Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,589)

Search Parameters:
Keywords = drug delivery system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1428 KB  
Review
The Glymphatic–Immune Axis in Glioblastoma: Mechanistic Insights and Translational Opportunities
by Joaquin Fiallo Arroyo and Jose E. Leon-Rojas
Int. J. Mol. Sci. 2026, 27(2), 928; https://doi.org/10.3390/ijms27020928 (registering DOI) - 16 Jan 2026
Abstract
Glioblastoma (GBM) remains one of the most treatment-resistant human malignancies, largely due to the interplay between disrupted fluid dynamics, immune evasion, and the structural complexity of the tumor microenvironment; in addition to these, treatment resistance is also driven by intratumoral heterogeneity, glioma stem [...] Read more.
Glioblastoma (GBM) remains one of the most treatment-resistant human malignancies, largely due to the interplay between disrupted fluid dynamics, immune evasion, and the structural complexity of the tumor microenvironment; in addition to these, treatment resistance is also driven by intratumoral heterogeneity, glioma stem cell persistence, hypoxia-induced metabolic and epigenetic plasticity, adaptive oncogenic signaling, and profound immunosuppression within the tumor microenvironment. Emerging evidence shows that dysfunction of the glymphatic system, mislocalization of aquaporin-4, and increased intracranial pressure compromise cerebrospinal fluid–interstitial fluid exchange and impair antigen drainage to meningeal lymphatics, thereby weakening immunosurveillance. GBM simultaneously remodels the blood–brain barrier into a heterogeneous and permeable blood–tumor barrier that restricts uniform drug penetration yet enables tumor progression. These alterations intersect with profound immunosuppression mediated by pericytes, tumor-associated macrophages, and hypoxic niches. Advances in imaging, including DCE-MRI, DTI-ALPS, CSF-tracing PET, and elastography, now allow in vivo characterization of glymphatic function and interstitial flow. Therapeutic strategies targeting the fluid-immune interface are rapidly expanding, including convection-enhanced delivery, intrathecal and intranasal approaches, focused ultrasound, nanoparticle systems, and lymphatic-modulating immunotherapies such as VEGF-C and STING agonists. Integrating barrier modulation with immunotherapy and nanomedicine holds promise for overcoming treatment resistance. Our review synthesizes the mechanistic, microenvironmental, and translational advances that position the glymphatic–immune axis as a new frontier in glioblastoma research. Full article
Show Figures

Figure 1

32 pages, 3971 KB  
Review
Emerging Gel Technologies for Atherosclerosis Research and Intervention
by Sen Tong, Jiaxin Chen, Yan Li and Wei Zhao
Gels 2026, 12(1), 80; https://doi.org/10.3390/gels12010080 (registering DOI) - 16 Jan 2026
Abstract
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled [...] Read more.
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled degradation kinetics, high drug-loading capacity, and potential for stimuli-responsive therapeutic release. This review examines gel platforms across multiple scales and applications in atherosclerosis research and intervention. First, gel-based in vitro models are discussed. These include hydrogel matrices simulating plaque microenvironments, three-dimensional cellular culture platforms, and microfluidic organ-on-chip devices. These devices incorporate physiological flow to investigate disease mechanisms under controlled conditions. Second, therapeutic strategies are addressed through macroscopic gels for localized treatment. These encompass natural polymer-based, synthetic polymer-based, and composite formulations. Applications include stent coatings, adventitial injections, and catheter-delivered depots. Natural polymers often possess intrinsic biological activities including anti-inflammatory and immunomodulatory properties that may contribute to therapeutic effects. Third, nano- and microgels for systemic delivery are examined. These include polymer-based nanogels with stimuli-responsive drug release responding to oxidative stress, pH changes, and enzymatic activity characteristic of atherosclerotic lesions. Inorganic–organic composite nanogels incorporating paramagnetic contrast agents enable theranostic applications by combining therapy with imaging-guided treatment monitoring. Current challenges include manufacturing consistency, mechanical stability under physiological flow, long-term safety assessment, and regulatory pathway definition. Future opportunities are discussed in multi-functional integration, artificial intelligence-guided design, personalized formulations, and biomimetic approaches. Gel technologies demonstrate substantial potential to advance atherosclerosis management through improved spatial and temporal control over therapeutic interventions. Full article
29 pages, 2241 KB  
Article
Polarity-Driven Selective Adsorption of Quercetin on Kaolinite: An Integrated DFT and Monte Carlo Study
by Abdelilah Ayad, Achraf Harrou, Abdelouahad El Himri, Mohammed Benali, Abdelouassia Dira, Santiago Aparicio, Alberto Gutiérrez, Armand Soldera and Elkhadir Gharibi
Materials 2026, 19(2), 368; https://doi.org/10.3390/ma19020368 - 16 Jan 2026
Abstract
Quercetin’s therapeutic potential is limited by its poor water solubility and rapid degradation. Natural clay minerals such as kaolinite present sustainable platforms for drug delivery, yet the molecular mechanisms of drug encapsulation are not fully understood. Specifically, the role of kaolinite’s structural polarity, [...] Read more.
Quercetin’s therapeutic potential is limited by its poor water solubility and rapid degradation. Natural clay minerals such as kaolinite present sustainable platforms for drug delivery, yet the molecular mechanisms of drug encapsulation are not fully understood. Specifically, the role of kaolinite’s structural polarity, its hydrophilic aluminol (001) and hydrophobic siloxane (00-1) basal surfaces, in selective drug adsorption remains unexplored. This study combines Monte Carlo sampling and Density Functional Theory (DFT) to provide the first quantitative, atomistic comparison of quercetin adsorption on both kaolinite surfaces. The results demonstrate a pronounced polarity-driven selectivity. Strong, exothermic adsorption (−206.65 kJ mol−1) occurs on the hydrophilic (001) surface, stabilized by a network of five hydrogen bonds. In contrast, the hydrophobic (00-1) surface exhibits significantly weaker sorption (−147.16 kJ mol−1), dominated by van der Waals interactions. Charge-transfer analysis shows that the hydrophilic (001) surface exhibits a net charge transfer of −0.198 e, approximately 2.4 times greater than that of the hydrophobic (00-1) surface (−0.083 e), consistent with differential electron density maps and partial density of states. By linking hydrogen bonding and charge transfer to adsorption energy, these results elucidate how surface polarity dictates drug encapsulation. This work establishes a predictive framework for designing kaolinite-based nanocarriers with optimized stability, bioavailability, and controlled release, guiding the development of sustainable drug delivery systems. It is noted that this DFT study models adsorption at 0 K using periodic slab models in a vacuum. Full article
30 pages, 920 KB  
Review
Enhancing the Water Solubility and Efficacy of Anticancer Drugs Using Hydroxypropyl-β-Cyclodextrin
by Yasushi Kubota and Shinya Kimura
Int. J. Mol. Sci. 2026, 27(2), 915; https://doi.org/10.3390/ijms27020915 - 16 Jan 2026
Abstract
Cyclodextrins (CyDs) are cyclic oligosaccharides that form inclusion complexes that allow organic compounds and other substances to be incorporated into their cavities. Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is frequently used to improve the formulation properties of poorly water-soluble drugs because of its aqueous solubility and biocompatibility. [...] Read more.
Cyclodextrins (CyDs) are cyclic oligosaccharides that form inclusion complexes that allow organic compounds and other substances to be incorporated into their cavities. Hydroxypropyl-β-cyclodextrin (HP-β-CyD) is frequently used to improve the formulation properties of poorly water-soluble drugs because of its aqueous solubility and biocompatibility. Previous studies have demonstrated that the solubility and biocompatibility of poorly water-soluble anti-cancer agents can be improved by complexation with HP-β-CyD, which in some cases enhances their anticancer activity relative to the unmodified drugs. Advances in formulation strategies have enabled more efficient intracellular delivery, improved tissue and cell selectivity, and controlled release. HP-β-CyD has also been investigated as an active pharmaceutical ingredient, with demonstrated efficiency in treating leukemia and breast cancer. For example, folate-conjugated HP-β-CyD exhibits high selectivity for folate receptor-expressing cells and more potent anti-cancer activity than unmodified HP-β-CyD. Autophagy has been suggested to be involved in this mechanism. The continued development of drug-delivery systems that integrate advanced technologies and materials based on HP-β-CyD holds promise for further advances in cancer therapy. These findings indicate a paradigm shift in the role of HP-β-CyD from a formulation additive to an active pharmaceutical ingredient, suggesting broader applications for HP-β-CyD in anticancer treatments. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 3rd Edition)
21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

21 pages, 5367 KB  
Article
Fluorescent Nanoporous Gene Drugs with Fenton-like Catalysis Vector Research
by Yulin Li, Jianjun Pan, Lili Xu, Yan Sun and Tong Li
Nanomaterials 2026, 16(2), 120; https://doi.org/10.3390/nano16020120 - 16 Jan 2026
Abstract
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) [...] Read more.
A multifunctional diagnosis and treatment carrier, ZIF-8@CDs, based on carbon quantum dots (CDs) and the zeolitic imidazolate framework-8 (ZIF-8) metal–organic framework which serves as a core structure for constructing the responsive delivery platform, is developed in this paper. The anticancer drug doxorubicin (DOX) and Survivin oligo (siRNA) are loaded to form a ZIF-8@CDs/DOX@siRNA dual loading platform. CDs of 5–10 nm are synthesized by the solvent method and combined with ZIF-8. Electron microscopy shows that the composites are nearly spherical particles of approximately 200 nm, and the surface potential decreases from +36 mV before loading CDs to +25.7 mV after loading. The composite system shows unique advantages: (1) It has Fenton-like catalytic activity, catalyzes H2O2 to generate hydroxyl radicals, and consumes glutathione in the tumor microenvironment. The level of reactive oxygen species (ROS) in the ZIF-8@CDs group is significantly higher than that in the control group. (2) To achieve visual diagnosis and treatment, its fluorescence intensity is superior to that of the traditional Fluorescein isothiocyanate (FITC)-labeled vector; (3) It has a high loading capacity, with the loading amount of small nucleic acids reaching 36.25 μg/mg, and the uptake rate of siRNA by liver cancer cells is relatively ideal. The ZIF-8@CDs/DOX@siRNA dual-loading system is further constructed. Flow cytometry shows that the apoptosis rate of HepG2 cells induced by the ZIF-8@CDs/DOX@siRNA dual-loading system is 49%, which is significantly higher than that of the single-loading system (ZIF-8@CDs/DOX: 34.3%, ZIF-8@CDs@siRNA: 24.2%) and the blank vector (ZIF-8@CDs: 12.6%). The platform provides a new strategy for the integration of tumor diagnosis and treatment through the multi-mechanism synergy of chemical kinetic therapy, gene silencing and chemotherapy. Full article
(This article belongs to the Topic Advanced Nanocarriers for Targeted Drug and Gene Delivery)
Show Figures

Graphical abstract

23 pages, 1039 KB  
Review
Advanced Liposomal Systems for Cancer Therapy with Focus on Lipid–Polymer Hybrids and Cell Membrane-Coated Liposomes
by Paraskevi Zagana and Alexandra Paxinou
Future Pharmacol. 2026, 6(1), 6; https://doi.org/10.3390/futurepharmacol6010006 - 16 Jan 2026
Abstract
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming [...] Read more.
Since their discovery in the 1960s, liposomes have become a versatile platform for drug delivery in cancer research, capable of carrying both hydrophilic and hydrophobic drugs. Throughout the past decades, liposomes have evolved to improve stability, blood circulation time, and targeting ability, overcoming many disadvantages of early formulations. Lipid–polymer hybrid liposomes (LPHLs), a third-generation nanoparticle model, are vesicles where polymers are incorporated in or around the lipid bilayer to increase their stability, to control drug release, and to provide multifunctional capabilities. More recently, cell membrane-coated (CMC) liposomes, which consist of “core” liposomes (preformed liposomes) cloaked in natural cell membranes, have emerged as an even more innovative approach, offering superior immune evasion and highly selective targeting, which are both particularly promising for cancer therapy. Preclinical studies in cancer models demonstrate that these advanced liposomal systems improve pharmacokinetics and therapeutic outcomes. They hold significant potential for developing next-generation, personalized nanomedicines for cancer and other complex diseases. However, challenges related to large-scale production, long-term stability, and safety evaluation remain. Full article
Show Figures

Figure 1

21 pages, 707 KB  
Article
Mathematical Modeling in Drug Metabolism and Pharmacokinetics: Correct In Vitro, Not Always Valid In Vivo
by Leslie Z. Benet and Jasleen K. Sodhi
Pharmaceuticals 2026, 19(1), 160; https://doi.org/10.3390/ph19010160 - 15 Jan 2026
Abstract
Background/Objectives: Chemical and metabolic kinetics have historically been derived from mass balance differential equations expressed in terms of amounts, and this framework was later extended to pharmacokinetics by converting amount-based equations to concentration-based clearance relationships. That conversion is valid for fixed-volume in [...] Read more.
Background/Objectives: Chemical and metabolic kinetics have historically been derived from mass balance differential equations expressed in terms of amounts, and this framework was later extended to pharmacokinetics by converting amount-based equations to concentration-based clearance relationships. That conversion is valid for fixed-volume in vitro experiments, but may be unreliable in vivo, where input, distribution, and elimination can occur in different volumes of distribution. The objective of this study is to present an alternate, mechanistically agnostic framework for deriving pharmacokinetic relationships by adapting Kirchhoff’s Laws to treat pharmacokinetic systems as networks of parallel and in-series rate-defining processes, and to identify where differential equation approaches fail in vivo. Methods: Clearance and rate constant equations were derived using the adapted Kirchhoff’s Laws by summing parallel rate-defining processes and summing inverses for in-series processes, explicitly incorporating organ blood flow, net transporter, and delivery site effects. The resulting expressions were compared with differential equation hepatic disposition elimination models (well-stirred, parallel tube, dispersion) and the Extended Clearance Concept (ECC). Mean residence time concepts were used to extend the framework to oral input, and the full approach was applied to a case study of a hypothetical drug (KL25A). Results: The adapted Kirchhoff-based approach reproduced standard pharmacokinetic analyses without mechanistic organ assumptions and yielded model-independent hepatic and renal clearance equations that include blood flow, net transport, and delivery kinetics. Inconsistencies with the traditional differential-based derivations were highlighted, including the interpretation of pharmacokinetics associated with slow absorption site clearance, as illustrated by KL25A. Conclusions: For linear drug metabolism and pharmacokinetics, clearance and rate constant relationships can be derived by summing parallel and in-series rate-defining processes, without differential equations. Differential equation methods may misestimate in vivo clearance and bioavailability when drug input is slow or when volumes of distribution differ across processes. The adapted Kirchhoff framework offers a simpler, model-independent basis for interpreting clinical data. Full article
(This article belongs to the Special Issue Mathematical Modeling in Drug Metabolism and Pharmacokinetics)
Show Figures

Graphical abstract

19 pages, 914 KB  
Review
FDA-Approved Passive Immunization Treatments Against Aβ in Alzheimer’s Disease: Where Are We Now?
by Martin Higgins, Veronica Wasef and Andrea Kwakowsky
Int. J. Mol. Sci. 2026, 27(2), 883; https://doi.org/10.3390/ijms27020883 - 15 Jan 2026
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by decreased amyloid-beta (Aβ) clearance, enhanced Aβ aggregation, an increased risk of amyloid-related imaging abnormalities (ARIA), and blood–brain barrier (BBB) dysfunction. The APOE4 allele, being the leading genetic risk factor for AD, contributes strongly [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by decreased amyloid-beta (Aβ) clearance, enhanced Aβ aggregation, an increased risk of amyloid-related imaging abnormalities (ARIA), and blood–brain barrier (BBB) dysfunction. The APOE4 allele, being the leading genetic risk factor for AD, contributes strongly to these symptoms. This review covers the relationship between APOE4 status and the efficacy of FDA-approved monoclonal antibody (mAb) therapies, namely aducanumab, lecanemab, and donanemab. Across several clinical trials, APOE4 carriers exhibited higher rates of ARIA-E and ARIA-H compared to non-carriers. While the therapies did often meet biomarker endpoints (i.e., reduced amyloid), benefits were only observed in early and mild AD, and cognitive benefits were often marginal. Going forward, experimental apoE4-targeted immunotherapies may ease the burden of APOE4-related pathology. The field is shifting towards a more integrated approach, focusing on earlier interventions, biomarker-driven precision treatment, and improved drug delivery systems, such as subcutaneous injections, receptor-mediated transport, and antibodies with enhanced BBB penetration. As it stands, high treatment costs, limited accessibility, and strict eligibility criteria all stand as barriers to treatment. By integrating the APOE4 genotype into treatment planning and focusing on disease-stage-specific approaches, a safer and more effective means of treating AD could be achieved. Full article
Show Figures

Figure 1

22 pages, 2752 KB  
Review
Capric Acid-Based Therapeutic Deep Eutectic Systems: A Focused Review Within the Framework of Deep Eutectic Solvents
by Faisal Al-Akayleh, Ahmed S. A. Ali Agha, Ali R. Olaimat and Giuseppe Biagini
Pharmaceuticals 2026, 19(1), 159; https://doi.org/10.3390/ph19010159 - 15 Jan 2026
Abstract
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on [...] Read more.
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on their design, mechanisms, and pharmaceutical performance. Results: This review synthesizes current evidence on their structural design, mechanistic behavior, and pharmaceutical performance, revealing several unifying principles. Across multiple drug classes, CA consistently drives strong, directional hydrogen bonding and drug amorphization, resulting in marked solubility enhancement and stabilization of non-crystalline or supersaturated states relative to crystalline drugs or conventional solvent systems. Its amphiphilic C10 chain further contributes to membrane fluidization, which explains the improved transdermal and transmucosal permeation repeatedly observed in CA-THEDES. Additionally, synergistic antimicrobial and anticancer effects reported in several systems confirm that CA acts not only as a solvent component but as a bioactive co-therapeutic. Collectively, the reviewed data show that CA serves as a structurally determinant element whose dual hydrogen-bonding and membrane-interacting roles underpin the high pharmaceutical performance of these systems. However, gaps remain in long-term stability, toxicological profiling, and regulatory classification. Emerging Artificial Intelligence (AI) and Machine Learning (ML)-guided predictive approaches offer promising solutions by enabling rational selection of eutectic partners, optimal ratios, and property optimization through computational screening. Conclusions: Overall, CA-THEDES represent a rationally designable platform for next-generation drug delivery, where solvent functionality and therapeutic activity converge within a single, green formulation system. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

31 pages, 1648 KB  
Review
Beyond the Solvent: Engineering Ionic Liquids for Biomedical Applications—Advances, Challenges, and Future Directions
by Amal A. M. Elgharbawy, Najihah Mohd Noor, Nor Azrini Nadiha Azmi and Beauty Suestining Diyah Dewanti
Molecules 2026, 31(2), 305; https://doi.org/10.3390/molecules31020305 - 15 Jan 2026
Abstract
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, [...] Read more.
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, and controlled release systems, ILs have since gained significant attention in drug delivery, antimicrobial treatments, medical imaging, and biosensing. This review examines the diverse functions of ILs in contemporary therapeutics and diagnostics, highlighting their transformative capabilities in improving drug solubility, bioavailability, transdermal permeability, and pathogen inactivation. In drug delivery, ILs improve solubility of bioactive compounds, with several IL formulations achieving substantial solubility enhancements for poorly soluble drugs. Bio-ILs, in particular, show promise in enhancing drug delivery systems, such as improving transdermal permeability. ILs also exhibit significant antimicrobial and antiviral activity, offering new avenues for combating resistant pathogens. Despite their broad potential, challenges such as cytotoxicity, long-term metabolic effects, and the stability of ILs in physiological conditions persist. While much research has focused on their physicochemical properties, biological activity and in vivo studies are still underexplored. The future directions for ILs in biomedical applications include the development of bioengineered ILs and hybrid ILs, combining functional components like nanoparticles and polymers to create multifunctional materials. These ILs, derived from renewable resources, show great promise in personalized medicine and clinical applications. Further research is necessary to evaluate their pharmacokinetics, biodistribution, and long-term safety to fully realize their biomedical potential. This study emphasizes the potential of ILs to transform therapeutic and diagnostic technologies by highlighting present shortcomings and offering pathways for clinical translation, while also debating the need for continuous research to fully utilize their biomedical capabilities. Full article
Show Figures

Graphical abstract

36 pages, 3743 KB  
Article
Tri-Layer Composite Nanofiber Wound Dressing Incorporating Glucantime and Silver Nanoparticles for Cutaneous Leishmaniasis Management
by Hilal Topuz, Murat Inal, Atiye Turker, Zisan Toprak, Emrah Sefik Abamor, Sezen Canim Ates and Serap Acar
J. Funct. Biomater. 2026, 17(1), 41; https://doi.org/10.3390/jfb17010041 - 15 Jan 2026
Abstract
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems [...] Read more.
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems are required to enhance drug penetration and reduce systemic toxicity. To address these challenges, silver nanoparticles (AgNPs) were synthesized using propolis extract through a green synthesis approach, and a tri-layer wound dressing composed of polyvinyl alcohol and gelatin containing synthesized AgNPs and Glucantime was fabricated by electrospinning. Characterization (SEM-EDX, FTIR, TGA) confirmed uniform morphology, chemical structure, and thermal stability; the wound dressing exhibited hydrophilicity, antioxidant activity, and biphasic release. Biological evaluations against Leishmania tropica demonstrated significant antiparasitic activity. Promastigote viability decreased from 76.3% in neat fibers to 31.6% in nanofibers containing AgNPs and 7.9% in tri-layer nanofibers containing both AgNPs and Glucantime. Similarly, the amastigote infection index dropped from 410 in controls to 250 in neat nanofibers, 204 in AgNPs-containing nanofibers, and 22 in tri-layer nanofibers containing AgNPs and Glucantime. The tri-layer nanofibers demonstrated enhanced antileishmanial activity over AgNPs-containing fibers, confirming synergistic efficacy. All nanofibers were biocompatible, supporting their use as a safe platform for cutaneous leishmaniasis treatment. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

22 pages, 3229 KB  
Article
Antitumor Activity of All-Trans Retinoic Acid and Curcumin-Loaded BSA Nanoparticles Against U87 Glioblastoma Cells
by Ceyda Sonmez, Aleyna Baltacioglu, Julide Coskun, Gulen Melike Demirbolat, Ozgul Gok and Aysel Ozpinar
Life 2026, 16(1), 131; https://doi.org/10.3390/life16010131 - 15 Jan 2026
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by invasive growth, intrinsic drug resistance, and the presence of the blood–brain barrier. All of these features make treatment extremely challenging and underscore the need for developing effective combination strategies and advanced drug delivery systems. This study aimed to develop a bovine serum albumin (BSA) nanoparticle (NP)-based delivery system to overcome the poor bioavailability and pharmacokinetic limitations of two potent anti-tumor agents, all-trans retinoic acid (ATRA) and curcumin (CURC), and to evaluate their antitumor activity in U87-MG GBM cells. Drug-free and ATRA/CURC-loaded BSA-NPs were synthesized using an optimized desolvation method and characterized in terms of particle size, polydispersity index, morphology, drug encapsulation efficiency, and release behavior. The cytotoxic, anti-migratory, and pro-apoptotic effects of the NPs on U87-MG GBM cells were assessed using real-time proliferation and migration assays and Annexin V/PI staining followed by flow cytometry. Collectively, the findings indicated that the co-delivery of ATRA and CURC using BSA-NPs showed enhanced antiproliferative, antimigratory, and pro-apoptotic effects. With its controlled release profile, high loading capacity, and favorable nanoscale dimensions, the ATRA-CURC-BSA–NP system represents a promising nanoplatform for GBM therapy that warrants further in vivo investigation. To the best of our knowledge, this is the first study demonstrating the inhibition of glioblastoma cell growth through the co-delivery of all-trans retinoic acid and curcumin using a bovine serum albumin-based nanoparticle system. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

25 pages, 3149 KB  
Article
Design and Factorial Optimization of Curcumin and Resveratrol Co-Loaded Lipid Nanocarriers for Topical Delivery
by Daniela Pastorim Vaiss, Débora Cristine Chrisostomo Dias, Virginia Campello Yurgel, Fernanda Beatriz Venturi Araujo, Ledilege Cucco Porto, Janaina Fernandes de Medeiros Burkert, Marcelo Augusto Germani Marinho, Daza de Moraes Vaz Batista Filgueira and Cristiana Lima Dora
Pharmaceutics 2026, 18(1), 109; https://doi.org/10.3390/pharmaceutics18010109 - 15 Jan 2026
Abstract
Background: Nanotechnology provides innovative strategies to enhance drug delivery and therapeutic efficacy through advanced nanocarrier systems. Objectives: This study aimed to develop and optimize a nanostructured lipid carrier (NLC) co-encapsulating curcumin (CUR) and resveratrol (RESV) using a fractional factorial design to [...] Read more.
Background: Nanotechnology provides innovative strategies to enhance drug delivery and therapeutic efficacy through advanced nanocarrier systems. Objectives: This study aimed to develop and optimize a nanostructured lipid carrier (NLC) co-encapsulating curcumin (CUR) and resveratrol (RESV) using a fractional factorial design to develop a topical formulation with antioxidant and anti-inflammatory properties. Methods: NLCs were produced via hot emulsification followed by high-pressure homogenization, and their physicochemical characteristics, drug content, stability, release profile, antioxidant activity, skin delivery, and cellular compatibility were evaluated. Results: The optimized formulation exhibited an average particle size of approximately 300 nm, a polydispersity index below 0.3, and high drug loading for both compounds. Stability studies over 90 days revealed no significant changes in physicochemical parameters, confirming the formulation’s robustness. In vitro release assays demonstrated sustained release of both actives, with 58.6 ± 2.9% of CUR and 97 ± 3% of RESV released after 72 h. Antioxidant activity, assessed by the DPPH and ABTS assays, showed concentration-dependent radical-scavenging effects, indicating antioxidant potential. Skin permeation/retention experiments using porcine skin showed enhanced retention of CUR and RESV within the tissue, with no detectable permeation, indicating suitability for topical delivery. In addition, in vitro cell assays using human keratinocytes showed concentration-dependent responses and acceptable cellular compatibility. Conclusions: Overall, this study demonstrates the successful application of nanotechnology and experimental design to develop stable and efficient lipid-based nanocarriers containing natural polyphenol for topical therapy targeting oxidative and inflammatory skin disorders. Full article
Show Figures

Graphical abstract

58 pages, 3392 KB  
Review
Quantum and Artificial Intelligence in Drugs and Pharmaceutics
by Bruno F. E. Matarèse
BioChem 2026, 6(1), 2; https://doi.org/10.3390/biochem6010002 - 14 Jan 2026
Viewed by 17
Abstract
The pharmaceutical industry faces a broken drug development pipeline, characterized by high costs, slow timelines and is prone to high failure rates. The convergence of Artificial Intelligence (AI) and quantum technologies is poised to fundamentally transform this landscape. AI excels in interpreting complex [...] Read more.
The pharmaceutical industry faces a broken drug development pipeline, characterized by high costs, slow timelines and is prone to high failure rates. The convergence of Artificial Intelligence (AI) and quantum technologies is poised to fundamentally transform this landscape. AI excels in interpreting complex data, optimizing processes and designing drug candidates, while quantum systems enable unprecedented molecular simulation, ultra-sensitive sensing and precise physical control. This convergence establishes an integrated, self-learning ecosystem for the discovery, development, and delivery of therapeutics. This framework co-designs strategies from molecular targeting to formulation stability, compressing timelines and enhancing precision, which may enable safer, faster, and more adaptive medicines. Full article
(This article belongs to the Special Issue Drug Delivery: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop