Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,867)

Search Parameters:
Keywords = drug-conjugate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 567 KiB  
Review
Mephedrone and Its Metabolites: A Narrative Review
by Ordak Michal, Tkacz Daria, Juzwiuk Izabela, Wiktoria Gorecka, Nasierowski Tadeusz, Muszynska Elzbieta and Bujalska-Zadrozny Magdanena
Int. J. Mol. Sci. 2025, 26(15), 7656; https://doi.org/10.3390/ijms26157656 (registering DOI) - 7 Aug 2025
Abstract
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the [...] Read more.
New psychoactive substances (NPSs) have emerged as a significant global public health challenge due to their ability to mimic traditional drugs. Among these, mephedrone has gained attention because of its widespread use and associated toxicities. This review provides a comprehensive analysis of the structure, pharmacokinetic properties, and metabolic pathways of mephedrone, highlighting its phase I and phase II metabolites as potential biomarkers for detection and forensic applications. A comprehensive literature search was performed without date restrictions. The search employed key terms such as “mephedrone metabolites”, “pharmacokinetics of mephedrone”, “phase I metabolites of mephedrone”, and “phase II metabolites of mephedrone”. Additionally, the reference lists of selected studies were screened to ensure a thorough review of the literature. Mephedrone is a chiral compound existing in two enantiomeric forms, exhibiting different affinities for monoamine transporters and distinct pharmacological profiles. In vivo animal studies indicate rapid absorption, significant tissue distribution, and the formation of multiple phase I metabolites (e.g., normephedrone, dihydromephedrone, 4-carboxymephedrone) that influence its neurochemical effects. Phase II metabolism involves conjugation reactions leading to metabolites such as N-succinyl-normephedrone and N-glutaryl-normephedrone, further complicating its metabolic profile. These findings underscore the importance of elucidating mephedrone’s metabolic pathways to improve detection methods, enhance our understanding of its toxicological risks, and inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

18 pages, 3441 KiB  
Review
Epidermal Growth Factor Receptor (EGFR)-Targeting Peptides and Their Applications in Tumor Imaging Probe Construction: Current Advances and Future Perspectives
by Lu Huang, Ying Dong, Jinhang Li, Xinyu Yang, Xiaoqiong Li, Jia Wu, Jinhua Huang, Qiaoxuan Zhang, Zemin Wan, Shuzhi Hu, Ruibing Feng, Guodong Li, Xianzhang Huang and Pengwei Zhang
Biology 2025, 14(8), 1011; https://doi.org/10.3390/biology14081011 - 7 Aug 2025
Abstract
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, [...] Read more.
The epidermal growth factor receptor (EGFR) is a key target for both cancer diagnosis and therapeutic interventions. Assessing EGFR expression before therapy has become routine in clinical practice, yet current methods like biopsy and immunohistochemistry (IHC) have significant limitations, including invasiveness, limited repeatability, and lack of real-time, whole-body data. EGFR-targeted imaging has emerged as a promising alternative. EGFR-targeting peptides, owing to their favorable physicochemical properties and versatility, are increasingly being explored for a variety of applications, including molecular imaging, drug delivery, and targeted therapy. Recent advances have demonstrated the potential of EGFR-targeting peptides conjugated to imaging probes for non-invasive, real-time in vivo tumor detection, precision therapy, and surgical guidance. Here, we provide a comprehensive overview of the latest progress in EGFR-targeting peptides development, with a particular focus on their application in the development of molecular imaging agents, including fluorescence imaging, PET/CT, magnetic resonance imaging, and multimodal imaging. Furthermore, we examine the challenges and future directions concerning the development and clinical application of EGFR-targeting peptide-based imaging probes. Finally, we highlight emerging technologies such as artificial intelligence, mutation-specific peptides, and multimodal imaging platforms, which offer significant potential for advancing the diagnosis and treatment of EGFR-targeted cancers. Full article
Show Figures

Figure 1

42 pages, 939 KiB  
Review
B7-H3 in Cancer Immunotherapy—Prospects and Challenges: A Review of the Literature
by Sylwia Mielcarska, Anna Kot, Miriam Dawidowicz, Agnieszka Kula, Piotr Sobków, Daria Kłaczka, Dariusz Waniczek and Elżbieta Świętochowska
Cells 2025, 14(15), 1209; https://doi.org/10.3390/cells14151209 - 6 Aug 2025
Abstract
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule [...] Read more.
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule modulates anti-cancer immune responses, acting through diverse signaling pathways and cell populations. It has been implicated in the pathogenesis of numerous malignancies, including melanoma, gliomas, lung cancer, gynecological cancers, renal cancer, gastrointestinal tumors, and others, fostering the immunosuppressive environment and marking worse prognosis for the patients. B7-H3 targeting therapies, such as monoclonal antibodies, antibody–drug conjugates, and CAR T-cells, present promising results in preclinical studies and are the subject of ongoing clinical trials. CAR-T therapies against B7-H3 have demonstrated utility in malignancies such as melanoma, glioblastoma, prostate cancer, and RCC. Moreover, ADCs targeting B7-H3 exerted cytotoxic effects on glioblastoma, neuroblastoma cells, prostate cancer, and craniopharyngioma models. B7-H3-targeting also delivers promising results in combined therapies, enhancing the response to other immune checkpoint inhibitors and giving hope for the development of approaches with minimized adverse effects. However, the strategies of B7-H3 blocking deliver substantial challenges, such as poorly understood molecular mechanisms behind B7-H3 protumor properties or therapy toxicity. In this review, we discuss B7-H3’s role in modulating immune responses, its significance for various malignancies, and clinical trials evaluating anti-B7-H3 immunotherapeutic strategies, focusing on the clinical potential of the molecule. Full article
Show Figures

Figure 1

47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

17 pages, 3969 KiB  
Article
Evaluation of the Synthesis and Skin Penetration Pathway of Folate-Conjugated Polymeric Micelles for the Dermal Delivery of Irinotecan and Alpha-Mangostin
by Thanchanok Sirirak and Thirapit Subongkot
Pharmaceutics 2025, 17(8), 1014; https://doi.org/10.3390/pharmaceutics17081014 - 5 Aug 2025
Viewed by 75
Abstract
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: [...] Read more.
Background/Objectives: The present study aimed to synthesize folate-conjugated poloxamers and develop polymeric micelles for the dermal delivery of irinotecan and alpha-mangostin for the treatment of melanoma using poloxamer 188 and poloxamer 184, which have never been synthesized with folate before. Methods: Poloxamer 188 and poloxamer 184 were synthesized with folate by esterification. The in vitro skin penetration enhancement of irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles was evaluated. The skin penetration pathway of folate-conjugated polymeric micelles was investigated by colocalization of multiple fluorescently labeled particles using confocal laser scanning microscopy (CLSM). Results: Folate-conjugated poloxamer 188 and poloxamer 184 were successfully synthesized. The prepared irinotecan- and alpha-mangostin-loaded folate-conjugated polymeric micelles from poloxamer 188 and poloxamer 184 had particle sizes of approximately 180 and 150 nm, respectively, indicating a positive charge with a narrow size distribution which could be easily taken up into cells. An in vitro skin penetration study revealed that folate-conjugated polymeric micelles from poloxamer 184 significantly enhanced the skin penetration of irinotecan and alpha-mangostin to a greater extent than the solution. CLSM visualization revealed that folate-conjugated polymeric micelles penetrated through the skin by the transfollicular pathway as the major penetration pathway, whereas penetration by the intercluster pathway, transcellular pathway and intercellular pathway constituted a minor pathway. Conclusions: Folate-conjugated poloxamer 184 polymeric micelles are promising candidates for the dermal delivery of anticancer drugs by the transfollicular pathway as the major skin penetration pathway. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 - 3 Aug 2025
Viewed by 312
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

32 pages, 2710 KiB  
Review
Polyphosphazene-Based Nanotherapeutics
by Sara Gutierrez-Gutierrez, Rocio Mellid-Carballal, Noemi Csaba and Marcos Garcia-Fuentes
J. Funct. Biomater. 2025, 16(8), 285; https://doi.org/10.3390/jfb16080285 - 2 Aug 2025
Viewed by 307
Abstract
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide [...] Read more.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

25 pages, 3526 KiB  
Article
Valine–Niclosamide for Treatment of Androgen Receptor Splice Variant-Positive Hepatocellular Carcinoma
by Emma J. Hoelzen, Hanna S. Radomska, Samuel K. Kulp, Adeoluwa A. Adeluola, Lauren A. Granchie, Jeffrey Cheng, Anees M. Dauki, Moray J. Campbell, Shabber Mohammed, Enming Xing, Min Hai, Mayu Fukuda, Xiaolin Cheng, Mitch A. Phelps, Pui-Kai Li and Christopher C. Coss
Cancers 2025, 17(15), 2535; https://doi.org/10.3390/cancers17152535 - 31 Jul 2025
Viewed by 312
Abstract
Background/Objectives: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and currently is the second-leading cause of cancer-related mortality globally. Current front-line systemic therapies for advanced HCC offer only modest improvements in patient overall survival. HCC is a sexually dimorphic disease, and [...] Read more.
Background/Objectives: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and currently is the second-leading cause of cancer-related mortality globally. Current front-line systemic therapies for advanced HCC offer only modest improvements in patient overall survival. HCC is a sexually dimorphic disease, and cancer progression is driven in part by AR activity. Here, we present novel niclosamide pro-drugs for use in advanced HCC based upon niclosamide’s known anti-AR activity and additional anti-cancer pathway efficacy. Methods: Niclosamide analogs were evaluated for their impacts on the AR protein in two HCC cell lines with different AR phenotypes. Amino acid conjugates of niclosamide were developed, and pharmacokinetic (PK) analyses were conducted to determine improvements in clearance and oral exposure. Finally, niclosamide analogs and amino acid conjugates were evaluated in an in vivo model of HCC. Results: Niclosamide analogs maintained anti-AR properties in HCC. Valine-conjugated niclosamide showed improved oral exposure, positioning it as a potential therapeutic in advanced HCC. Conclusions: Valine–niclosamide improves upon niclosamide’s poor solubility and oral bioavailability, increasing its utility for a variety of therapeutic uses. Further study of valine–niclosamide in advanced HCC and in other cancers or diseases is warranted. Full article
(This article belongs to the Special Issue Drug Repurposing and Reformulation for Cancer Treatment: 2nd Edition)
Show Figures

Figure 1

6 pages, 771 KiB  
Case Report
Sustained Complete Response to Trastuzumab Deruxtecan Beyond Treatment Discontinuation in a Heavily Pretreated HER2-Positive Breast Cancer Patient with Skin Metastases: A Case Report
by Maria Puleo, Sarah Pafumi, Martina Di Pietro, Giuseppina Rosaria Rita Ricciardi and Maria Vita Sanò
Reports 2025, 8(3), 126; https://doi.org/10.3390/reports8030126 - 31 Jul 2025
Viewed by 192
Abstract
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a [...] Read more.
Background and Clinical Significance: Breast cancer is a heterogeneous disease with different spread of metastases. In particular, skin metastases are common in HER2-positive metastatic breast cancer (mBC). However, anti-HER2 therapies have shown limited activity in this context. Recently, Trastuzumab Deruxtecan (T-DXd), a novel potent anti-HER2 antibody–drug conjugate (ADC), has revolutionized the therapeutic armamentarium of HER2 mBC with unprecedented evidence of efficacy in pretreated patients. However, the activity of this drug in patients with skin involvement is largely unknown. Case Presentation: Here, we report a case of extensive cutaneous involvement in a heavily pretreated patient who achieved a long-lasting complete response to T-DXd, which, unexpectedly, remained sustained for more than three years following treatment discontinuation. Conclusions: Skin toxicity is not a common adverse event with this agent, and, as demonstrated in the present case, it might not be drug-related, and additional causes might be ruled out before treatment discontinuation. However, the possibility of discontinuing anti-Her2 treatment in a patient who has achieved a complete response could represent a field of research, potentially using liquid biopsy or other new technologies. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 271 KiB  
Review
Surface Functionalization of Nanoparticles for Enhanced Electrostatic Adsorption of Biomolecules
by Marks Gorohovs and Yuri Dekhtyar
Molecules 2025, 30(15), 3206; https://doi.org/10.3390/molecules30153206 - 30 Jul 2025
Viewed by 215
Abstract
Electrostatic adsorption plays a crucial role in nanoparticle-based drug delivery, enabling the targeted and reversible loading of biomolecules onto nanoparticles. This review explores the fundamental mechanisms governing nanoparticle–biomolecule interactions, with a focus on electrostatics, van der Waals forces, hydrogen bonding, and protein corona [...] Read more.
Electrostatic adsorption plays a crucial role in nanoparticle-based drug delivery, enabling the targeted and reversible loading of biomolecules onto nanoparticles. This review explores the fundamental mechanisms governing nanoparticle–biomolecule interactions, with a focus on electrostatics, van der Waals forces, hydrogen bonding, and protein corona formation. Various functionalization strategies—including covalent modification, polymer coatings, and layer-by-layer assembly—have been employed to enhance electrostatic binding; however, each presents trade-offs in terms of stability, complexity, and specificity. Emerging irradiation-based techniques offer potential for direct modulation of surface charge without the addition of chemical groups, yet they remain underexplored. Accurate characterization of biomolecule adsorption is equally critical; however, the limitations of individual techniques also pose challenges to this endeavor. Spectroscopic, microscopic, and electrokinetic methods each contribute unique insights but require integration for a comprehensive understanding. Overall, a multimodal approach to both functionalization and characterization is essential for advancing nanoparticle systems toward clinical drug delivery applications. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Biomedical Applications, 2nd Edition)
12 pages, 1279 KiB  
Article
Study on the Excretion of a New Antihypertensive Drug 221s (2,9) in Rats
by Yunmei Chen, Kuan Yang, Shaojing Liu, Lili Yu, Rong Wang and Bei Qin
Pharmaceuticals 2025, 18(8), 1138; https://doi.org/10.3390/ph18081138 - 30 Jul 2025
Viewed by 240
Abstract
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this [...] Read more.
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this knowledge gap. Methods: Excretion of unchanged 221s (2,9) was quantified in urine, feces, and bile of Sprague-Dawley rats after oral administration (30 mg/kg). Concentrations of unchanged 221s (2,9) in all matrices were quantified using developed UPLC-MS/MS that underwent methodological validation. Excretion amount, excretion velocity, and accumulative excretion rate of 221s (2,9) were calculated. Results: Urinary excretion exhibited rapid elimination kinetics, reaching peak cumulative excretion rates (138.81 ± 15.56 ng/h) at 8 h post-dosing and plateauing by 48 h (cumulative excretion: 1479.81 ± 155.7 ng). Fecal excretion displayed an accelerated elimination phase between 4 and 8 h (excretion rate: 7994.29 ± 953.75 ng/h), followed by a sustained slow-release phase, culminating in a cumulative output of 36,726.31 ± 5507 ng at 48 h. Biliary excretion was minimal and ceased entirely by 24 h. Notably, total recovery of unchanged drug across all matrices remained below 1% (urine: 0.020 ± 0.021%; feces: 0.73 ± 0.069%; bile: 0.00044 ± 0.00002%) at 72 h. Conclusions: This study provides the first definitive excretion data for 221s (2,9). Quantitative analysis via a validated UPLC-MS/MS method revealed that fecal excretion is the principal elimination pathway for unchanged 221s (2,9) in rats, with direct excretion of the parent compound accounting for <1% of the administered dose over 72 h. Future studies will employ extended pharmacokinetic monitoring and concurrent UPLC-MS/MS analysis of the parent drug and phase II conjugates to resolve the observed mass imbalance and elucidate contributions to total elimination. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 1337 KiB  
Review
Balancing Innovation and Safety: Prediction, Prevention, and Management of Pneumonitis in Lung Cancer Patients Receiving Novel Anti-Cancer Agents
by Sarah Liu, Daniel Wang, Andrew Robinson, Mihaela Mates, Yuchen Li, Negar Chooback, Pierre-Olivier Gaudreau, Geneviève C. Digby, Andrea S. Fung and Sofia Genta
Cancers 2025, 17(15), 2522; https://doi.org/10.3390/cancers17152522 - 30 Jul 2025
Viewed by 329
Abstract
Pneumonitis is characterized as inflammation of the lung parenchyma, and a potential adverse effect of several anti-cancer therapies. Diagnosing pneumonitis can be particularly challenging in lung cancer patients due to inherent similarities in symptoms and radiological presentation associated with pneumonitis, as well as [...] Read more.
Pneumonitis is characterized as inflammation of the lung parenchyma, and a potential adverse effect of several anti-cancer therapies. Diagnosing pneumonitis can be particularly challenging in lung cancer patients due to inherent similarities in symptoms and radiological presentation associated with pneumonitis, as well as other common conditions such as infection or disease progression. Furthermore, many lung cancer patients have underlying pulmonary conditions that might render them more susceptible to severe or fatal outcomes from pneumonitis. Novel anti-cancer agents, such as antibody–drug conjugates (ADCs) and bispecific antibodies (BsAbs), are being incorporated into the treatment of lung cancer; therefore, understanding the risk and mechanisms underlying the potential development of pneumonitis with these new therapies is important to ensure continuous improvements in patient care. This narrative review provides an overview of the incidence of pneumonitis observed with novel anti-cancer agents, characterizes potential pathophysiological mechanisms underlying pneumonitis risk and emerging predictive biomarkers, highlights management strategies, and explores future directions for minimizing the risk of pneumonitis for lung cancer patients. Full article
(This article belongs to the Special Issue Cancer Immunotherapy in Clinical and Translational Research)
Show Figures

Figure 1

27 pages, 664 KiB  
Review
Targeted Therapies and Immunotherapies for Diffuse Large B-Cell Lymphoma
by Jahnavi Chaudhari and Nikesh N. Shah
Cancers 2025, 17(15), 2517; https://doi.org/10.3390/cancers17152517 - 30 Jul 2025
Viewed by 853
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin lymphoma (NHL) [...] Full article
(This article belongs to the Special Issue Advances in B-Cell Lymphoma: From Diagnostics to Cure)
Show Figures

Figure 1

20 pages, 1918 KiB  
Review
Leveraging the Tumor Microenvironment as a Target for Cancer Therapeutics: A Review of Emerging Opportunities
by Hakan Guven and Zoltán Székely
Pharmaceutics 2025, 17(8), 980; https://doi.org/10.3390/pharmaceutics17080980 - 29 Jul 2025
Viewed by 362
Abstract
Cancer has remained one of the leading causes of death worldwide throughout history despite significant advancements in drug development, radiation therapy, and surgery. Traditional chemotherapeutic small molecules are often hindered by narrow therapeutic indices and limited specificity, leading to suboptimal clinical outcomes. On [...] Read more.
Cancer has remained one of the leading causes of death worldwide throughout history despite significant advancements in drug development, radiation therapy, and surgery. Traditional chemotherapeutic small molecules are often hindered by narrow therapeutic indices and limited specificity, leading to suboptimal clinical outcomes. On the other hand, more advanced approaches, such as antibody–drug conjugates (ADCs), frequently encounter obstacles, including poor tumor penetration and prohibitive production costs. The tumor-forming and metastatic capacity of cancer further challenges currently available cancer therapies by creating a biochemical milieu known as the tumor microenvironment (TME). Although solid tumor development presents significant obstacles, it also opens new avenues for innovative therapeutic approaches. It is well-documented that as tumors grow beyond 1–2 mm3 in size, they undergo profound changes in their microenvironment, including alterations in oxygen levels, pH, enzymatic activity, surface antigen expression, and the cellular composition of the stroma. These changes create unique opportunities that can be exploited to develop novel and innovative therapeutics. Currently, numerous ADCs, small-molecule–drug conjugates (SMDCs), and prodrugs are being developed to target specific aspects of these microenvironmental changes. In this review, we explore five TME parameters in detail, with a focus on their relevance to specific cancer types, phenotypic identifiers, and preferred methods of therapeutic targeting. Additionally, we examine the chemical moieties available to target these changes, providing a framework for design strategies that exploit the dynamics of the tumor microenvironment. Full article
Show Figures

Graphical abstract

Back to TopTop