9. Topography of Transformed In Situ Matrices
Topography Observation by a Scanning Electron Microscope (SEM)
Topography Observation by Synchrotron Radiation X-Ray Tomographic Microscopy (SRXTM)
2.3.10. Antimicrobial Activity Test
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Appearance, Viscosity, and Injectability
3.2. Contact Angel
3.3. Mechanical Property
3.4. Matrix Formation
3.5. Microscopic Interfacial Change
3.6. In Vitro Drug Release and In Vitro Degradation
3.7. Topography from SEM and SRXTM
3.8. Antimicrobial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cindradewi, A.W.; Bandi, R.; Park, C.-W.; Park, J.-S.; Lee, E.-A.; Kim, J.-K.; Kwon, G.-J.; Han, S.-Y.; Lee, S.-H. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers 2021, 13, 2990. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Shim, S.-B.; Park, J.-H.; Chung, I. Interfacial Properties and Melt Processability of Cellulose Acetate Propionate Composites by Melt Blending of Biofillers. Polymers 2022, 14, 4286. [Google Scholar] [CrossRef] [PubMed]
- Nejström, M.; Andreasson, B.; Sjölund, J.; Eivazi, A.; Svanedal, I.; Edlund, H.; Norgren, M. On Structural and Molecular Order in Cellulose Acetate Butyrate Films. Polymers 2023, 15, 2205. [Google Scholar] [CrossRef]
- Huang, K.; Wang, B.; Cao, Y.; Li, H.; Wang, H.J.; Lin, W.; Mu, C.; Liao, D. Homogeneous Preparation of Cellulose Acetate Propionate (CAP) and Cellulose Acetate Butyrate (CAB) from Sugarcane Bagasse Cellulose in Ionic Liquid. J. Agric. Food Chem. 2011, 59, 5376–5381. [Google Scholar] [CrossRef]
- Shukla, A.J.; Price, J.C. Effect of Drug Loading and Molecular Weight of Cellulose Acetate Propionate on the Release Characteristics of Theophylline Microspheres. Pharm. Res. 1991, 8, 1396–1400. [Google Scholar] [CrossRef]
- Sobral, M.C.; Sobral, A.J.; Guthrie, J.T.; Gil, M.H. Ketotifen controlled release from cellulose acetate propionate and cellulose acetate butyrate membranes. J. Mater. Sci. Mater. Med. 2008, 19, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Senarat, S.; Pornsawad, P.; Lertsuphotvanit, N.; Østergaard, J.; Phaechamud, T. Numerical Mechanistic Modelling of Drug Release from Solvent-Removal Zein-Based In Situ Gel. Pharmaceutics 2023, 15, 2401. [Google Scholar] [CrossRef] [PubMed]
- Puyathorn, N.; Senarat, S.; Lertsuphotvanit, N.; Phaechamud, T. Physicochemical and Bioactivity Characteristics of Doxycycline Hyclate-Loaded Solvent Removal-Induced Ibuprofen-Based In Situ Forming Gel. Gels 2023, 9, 128. [Google Scholar] [CrossRef]
- Visentin, D.; Gobin, I.; Maglica, Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023, 11, 1832. [Google Scholar] [CrossRef]
- Hashim, N.T.; Babiker, R.; Padmanabhan, V.; Ahmed, A.T.; Chaitanya, N.C.S.K.; Mohammed, R.; Priya, S.P.; Ahmed, A.; El Bahra, S.; Islam, M.S.; et al. The Global Burden of Periodontal Disease: A Narrative Review on Unveiling Socioeconomic and Health Challenges. Int. J. Environ. Res. Public Health 2025, 22, 624. [Google Scholar] [CrossRef]
- Alahmari, M.M.; AlShaiban, H.M.; Mahmood, S.E. Prevalence and Associated Factors for Periodontal Disease among Type I and II Diabetes Mellitus Patients: A Cross-Sectional Study. Healthcare 2023, 11, 796. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.R.; Singh, S.P.; Martande, S.S.; Naik, S.B.; Kalra, N.P.; Suke, D.K. Clinical and microbiological effects of levofloxacin in the treatment of chronic periodontitis: A randomized, placebo-controlled clinical trial. J. Investig. Clin. Dent. 2015, 62, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Senarat, S.; Rojviriya, C.; Puyathorn, N.; Lertsuphotvanit, N.; Phaechamud, T. Levofloxacin HCl-Incorporated Zein-Based Solvent Removal Phase Inversion In Situ Forming Gel for Periodontitis Treatment. Pharmaceutics 2023, 15, 1199. [Google Scholar] [CrossRef]
- Senarat, S.; Tuntarawongsa, S.; Lertsuphotvanit, N.; Rojviriya, C.; Phaechamud, T.; Chantadee, T. Levofloxacin HCl-Loaded Eudragit L-Based Solvent Exchange-Induced In Situ Forming Gel Using Monopropylene Glycol as a Solvent for Periodontitis Treatment. Gels 2023, 9, 583. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.U.; Umar, M.N.; Khan, E.; Al-Joufi, F.A.; Abed, S.N.; Said, M.; Ullah, H.; Iftikhar, M.; Zahoor, M.; Khan, F.A. Levofloxacin Cocrystal/Salt with Phthalimide and Caffeic Acid as Promising Solid-State Approach to Improve Antimicrobial Efficiency. Antibiotics 2022, 11, 797. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Santimaleeworagun, W.; Narakornwit, W.; Chuenbarn, T.; Mahadlek, J.; Chantadee, T.; Phaechamud, T. Borneol-based antisolvent-induced in situ forming matrix for crevicular pocket delivery of vancomycin hydrochloride. Int. J. Pharm. 2022, 617, 121603. [Google Scholar] [CrossRef]
- Khaing, E.M.; Jitrangsri, K.; Chomto, P.; Phaechamud, T. Nitrocellulose for Prolonged Permeation of Levofloxacin HCl-Salicylic Acid In Situ Gel. Polymers 2024, 16, 989. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Tawachkultanadilok, P.; Osakoo, N.; Keawkumay, C.; Deekamwong, K.; Sosa, N.; Rojviriya, C.; Nijpanich, S.; Chanlek, N.; Prayoonpokarach, S.; Wittayakun, J. Synthesis and Characterization of Zeolite NaY Dispersed on Bamboo Wood. Materials 2023, 16, 4946. [Google Scholar] [CrossRef]
- Eastman Cellulose Esters for Formulated Products. Available online: https://www.eastman.com/en/products/industries/medical/pharmaceutical-ingredients/products/cellulose-esters (accessed on 24 December 2024).
- Biswas, A.; do Socorro Rocha Bastos, M.; Furtado, R.F.; Kuzniar, G.; Boddu, V.; Cheng, H.N. Evaluation of the properties of cellulose ester films that incorporate essential oils. Int. J. Polym. Sci. 2020, 2020, 4620868. [Google Scholar] [CrossRef]
- Tsampanakis, I.; White, A.O. The Mechanics of Forming Ideal Polymer–Solvent Combinations for Open-Loop Chemical Recycling of Solvents and Plastics. Polymers 2022, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Yu, H.Y. Enthalpic Interactions and Solution Behaviors of Solvent-Free Polymer Brushes. Polymers 2022, 14, 5237. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Svirskis, D.; Waterhouse, G.I.N.; Wu, Z. Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel. Pharmaceutics 2023, 15, 2360. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, M.; Sarvestani, A. Effect of chain length distribution on mechanical behavior of polymeric networks. Eur. Polym. J. 2017, 87, 136–146. [Google Scholar] [CrossRef]
- Collar, E.P.; García-Martínez, J.-M. Mechanical Behavior of Polymeric Materials: Recent Studies. Polymers 2024, 16, 2821. [Google Scholar] [CrossRef]
- Herz, M.M.; Braun, S.; Hoffmann, N.; Lachmann, S.; Bartha, V.; Petsos, H. Treating Periodontitis Strictly Non-Surgically—A Retrospective Long-Term Analysis of Tooth Loss During Supportive Periodontal Care. Dent. J. 2025, 13, 146. [Google Scholar] [CrossRef]
- Chantadee, T.; Santimaleeworagun, W.; Phorom, Y.; Chuenbarn, T.; Phaechamud, T. Saturated fatty acid-based in situ forming matrices for localized antimicrobial delivery. Pharmaceutics 2020, 12, 808. [Google Scholar] [CrossRef]
- Chantadee, T.; Sirirak, J.; Hoshino, T.; Phaechamud, T. Augmentative molecular aspect for phase inversion of vancomycin hydrochloride-loaded fatty acid in situ forming matrices. Mater. Des. 2021, 199, 109429. [Google Scholar] [CrossRef]
- Roberts, S.A.; Lee, C.; Singh, S.; Agrawal, N. Versatile Encapsulation and Synthesis of Potent Liposomes by Thermal Equilibration. Membranes 2022, 12, 319. [Google Scholar] [CrossRef]
- Khaing, E.M.; Lertsuphotvanit, N.; Thammasut, W.; Rojviriya, C.; Chansatidkosol, S.; Phattarateera, S.; Pichayakorn, W.; Phaechamud, T. Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole. Polymers 2024, 16, 3477. [Google Scholar] [CrossRef]
- Hirose, R.; Sugano, K. Effect of Food Viscosity on Drug Dissolution. Pharm. Res. 2024, 41, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A diagnostic biomarker. J. Indian Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef]
- Seoane-Viaño, I.; Seoane-Gigirey, M.; Bendicho-Lavilla, C.; Gigirey, L.M.; Otero-Espinar, F.J.; Seoane-Trigo, S. The Integration of Advanced Drug Delivery Systems into Conventional Adjuvant Therapies for Peri-Implantitis Treatment. Pharmaceutics 2024, 16, 769. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Orelma, H.; Ropponen, J. Injection Molding of Thermoplastic Cellulose Esters and Their Compatibility with Poly(Lactic Acid) and Polyethylene. Materials 2018, 11, 2358. [Google Scholar] [CrossRef] [PubMed]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Xu, H.; Liu, L.; Li, X.; Ma, J.; Liu, R.; Wang, S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J. Pharm. Sci. 2019, 14, 445–454. [Google Scholar] [CrossRef]
- Thammasut, W.; Senarat, S.; Tuntarawongsa, S.; Narakornwit, W.; Rojviriya, C.; Pichayakorn, W.; Phaechamud, T. Development of benzydamine HCl loaded-cellulose acetate butyrate in situ forming gels for periodontal treatment. J. Drug Deliv. Sci. Technol. 2024, 101, 106147. [Google Scholar] [CrossRef]
- Thammasut, W.; Rojviriya, C.; Chaiya, P.; Phaechamud, T.; Limsitthichaikoon, S. Moxifloxacin HCl -loaded cellulose acetate butylate in situ forming gel for periodontitis treatment. AAPS PharmSciTech 2024, 25, 242. [Google Scholar] [CrossRef]
- Altun, E.; Yuca, E.; Ekren, N.; Kalaskar, D.M.; Ficai, D.; Dolete, G.; Ficai, A.; Gunduz, O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics 2021, 13, 613. [Google Scholar] [CrossRef]
- Bruschi, M.L. Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing Limited: Sawston, UK, 2015; ISBN 978-0-08-100092-2. [Google Scholar]
- Yarce, C.J.; Pineda, D.; Correa, C.E.; Salamanca, C.H. Relationship between Surface Properties and In Vitro Drug Release from a Compressed Matrix Containing an Amphiphilic Polymer Material. Pharmaceuticals 2016, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Nejström, M. Structural Impact on Some Physical Properties of Cellulose-Based Films. Bachelor’s Thesis, Faculty of Science, Technology and Media, Mid Sweden University, Sundsvall, Sweden, 2023; p. 19. [Google Scholar]
- Senarat, S.; Wai Lwin, W.; Mahadlek, J.; Phaechamud, T. Doxycycline hyclate-loaded in situ forming gels composed from bleached shellac, Ethocel, and Eudragit RS for periodontal pocket delivery. Saudi. Pharm. J. 2021, 29, 252–263. [Google Scholar] [CrossRef]
- Ahuja, G.; Pathak, K. Porous carriers for controlled/modulated drug delivery. Indian J. Pharm. Sci. 2009, 71, 599–607. [Google Scholar] [CrossRef]
- Mohammed, A.F.; Hatim, Q.Y.; Oraibi, A.I.; Alsafar, T.H.; Alsandook, T.A.; Lutfi, W.; Al-Hussaniy, H.A. Antimicrobial management of dental infections: Updated review. Medicine 2024, 103, e38630. [Google Scholar] [CrossRef]
- Khaing, E.M.; Senarat, S.; Jitrangsri, K.; Phaechamud, T. Fluconazole-Loaded Ibuprofen In-Situ Gel-Based Oral Spray for Oropharyngeal Candidiasis Treatment. AAPS PharmSciTech. 2024, 25, 89. [Google Scholar] [CrossRef]
- Agrawal, A.G.; Kumar, A.; Gide, P.S. Toxicity study of a self-nanoemulsifying drug delivery system containing N-methyl pyrrolidone. Drug. Res. 2015, 65, 446–448. [Google Scholar] [CrossRef]
- Jouyban, A.; Fakhree, M.A.; Shayanfar, A. Review of pharmaceutical applications of N-methyl-2-pyrrolidone. J. Pharm. Sci. 2010, 13, 524–535. [Google Scholar] [CrossRef]
- Gomes, G.S.; Almeida, A.T.; Kosaka, P.M.; Rogero, S.O.; Cruz, Á.S.; Ikeda, T.I.; Petri, D.F. Cellulose Acetate Propionate Coated Titanium: Characterization and Biotechnological Application. Mater. Res. 2007, 10, 469–474. [Google Scholar] [CrossRef]
- Tan, H.L.; Kai, D.; Pasbakhsh, P.; Teow, S.Y.; Lim, Y.Y.; Pushpamalar, J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surf. B. 2020, 188, 110713. [Google Scholar] [CrossRef]
- Huang, C.; Niu, H.; Wu, C.; Ke, Q.; Mo, X.; Lin, T. Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. J. Biomed. Mater. Res. A. 2013, 101, 115–122. [Google Scholar] [CrossRef]
- Speck, S.; Wenke, C.; Feßler, A.T.; Kacza, J.; Geber, F.; Scholtzek, A.D.; Hanke, D.; Eichhorn, I.; Schwarz, S.; Rosolowski, M.; et al. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon 2020, 6, e04070. [Google Scholar] [CrossRef] [PubMed]
- Rattanaumpawan, P.; Nachamkin, I.; Bilker, W.B.; Roy, J.A.; Metlay, J.P.; Zaoutis, T.E.; Lautenbach, E. High fluoroquinolone MIC is associated with fluoroquinolone treatment failure in urinary tract infections caused by fluoroquinolone susceptible Escherichia coli. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Conrads, G.; Klomp, T.; Deng, D.; Wenzler, J.S.; Braun, A.; Abdelbary, M.M.H. The antimicrobial susceptibility of porphyromonas gingivalis: Genetic repertoire, global phenotype, and review of the literature. Antibiotics 2021, 10, 1438. [Google Scholar] [CrossRef] [PubMed]
Formulation | % w/w | Formulation | % w/w | ||||
---|---|---|---|---|---|---|---|
Polymer | Lh | NMP | Polymer | Lh | NMP | ||
NMP | 100 | LhN | 1 | 99 | |||
LhA5N | 5 | 1 | 94 | LhC5N | 5 | 1 | 94 |
LhA10N | 10 | 1 | 89 | LhC10N | 10 | 1 | 89 |
LhA15N | 15 | 1 | 84 | LhC15N | 15 | 1 | 84 |
LhA20N | 20 | 1 | 79 | LhC20N | 20 | 1 | 79 |
LhB5N | 5 | 1 | 94 | LhD5N | 5 | 1 | 94 |
LhB10N | 10 | 1 | 89 | LhD10N | 10 | 1 | 89 |
LhB15N | 15 | 1 | 84 | LhD15N | 15 | 1 | 84 |
LhB20N | 20 | 1 | 79 | LhD20N | 20 | 1 | 79 |
Formulations | Viscosity (cP) | Injectability (N) | Contact Angle (°) | Compression Force (N) | Adhesion Force (N) | |
---|---|---|---|---|---|---|
Glass Slide | Agarose Gel | |||||
LhA5N | 5.75 ± 0.96 | 0.086 ± 0.003 | 9.48 ± 0.17 | 9.06 ± 0.02 | - | - |
LhA10N | 12.91 ± 1.61 | 0.097 ± 0.07 | 11.61 ± 0.12 | 10.22± 0.18 | - | - |
LhA15N | 28.76 ± 1.20 | 0.103 ± 0.013 | 14.32 ± 0.13 | 13.48 ± 0.26 | 5.242 ± 1.15 h,l | 0.014 ± 0.008 |
LhA20N | 91.84 ± 2.84 | 0.116 ± 0.011 | 16.37 ± 0.19 | 18.27 ± 0.34 | 9.758 ± 1.12 h,m | 0.022 ± 0.005 |
LhB5N | 15.02 ± 1.44 | 0.095 ± 0.004 | 11.06 ± 0.18 | 11.17 ± 0.06 | - | - |
LhB10N | 53.25 ± 6.95 | 0.103 ± 0.008 | 15.51 ± 0.12 | 17.39± 0.11 | - | - |
LhB15N | 230.89 ± 17.12 | 0.115 ± 0.013 | 23.22 ± 0.27 a | 29.24 ± 0.21 a | 17.62 ± 0.78 i,l | 0.091 ± 0.064 |
LhB20N | 607.15 ± 55.56 | 0.121 ± 0.014 | 32.18 ± 0.24 b | 41.22 ± 0.27 b | 40.64 ± 2.37 i,m | 0.143 ± 0.022 |
LhC5N | 31.24 ± 0.67 | 0.107 ± 0.012 | 17.44 ± 0.26 c | 22.36 ± 0.24 c | - | - |
LhC10N | 259.72 ± 4.18 | 0.116 ± 0.012 | 23.78 ± 0.28 d | 30.31 ± 0.74 d | - | - |
LhC15N | 977.1 ± 95.21 | 0.124 ± 0.019 | 32.77± 0.47 e | 38.63 ± 0.51 e | 28.79 ± 1.72 j,l | 0.039 ± 0.03 |
LhC20N | 3199.18 ± 64.96 | 0.132 ± 0.021 | 39.26 ± 0.67 f | 47.61 ± 0.61 f | 43.48 ± 1.95 j,m | 0.081 ± 0.087 |
LhD5N | 18.87 ± 0.09 | 0.101 ± 0.003 | 13.44 ± 0.27 | 13.07 ± 0.04 | - | - |
LhD10N | 55.8 ± 1.25 | 0.112 ± 0.006 | 20.28 ± 0.36 | 23.31± 0.10 | - | - |
LhD15N | 289.49 ± 15.70 | 0.120 ± 0.011 | 27.61 ± 1.32 | 33.05 ± 0.08 | 20.97 ± 2.57 k | 0.012 ± 0.004 |
LhD20N | 673.84 ± 6.09 | 0.126 ± 0.019 | 35.67 ± 1.10 g | 44.61 ± 0.21 g | 42.84 ± 2.07 k,m | 0.075± 0.013 |
LhN | 4.29 ± 0.27 | 0.032 ± 0.002 | 4.06 ± 0.03 | 3.17 ± 0.02 | - | - |
NMP | 3.82 ± 0.04 | 0.016 ± 0.000 | 2.11 ± 0.26 | 2.03 ± 0.18 | - | - |
Formulation | Modeling | Criteria for Model Selection | Kinetic Parameters | |||
---|---|---|---|---|---|---|
R2 | AIC | MSC | ||||
LhA15N | Zero order | 0.9554 | 40.6447 | 2.8234 | k0 = 3.970 | |
First order | 0.9843 | 33.3498 | 3.8655 | k1 = 0.070 | ||
Higuchi | 0.8963 | 46.5422 | 1.9809 | kH = 15.372 | ||
Korsmeyer–Peppas | 0.9934 | 29.2774 | 4.4473 | kKP = 7.637 | n = 0.775 | |
Peppas–Sahlin | 0.9989 | 18.5838 | 5.9749 | k1 = −18.864 k2 = 23.781 | m = 0.271 | |
LhC15N | Zero order | 0.9271 | 38.4334 | 2.3328 | k0 = 2.779 | |
First order | 0.9924 | 22.5685 | 4.5992 | k1 = 0.041 | ||
Higuchi | 0.9271 | 38.4369 | 2.3323 | kH = 17.881 | ||
Korsmeyer–Peppas | 0.9967 | 18.7378 | 5.1464 | kKP = 6.320 | n = 0.716 | |
Peppas–Sahlin | 0.9988 | 13.5157 | 5.8925 | k1 = −8.396 k2 = 13.636 | m = 0.281 | |
LhD15N | Zero order | 0.9157 | 41.9773 | 2.1877 | k0 = 3.407 | |
First order | 0.9845 | 30.1014 | 3.8843 | k1 = 0.056 | ||
Higuchi | 0.9333 | 40.3368 | 2.4221 | kH = 13.434 | ||
Korsmeyer–Peppas | 0.9949 | 24.3937 | 4.6997 | kKP = 8.099 | n = 0.700 | |
Peppas–Sahlin | 0.9949 | 26.3834 | 4.4154 | k1 = −0.626 k2 = 8.642 | m = 0.344 | |
LhB5N | Zero order | 0.8408 | 49.6473 | 1.5517 | k0 = 4.443 | |
First order | 0.9906 | 29.8253 | 4.3835 | k1 = 0.094 | ||
Higuchi | 0.9659 | 38.8584 | 3.0930 | kH = 17.881 | ||
Korsmeyer–Peppas | 0.9962 | 25.4928 | 5.0024 | kKP = 13.079 | n = 0.625 | |
Peppas–Sahlin | 0.9999 | 1.5503 | 8.4229 | k1 = −22.709 k2 = 33.825 | m = 0.224 | |
LhB10N | Zero order | 0.9636 | 37.6915 | 3.0271 | k0 = 3.433 | |
First order | 0.9868 | 30.6005 | 4.0401 | k1 = 0.055 | ||
Higuchi | 0.8629 | 46.9702 | 1.7015 | kH = 13.129 | ||
Korsmeyer–Peppas | 0.9845 | 33.7021 | 3.5970 | kKP = 5.715 | n = 0.825 | |
Peppas–Sahlin | 0.9925 | 30.6083 | 4.0389 | k1 = −16.820 k2 = 19.643 | m = 0.284 | |
LhB15N | Zero order | 0.8189 | 45.2993 | 1.4229 | k0 = 3.109 | |
First order | 0.9596 | 34.7922 | 2.9240 | k1 = 0.051 | ||
Higuchi | 0.9718 | 32.2757 | 3.2835 | kH = 12.565 | ||
Korsmeyer–Peppas | 0.9954 | 21.6093 | 4.8072 | kKP = 9.600 | n = 0.608 | |
Peppas–Sahlin | 0.9961 | 22.4621 | 4.6854 | k1 = 9.271 k2 = −0174 | m = 0.671 | |
LhB20N | Zero order | 0.9354 | 36.0975 | 2.4537 | k0 = 2.358 | |
First order | 0.9858 | 25.4792 | 3.9706 | k1 = 0.033 | ||
Higuchi | 0.8895 | 39.8565 | 1.9168 | kH = 9.157 | ||
Korsmeyer–Peppas | 0.9805 | 29.7217 | 3.3646 | kKP = 4.724 | n = 0.761 | |
Peppas–Sahlin | 0.9926 | 24.9658 | 4.0440 | k1 = −17.370 k2 = 19.797 | m = 0.236 |
(A) | |||
Formulations | Inhibition Zone Diameter (mm. ± S.D.) | ||
S. aureus 6538 | C. albicans 10231 | P. gingivalis 33277 | |
NMP | 19.0 ± 1.0 | 34.0 ± 1.7 | 18.7 ± 0.6 |
LhN | 39.0 ± 1.0 | 34.0 ± 0.0 | 34.0 ± 0.0 |
A15N | 17.3 ± 0.6 | 33.7 ± 0.6 | 17.3 ± 1.5 |
B15N | 17.7 ± 1.2 | 33.3 ± 1.5 | 17.0 ± 1.0 |
C15N | 16.0 ± 1.0 | 33.7 ± 1.5 | 17.0 ± 0.0 |
D15N | 17.0 ± 1.0 | 33.7 ± 1.5 | 16.7 ± 0.6 |
LhA15N | 41.0 ± 1.0 | 31.7 ± 0.6 | 34.3 ± 1.2 |
LhB15N | 40.7 ± 1.2 | 31.3 ± 1.5 | 34.3 ± 1.5 |
LhC15N | 40.0 ± 1.0 | 32.3 ± 1.5 | 33.0 ± 1.0 |
LhD15N | 39.3 ± 0.6 | 31.3 ± 1.5 | 34.7 ± 0.6 |
(B) | |||
Formulations | Inhibition Zone Diameter (mm. ± S.D.) | ||
S. aureus 6538 | C. albicans 10231 | P. gingivalis 33277 | |
Day 1 | |||
NMP | 16.6 ± 0.6 | 24.7 ± 0.6 | 13.7 ± 0.6 |
LhN | 34.3 ± 0.6 | 24.7 ± 0.6 | 29.3 ± 1.5 |
LhB 5 N | 33.7 ± 0.6 | 26.3 ± 0.6 | 28.0 ± 1.7 |
LhB 10 N | 32.7 ± 0.6 | 26.0 ± 0.0 | 26.7 ± 0.6 |
LhB 15 N | 33.7 ± 0.6 | 23.3 ± 0.6 | 26.3 ± 0.6 |
LhB 20 N | 33.3 ± 1.2 | 23.7 ± 0.6 | 26.3 ± 0.6 |
Day 7 | |||
LhB 15 N | 26.3 ± 0.6 | NI | 25.7 ± 0.6 |
LhB 20 N | 27.0 ± 1.0 | NI | 26.0 ± 0.0 |
Day 15 | |||
LhB 15 N | 12.3 ± 0.6 | NI | 13.7 ± 0.6 |
LhB 20 N | 15.7 ± 1.2 | NI | 19.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaing, E.M.; Puyathorn, N.; Yodsin, N.; Phonarwut, N.; Thammasut, W.; Rojviriya, C.; Pichayakorn, W.; Phattarateera, S.; Phaechamud, T. Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment. Polymers 2025, 17, 1551. https://doi.org/10.3390/polym17111551
Khaing EM, Puyathorn N, Yodsin N, Phonarwut N, Thammasut W, Rojviriya C, Pichayakorn W, Phattarateera S, Phaechamud T. Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment. Polymers. 2025; 17(11):1551. https://doi.org/10.3390/polym17111551
Chicago/Turabian StyleKhaing, Ei Mon, Napaphol Puyathorn, Nuttapon Yodsin, Nakharin Phonarwut, Warakon Thammasut, Catleya Rojviriya, Wiwat Pichayakorn, Supanut Phattarateera, and Thawatchai Phaechamud. 2025. "Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment" Polymers 17, no. 11: 1551. https://doi.org/10.3390/polym17111551
APA StyleKhaing, E. M., Puyathorn, N., Yodsin, N., Phonarwut, N., Thammasut, W., Rojviriya, C., Pichayakorn, W., Phattarateera, S., & Phaechamud, T. (2025). Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment. Polymers, 17(11), 1551. https://doi.org/10.3390/polym17111551