Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = drug-induced acute kidney injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1541 KiB  
Case Report
Atypical Rapid Onset of Olmesartan-Induced Enteropathy with Recurrence After Rechallenging
by Lila Bekkai, Aymen Ibn Majah, Laurine Verset, Lucas Jacobs, Charline Danneel, Okyay Elkilic, Frédéric Collart, Joëlle Nortier and Maxime Taghavi
Diseases 2025, 13(7), 223; https://doi.org/10.3390/diseases13070223 - 18 Jul 2025
Viewed by 287
Abstract
Background: Olmesartan-induced enteropathy is a rare complication of a widely used angiotensin II receptor blocker. Patients usually present with chronic diarrhea and weight loss. Histologically, villous atrophy and intraepithelial lymphocyte infiltrates within the duodenum confirm the diagnosis. The prognosis is usually good after [...] Read more.
Background: Olmesartan-induced enteropathy is a rare complication of a widely used angiotensin II receptor blocker. Patients usually present with chronic diarrhea and weight loss. Histologically, villous atrophy and intraepithelial lymphocyte infiltrates within the duodenum confirm the diagnosis. The prognosis is usually good after withdrawal of the offending drug. Case presentation: Here, we report the case of a 76-year-old woman who developed a severe form of Olmesartan-induced enteropathy complicated by acute kidney injury and acute recurrence after drug rechallenge. After definite cessation of the drug, the patient did not experience any gastrointestinal (GI) symptom recurrence after 6 months of follow-up. However, she experienced chronic kidney disease stage G3b. Histological analysis did not show any villous atrophy or intraepithelial lymphocyte infiltrates within the duodenum or the colon biopsy. Discussion and conclusion: This case highlights the broad spectrum of clinical manifestations and histological findings in Olmesartan-induced enteropathy. It also highlights the importance of rapid diagnosis in order to limit organ damage such as chronic kidney disease. Full article
(This article belongs to the Special Issue ‘Rare Syndromes: Diagnosis and Treatment’ in 2024–2026)
Show Figures

Figure 1

28 pages, 20644 KiB  
Article
Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming
by Jihan Liu, Yiming Wang, Panshuang Qiao, Yi Ying, Simei Lin, Feng Lu, Cai Gao, Min Li, Baoxue Yang and Hong Zhou
Antioxidants 2025, 14(7), 775; https://doi.org/10.3390/antiox14070775 - 24 Jun 2025
Viewed by 740
Abstract
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally [...] Read more.
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

15 pages, 1364 KiB  
Article
The DJ-1-Binding Compound Exerts a Protective Effect in Both In Vitro and In Vivo Models of Sepsis-Induced Acute Kidney Injury
by Réka Zrufkó, Csenge Pajtók, Beáta Szebeni, Apor Veres-Székely, Mária Bernáth, Csenge Szász, Péter Bokrossy, Attila J. Szabó, Ádám Vannay and Domonkos Pap
Antioxidants 2025, 14(6), 719; https://doi.org/10.3390/antiox14060719 - 12 Jun 2025
Viewed by 586
Abstract
Although sepsis-induced acute kidney injury (AKI) is associated with significant morbidity and mortality, its treatment remains unresolved. Oxidative stress and inflammation are key elements in the pathomechanism of AKI. Therefore, in the present study, we investigated the role of DJ-1 protein, known for [...] Read more.
Although sepsis-induced acute kidney injury (AKI) is associated with significant morbidity and mortality, its treatment remains unresolved. Oxidative stress and inflammation are key elements in the pathomechanism of AKI. Therefore, in the present study, we investigated the role of DJ-1 protein, known for its antioxidant and anti-inflammatory properties in an animal model of lipopolysaccharide (LPS)-induced AKI. The presence of DJ-1 was detected by immunofluorescence staining in mice kidney samples, human embryonic kidney cells (HEK-293), and peripheral blood mononuclear cells (PBMCs). To investigate DJ-1 functions, Compound-23, a specific DJ-1-binding and preserving compound (CAS: 724737-74-0), was used in vitro and in vivo. Compound-23 reduced the H2O2-induced reactive oxygen species (ROS) production of the HEK-293 cells, and their LPS- or H2O2-induced death, as well. In accordance, Compound-23 decreased the mRNA expression of the oxidative stress markers NAD(P)H quinone dehydrogenase 1 (NQO1) and glutamate-cysteine ligase (GCLC) in the LPS-treated, and NQO1 in the H2O2-treated cells. Moreover, Compound-23 reduced the H2O2- and LPS-induced mRNA expression of inflammatory cytokine interleukin 6 (IL6) in both HEK-293 and PBMCs. Using the mice model of LPS-induced AKI, we demonstrated that Compound-23 treatment improved the renal functions of the mice. In addition, Compound-23 decreased the renal mRNA expression of kidney injury molecule 1 (Kim1), neutrophil gelatinase-associated lipocalin (Ngal), Nqo1, Gclc, and Il6 in the LPS-treated mice. Our study revealed that compounds protecting DJ-1 functions may protect the kidney from LPS-induced damage, suggesting that DJ-1 could be a potential drug target for sepsis-induced AKI therapy. Full article
(This article belongs to the Special Issue Antioxidant System Efficiency in Kidney Diseases)
Show Figures

Figure 1

16 pages, 11480 KiB  
Article
Dasatinib and Quercetin Combination Increased Kidney Damage in Acute Folic Acid-Induced Experimental Nephropathy
by Antonio Battaglia-Vieni, Vanessa Marchant, Lucia Tejedor-Santamaria, Cristina García-Caballero, Elena Flores-Salguero, María Piedad Ruiz-Torres, Sandra Rayego-Mateos, Ana Belen Sanz, Alberto Ortiz and Marta Ruiz-Ortega
Pharmaceuticals 2025, 18(6), 822; https://doi.org/10.3390/ph18060822 - 30 May 2025
Viewed by 1684
Abstract
Background/Objectives: Acute kidney injury (AKI) remains an unsolved medical problem due to the lack of effective treatments, high mortality, and increased susceptibility to progression to chronic kidney disease (CKD), especially in the elderly. Cellular senescence has been described in AKI, CKD, and [...] Read more.
Background/Objectives: Acute kidney injury (AKI) remains an unsolved medical problem due to the lack of effective treatments, high mortality, and increased susceptibility to progression to chronic kidney disease (CKD), especially in the elderly. Cellular senescence has been described in AKI, CKD, and aging and has been proposed as a promising therapeutic target. The senolytic drug combination of dasatinib plus quercetin (D&Q) is beneficial in some pathological conditions, including experimental CKD, but there are no data for AKI. Methods: The effect of D&Q combination was tested in folic acid-induced nephrotoxicity (FAN-AKI), a murine AKI model. Results: D&Q pretreatment did not prevent renal dysfunction in the acute phase of FAN-AKI, as determined by serum creatinine and BUN levels at 48 h. Moreover, gene expression of the kidney damage biomarkers Lcn2 and Havcr1, the Cdkn1a gene, which encodes p21, and some genes encoding components of the senescent cell secretome were significantly increased in response to D&Q treatment. The number of senescent p21-positive cells in injured kidneys was similar in untreated or D&Q-treated FAN mice. In addition, D&Q did not prevent the downregulation of the antiaging factor Klotho in damaged kidneys. Conclusions: D&Q treatment was not protective in FAN-AKI, exacerbating some deleterious responses. These results suggest caution when exploring the clinical translation of D&Q senolytic activity. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

8 pages, 945 KiB  
Case Report
Triple Non-Statin Therapy with Ezetimibe, Inclisiran, and Bempedoic Acid in Patients with Genetically Confirmed Statin-Induced Rhabdomyolysis: A Dual Case Report
by Jozef Dodulík, Jiří Plášek, Ivana Kacířová, Romana Uřinovská, Jiří Vrtal and Jan Václavík
Pharmaceuticals 2025, 18(6), 818; https://doi.org/10.3390/ph18060818 - 29 May 2025
Cited by 1 | Viewed by 1042
Abstract
Background: Statin intolerance is a serious therapeutic dilemma in secondary cardiovascular prevention (e.g., ESC/EAS Guidelines 2023). This is especially true when confirmed by genetic predisposition and complicated by rhabdomyolysis. Although several non-statin agents have become available in recent years, evidence regarding their combined [...] Read more.
Background: Statin intolerance is a serious therapeutic dilemma in secondary cardiovascular prevention (e.g., ESC/EAS Guidelines 2023). This is especially true when confirmed by genetic predisposition and complicated by rhabdomyolysis. Although several non-statin agents have become available in recent years, evidence regarding their combined use in high-risk statin-intolerant patients remains limited. Furthermore, the pharmacokinetics of statins in toxic concentrations are poorly characterized in clinical settings. Case Presentation: We present two cases of genetically confirmed statin-induced rhabdomyolysis, both accompanied by severe acute kidney injury requiring renal replacement therapy. In both patients, serial measurements of rosuvastatin plasma concentrations revealed markedly delayed elimination, with detectable levels persisting for several weeks despite ongoing dialysis. Estimated half-lives exceeded 7 days in both cases, far beyond the known therapeutic range. Genetic testing identified SLCO1B1, ABCB1, and CYP2C9 polymorphisms linked to reduced hepatic uptake and impaired drug clearance. Following biochemical recovery, both patients were initiated on a triple non-statin lipid-lowering regimen consisting of ezetimibe, bempedoic acid, and inclisiran. The combination was well tolerated, with no recurrence of muscle-related symptoms or biochemical toxicity. LDL-C levels were reduced from 3.05 to 1.59 mmol/L and from 4.99 to 1.52 mmol/L, respectively, with sustained response over 12 and 40 weeks. Full lipid profiles demonstrated favorable changes across all parameters. Conclusions: These two cases suggest that the combination of ezetimibe, inclisiran, and bempedoic acid may serve as a safe and effective therapeutic option in patients with severe statin intolerance. Pharmacogenetic testing and serial pharmacokinetic assessment may guide personalized lipid-lowering strategies and improve outcomes in this challenging patient population. Full article
(This article belongs to the Topic Research in Pharmacological Therapies, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2546
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

24 pages, 21945 KiB  
Article
Drug Pair of Astragali Radix–Ligustri Lucidi Fructus Alleviates Acute Kidney Injury in Mice Induced by Ischemia–Reperfusion Through Inhibiting Ferroptosis
by Xuanhe Liu, Dan Zhang, Yuting Xie, Mengdan Wang, Xiaochun Chen, Weijie Yu, Yuming Ma, Jia Zeng, Qixuan Long, Guangrui Huang, Jie Geng and Anlong Xu
Pharmaceuticals 2025, 18(6), 789; https://doi.org/10.3390/ph18060789 - 25 May 2025
Viewed by 767
Abstract
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise [...] Read more.
Background: Acute kidney injury (AKI), characterized by high morbidity and mortality, is primarily caused by renal ischemia–reperfusion injury (RIRI). Ferroptosis plays a key role in RIRI, yet its underlying mechanisms remain unclear. The drug pair of Astragali Radix–Ligustri Lucidi Fructus (DAL) shows promise in renal diseases, but its protective effects against RIRI and associated molecular pathways via ferroptosis inhibition are unknown. This study aimed to investigate DAL’s therapeutic effects on RIRI and its mechanisms. Methods: A mouse model of bilateral renal ischemia–reperfusion was established. Renal function (serum creatinine, Scr; blood urea nitrogen, BUN), inflammatory cytokines (TNF-α, IFN-γ, IL-6), ferroptosis markers (GPX4, MDA, GSH, tissue iron), and pathological damage were evaluated. Transcriptomic sequencing and electron microscopy analyzed gene pathways and mitochondrial structure. In HK-2 cells, oxygen–glucose deprivation/reoxygenation (OGD/R) and RSL3-induced ferroptosis models were used to assess DAL-containing serum effects via cell viability, GPX4 expression, and mitochondrial morphology. LC-MS analyzed DAL’s chemical components, and network pharmacology predicted ferroptosis-related targets. Results: DAL significantly reduced Scr/BUN levels, alleviated tubular injury, fibrosis, and apoptosis, and downregulated inflammatory cytokines and damage markers. It inhibited ferroptosis by upregulating GPX4, decreasing MDA/tissue iron, and increasing GSH. Transcriptomics revealed enrichment in lipid metabolism pathways. DAL restored the mitochondrial cristae structure; DAL-containing serum improved cell viability, blocked RSL3-induced GPX4 downregulation, and mitigated mitochondrial dysfunction. Network pharmacology identified DAL’s potential active components and targets. Molecular docking validated binding affinity and interaction patterns of active components with targets. Conclusions: DAL protects against RIRI by upregulating GPX4, preserving the mitochondrial structure, and inhibiting ferroptosis, highlighting its therapeutic potential for AKI prevention and treatment. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Figure 1

13 pages, 2962 KiB  
Article
Protocatechuic Acid Ameliorates Cisplatin-Induced Inflammation and Apoptosis in Mouse Proximal Tubular Cells
by Karim M. Saad, Khaled Elmasry, Babak Baban, Man J. Livingston, Zheng Dong, Marwa E. Abdelmageed, Rania R. Abdelaziz, Ghada M. Suddek and Ahmed A. Elmarakby
Int. J. Mol. Sci. 2025, 26(9), 4115; https://doi.org/10.3390/ijms26094115 - 26 Apr 2025
Viewed by 713
Abstract
Cisplatin is a highly cytotoxic drug used for the treatment of head, neck, and soft tissue cancers; however, it has nephrotoxic effects that can lead to acute kidney injury. Protocatechuic acid (PCA) is a natural widely available antioxidant found in many fruits such [...] Read more.
Cisplatin is a highly cytotoxic drug used for the treatment of head, neck, and soft tissue cancers; however, it has nephrotoxic effects that can lead to acute kidney injury. Protocatechuic acid (PCA) is a natural widely available antioxidant found in many fruits such as kiwi, mango, and berries. We have recently shown that PCA reduced renal injury in a mouse model of unilateral ureteral obstruction. The current study aims to investigate the protective effects of PCA in Cisplatin-induced inflammation in vitro in Boston University Mouse Proximal Tubular (BUMPT) cells. BUMPT cells were cultured in complete DMEM. Confluent BUMPT cells were then treated with 20 μM Cisplatin ± PCA 50 or 100 μM for 24 h. PCA treatment showed a dose-depending increase in % cell viability in Cisplatin-treated BUMPT cells. PCA treatment also dose-dependently decreased Cisplatin-induced increases in oxidative stress (ROS and TBARS), inflammation (p-NF-κB and IL-6), and apoptosis (cleaved caspase-3 and % of TUNEL+ cells) compared to Cisplatin-only treatment. The reduction in oxidative stress, inflammation, and apoptosis with PCA treatment in Cisplatin-treated BUMPT cells was associated with decreases in tubular physical barrier resistance and the expression of the tight junction protein zonula occludens-1 (ZO-1) when compared to BUMPT cells treated with Cisplatin alone. The current findings suggest that PCA treatment improves tubular barrier function in Cisplatin-treated BUMPT cells via reductions in oxidative stress, inflammation, and apoptosis. Full article
(This article belongs to the Special Issue Natural Products in Kidney Diseases)
Show Figures

Figure 1

11 pages, 4452 KiB  
Article
The Frequency and Risk Factors of Acute Kidney Injury in Children with Oncological Diseases: A Single-Center Study in Bulgaria
by Petya Markova, Antoniya Yaneva, Stoyan Markov, Mariya Spasova and Neofit Spasov
Children 2025, 12(5), 540; https://doi.org/10.3390/children12050540 - 23 Apr 2025
Viewed by 411
Abstract
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury [...] Read more.
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury being one of them. Its occurrence in patients not only affects their quality of life but also prolongs and increases the cost of hospitalization, burdens the body with additional treatment, and impacts the ability to manage the underlying disease. Aim: The aim of this study is to determine the frequency of acute kidney injury among children hospitalized in the Pediatric Oncohematology Unit in Plovdiv during the period 2016–2020, as well as to identify the risk factors for its occurrence, its severity, and its dependence on tumor type, gender, and age. Patients and Methods: During the five-year period under review, a total of 213 newly diagnosed children with hematological diseases were admitted to our Pediatric Oncohematology Unit—122 boys and 91 girls. Results: Acute kidney injury was identified in 94 (44.1%) of the children—54 with solid tumors and 40 with malignant hemopathies. The main cause of acute kidney injury diagnosed was drug-induced nephrotoxicity, especially due to nephrotoxic chemotherapeutic agents. No statistically significant association was found between the type of tumor and the occurrence of acute kidney injury. Of the children with documented episodes of AKI, 11 were found to have CKD according to the KDIGO criteria. Conclusions: Acute kidney injury is a common complication that occurs during the medical treatment of children with malignant diseases. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

27 pages, 2098 KiB  
Review
Histone Deacetylase Inhibitors Promote the Anticancer Activity of Cisplatin: Mechanisms and Potential
by Yang Zhou, Qun Luo, Liangzhen Gu, Xiao Tian, Yao Zhao, Yanyan Zhang and Fuyi Wang
Pharmaceuticals 2025, 18(4), 563; https://doi.org/10.3390/ph18040563 - 11 Apr 2025
Viewed by 965
Abstract
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter [...] Read more.
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter the action pathways of cisplatin to promote its anticancer activity have attracted increasing attention during the past decades. It has been commonly accepted that HDACi elevate the acetylation level of histones to release genomic DNA to cisplatin attack, increasing the level of cisplatin-induced DNA lesions to promote cisplatin cytotoxicity. However, how the HDACi-enhanced cisplatin lesion on DNA impacts the downstream biological processes, and whether the promotion of HDACi to cisplatin activity is attributed to their inherent anticancer activity or to their induced elevation of histone acetylation, have been in debate. Several studies showed that HDACi-enhanced DNA lesion could promote cisplatin-induced apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation, subsequently promoting cisplatin efficiency. In contrast, HDACi-induced elimination of ROS and inhibition of ferroptosis were thought to be the main ways by which HDACi protect kidneys from acute injury caused by cisplatin. Based on our recent research, we herein review and discuss the advances in research on the mechanisms of HDACi-induced enhancement in cisplatin cytotoxicity. Given that histone acetyltransferase (HAT) inhibitors also show an effect enhancing cisplatin cytotoxicity, we will discuss the diverse roles of histone acetylation in cancer therapy in addition to the synergistic anticancer effect and potential of HDACi with genotoxic drugs and radiotherapy. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Graphical abstract

21 pages, 1089 KiB  
Review
Modulation of Lonp1 Activity by Small Compounds
by Giada Zanini, Giulia Micheloni, Giorgia Sinigaglia, Valentina Selleri, Anna Vittoria Mattioli, Milena Nasi, Ciro Leonardo Pierri and Marcello Pinti
Biomolecules 2025, 15(4), 553; https://doi.org/10.3390/biom15040553 - 9 Apr 2025
Viewed by 1380
Abstract
The Lon protease homolog 1 (LONP1) is an ATP-dependent mitochondrial protease essential for maintaining proteostasis, bioenergetics, and cellular homeostasis. LONP1 plays a pivotal role in protein quality control, mitochondrial DNA maintenance, and oxidative phosphorylation system (OXPHOS) regulation, particularly under stress conditions. Dysregulation of [...] Read more.
The Lon protease homolog 1 (LONP1) is an ATP-dependent mitochondrial protease essential for maintaining proteostasis, bioenergetics, and cellular homeostasis. LONP1 plays a pivotal role in protein quality control, mitochondrial DNA maintenance, and oxidative phosphorylation system (OXPHOS) regulation, particularly under stress conditions. Dysregulation of LONP1 has been implicated in various pathologies, including cancer, metabolic disorders, and reproductive diseases, positioning it as a promising pharmacological target. This review examines compounds that modulate LONP1 activity, categorizing them into inhibitors and activators. Inhibitors such as CDDO and its derivatives selectively target LONP1, impairing mitochondrial proteolysis, inducing protein aggregation, and promoting apoptosis, particularly in cancer cells. Compounds like Obtusilactone A and proteasome inhibitors (e.g., MG262) demonstrate potent cytotoxicity, further expanding the therapeutic landscape. Conversely, LONP1 activators, including Artemisinin derivatives and 84-B10, restore mitochondrial function and protect against conditions such as polycystic ovary syndrome (PCOS) and acute kidney injury (AKI). Future research should focus on improving the specificity, bioavailability, and pharmacokinetics of these modulators. Advances in structural biology and drug discovery will enable the development of novel LONP1-targeted therapies, addressing diseases driven by mitochondrial dysfunction and proteostasis imbalance. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

9 pages, 5040 KiB  
Case Report
Severe Acute Kidney Injury with Necrotizing Glomerulonephritis After Piperacillin/Tazobactam Therapy in a Patient with Peritonitis: A Case Report and Literature Review
by Youn-Sik Oh, Man-Hoon Han, Yong-Jin Kim, You Hyun Jeon, Hee-Yeon Jung, Ji-Young Choi, Jang-Hee Cho, Sun-Hee Park, Chan-Duck Kim, Yong-Lim Kim and Jeong-Hoon Lim
Diagnostics 2025, 15(5), 574; https://doi.org/10.3390/diagnostics15050574 - 27 Feb 2025
Cited by 1 | Viewed by 926
Abstract
Piperacillin/tazobactam (PT), a widely utilized broad-spectrum antibiotic, has been associated with acute kidney injury (AKI). Although the precise mechanism remains uncertain, and most cases of PT-associated AKI are mild, this report describes a rare and severe complication of PT, which manifested as severe [...] Read more.
Piperacillin/tazobactam (PT), a widely utilized broad-spectrum antibiotic, has been associated with acute kidney injury (AKI). Although the precise mechanism remains uncertain, and most cases of PT-associated AKI are mild, this report describes a rare and severe complication of PT, which manifested as severe AKI with necrotizing glomerulonephritis requiring hemodialysis. A 42-year-old man was transferred to the nephrology clinic due to progressive deterioration of kidney function. Prior to the transfer, the patient had been diagnosed with appendicitis complicated by peritonitis and received intravenous PT for 8 days. Baseline kidney function was normal, but serum creatinine subsequently increased to 7.2 mg/dL. Hemodialysis was initiated to address metabolic acidosis and edema. Kidney biopsy revealed severe acute tubular injury and necrotizing glomerulonephritis. Steroid therapy was initiated based on the biopsy findings, and serum creatinine returned to normal levels after 4 weeks of treatment. This case demonstrates that severe AKI with necrotizing glomerulonephritis can occur after PT use. Prompt kidney biopsy and the timely initiation of immunosuppressive therapy are essential for a favorable outcome. Full article
(This article belongs to the Special Issue Personalized Diagnosis, Prognosis and Treatment of Kidney Diseases)
Show Figures

Figure 1

14 pages, 2465 KiB  
Article
Targeted Polymer–Peptide Conjugates for E-Selectin Blockade in Renal Injury
by Nenad Milošević, Marie Rütter, Yvonne Ventura, Valeria Feinshtein and Ayelet David
Pharmaceutics 2025, 17(1), 82; https://doi.org/10.3390/pharmaceutics17010082 - 9 Jan 2025
Viewed by 1098
Abstract
Background/Objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion [...] Read more.
Background/Objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e., E-selectin, P-selectin, and VCAM-1) present on the inner surface of the inflamed vasculature. Directly interfering with these interactions is a viable strategy to limit the extent of excessive inflammation; however, several small-molecule drug candidates failed during clinical translation. We hypothesized that a synthetic polymer presenting multiple copies of the high-affinity E-selecting binding peptide (P-Esbp) could block E-selectin-mediated functions and decrease leukocytes infiltration, thus reducing the extent of inflammatory kidney injury. Methods: P-Esbp was synthesized by conjugating E-selecting binding peptide (Esbp) to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer with reactive ester groups via aminolysis. The effects of P-Esbp treatment on kidney injury were investigated in two different models: AKI model (renal ischemia—reperfusion injury—RIRI) and CKD model (adenine-induced kidney injury). Results: We found that the mRNA levels of E-selectin were up-regulated in the kidney following acute and chronic tissue injury. P-Esbp demonstrated an extended half-life time in the bloodstream, and the polymer accumulated significantly in the liver, lungs, and kidneys within 4 h post injection. Treatment with P-Esbp suppressed the up-regulation of E-selectin in mice with RIRI and attenuated the inflammatory process. In the adenine-induced CKD model, the use of the E-selectin blocking copolymer had little impact on the progression of kidney injury, owing to the compensating function of P-selectin and VCAM-1. Conclusion: Our findings provide valuable insights into the interconnection between CAMs and compensatory mechanisms in controlling leukocyte migration in AKI and CKD. The combination of multiple CAM blockers, given simultaneously, may provide protective effects for preventing excessive leukocyte infiltration and control renal injury. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Science and Technology in Israel)
Show Figures

Figure 1

15 pages, 4225 KiB  
Article
Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease
by Dora B. Balogh, Judit Hodrea, Adar Saeed, Marcell Cserhalmi, Alexandra Rozsahegyi, Tamas Lakat, Lilla Lenart, Attila J. Szabo, Laszlo J. Wagner and Andrea Fekete
Int. J. Mol. Sci. 2024, 25(24), 13327; https://doi.org/10.3390/ijms252413327 - 12 Dec 2024
Cited by 2 | Viewed by 1355
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with [...] Read more.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia. Based on these, we hypothesized that FLU might exert a similar protective effect in DKD. Diabetes was induced in male Wistar rats using streptozotocin, followed by a seven-week FLU treatment. Metabolic and renal parameters were assessed along with a histological analysis of glomerular damage and fibrosis. The effects of FLU on inflammation, hypoxia, and fibrosis were tested in human proximal tubular cells and normal rat kidney fibroblasts. FLU improved renal function and reduced glomerular damage and tubulointerstitial fibrosis. It also mitigated inflammation by reducing TLR4, IL6, and NFKB1 expressions and moderated the cellular response to tubular hypoxia. Additionally, FLU suppressed TGF-β1-induced fibrotic processes and fibroblast transformation. These findings suggest that S1R activation can slow DKD progression and protect renal function by modulating critical inflammatory, hypoxic, and fibrotic pathways; therefore, it might serve as a promising novel drug target for preventing DKD. Full article
(This article belongs to the Special Issue Molecular Mechanism of Diabetic Kidney Disease (2nd Edition))
Show Figures

Figure 1

14 pages, 5130 KiB  
Article
Sodium Phenylbutyrate Attenuates Cisplatin-Induced Acute Kidney Injury Through Inhibition of Pyruvate Dehydrogenase Kinase 4
by Chang Joo Oh, Wooyoung Choi, Ha Young Lee, In-Kyu Lee, Min-Ji Kim and Jae-Han Jeon
Biomedicines 2024, 12(12), 2815; https://doi.org/10.3390/biomedicines12122815 - 11 Dec 2024
Viewed by 1363
Abstract
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of [...] Read more.
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge. This study evaluated tubular injury, serum blood urea nitrogen (BUN) and creatinine levels, and inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1). Additionally, apoptosis, mitochondrial membrane potential, oxygen consumption ratio, and reactive oxygen species (ROS) were assessed in renal tubular cells. The expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were also analyzed. Results: 4-PBA prevented tubular injury and normalized serum BUN and creatinine levels. Inflammatory markers TNF-α and ICAM-1 were suppressed. In renal tubular cells, 4-PBA reduced apoptosis, restored mitochondrial membrane potential and oxygen consumption ratio, and reduced ROS production. Mechanistically, 4-PBA suppressed the expression of Pdk4, which is known to be induced during cisplatin-induced renal injury. The protective effect of 4-PBA was abolished in Pdk4-overexpressing renal tubular cells, indicating that the efficacy of 4-PBA partially depends on the suppression of Pdk4 expression. In cancer cells, 4-PBA did not interfere with the anti-cancer efficacy of cisplatin. Conclusions: These findings suggest that 4-PBA effectively prevents cisplatin-induced acute kidney injury by suppressing Pdk4. Full article
Show Figures

Figure 1

Back to TopTop