Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = double HTL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1302 KB  
Article
Theoretical Analysis of Power Conversion Efficiency of Lead-Free Double-Perovskite Cs2TiBr6 Solar Cells with Different Hole Transport Layers
by Vivek Bhojak and Praveen Kumar Jain
Eng 2025, 6(2), 28; https://doi.org/10.3390/eng6020028 - 1 Feb 2025
Viewed by 1078
Abstract
In recent years, there has been significant investigation into the high efficiency of perovskite solar cells. These cells have the capacity to attain efficiencies above 14%. As the perovskite materials that include lead pose a substantial environmental risk, components that are free from [...] Read more.
In recent years, there has been significant investigation into the high efficiency of perovskite solar cells. These cells have the capacity to attain efficiencies above 14%. As the perovskite materials that include lead pose a substantial environmental risk, components that are free from lead are used during the process of solar cell development. In this work, we use a lead-free double-perovskite material, namely Cs2TiBr6, as the main absorbing layer in perovskite solar cells to enhance power conversion efficiency (PCE). This work is centered on the development of solar cell structures with materials such as an ETL (electron transport layer) and an HTL (hole transport layer) to enhance the PCE. In this theoretical work, we perform simulations and analysis on double-perovskite Cs2TiBr6 to assess its efficacy as an absorber material in various HTLs like Cu2O and CuI, with a fixed ETL of C60 using SCAPS (Solar Cell Capacitance Simulator, SCAPS 3.3.10) Software. This is a one-dimensional solar cell simulation program. In this work, the thickness of the double-perovskite material is also varied between 0.2 and 2.0 µm, and its efficiency is observed. The effect of temperature variation on efficiency in the range of 300 K to 350 K is observed. The effect of defect density on efficiency is also observed in the range of 1 × 1011 to 1 × 1016. In this theoretical work, perovskite solar cells, including their absorbing layer, demonstrate outstanding ETLs and HTLs, respectively. As a result, the cells’ achieved PCE is improved. This work demonstrates the effectiveness of this lead-free double-perovskite structure that absorbs light in perovskite solar cells. Full article
Show Figures

Figure 1

13 pages, 4588 KB  
Article
Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%
by Sagar Bhattarai, Mustafa K. A. Mohammed, Jaya Madan, Rahul Pandey, Mohd Zahid Ansari, Ahmed Nabih Zaki Rashed, Mongi Amami and M. Khalid Hossain
Sustainability 2023, 15(18), 13955; https://doi.org/10.3390/su151813955 - 20 Sep 2023
Cited by 24 | Viewed by 2933
Abstract
This research aims to optimize the efficiency of the device structures by introducing the novel double perovskite absorber layer (PAL). The perovskite solar cell (PSC) has higher efficiency with both lead perovskite (PVK), i.e., methylammonium tin iodide (MASnI3) and Caseium tin [...] Read more.
This research aims to optimize the efficiency of the device structures by introducing the novel double perovskite absorber layer (PAL). The perovskite solar cell (PSC) has higher efficiency with both lead perovskite (PVK), i.e., methylammonium tin iodide (MASnI3) and Caseium tin germanium iodide (CsSnGeI3). The current simulation uses Spiro-OMeTAD as the hole transport layer (HTL) and TiO2 as an electron transport layer (ETL) to sandwich the PVK layers of MASnI3 and CsSnGeI3, which have precise bandgaps of 1.3 eV and 1.5 eV. The exclusive results of the precise modeling technique for organic/inorganic PVK-based photovoltaic solar cells under the illumination of AM1.5 for distinctive device architectures are shown in the present work. Influence of defect density (DD) is also considered during simulation that revealed the best PSC parameters with JSC of 31.41 mA/cm2, VOC of 1.215 V, FF of nearly 82.62% and the highest efficiency of 31.53% at the combined DD of 1.0 × 1014 cm−3. The influence of temperature on device performance, which showed a reduction in PV parameters at elevated temperature, is also evaluated. A steeper temperature gradient with an average efficiency of −0.0265%/K for the optimized PSC is observed. The novel grading technique helps in achieving efficiency of more than 31% for the optimized device. As a result of the detailed examination of the total DD and temperature dependency of the simulated device, structures are also studied simultaneously. Full article
Show Figures

Figure 1

18 pages, 3115 KB  
Article
Key Processing Factors in Hydrothermal Liquefaction and Their Impacts on Corrosion of Reactor Alloys
by Minkang Liu and Yimin Zeng
Sustainability 2023, 15(12), 9317; https://doi.org/10.3390/su15129317 - 9 Jun 2023
Cited by 14 | Viewed by 3575
Abstract
Despite intensive efforts to develop hydrothermal liquefaction for the conversion of wet biomass and biowaste feedstocks into valuable bio-oils, severe corrosion of conversion reactor alloys and other core components, induced by the pressurized hot water medium, catalysts, and inorganic and organic corrodants generated [...] Read more.
Despite intensive efforts to develop hydrothermal liquefaction for the conversion of wet biomass and biowaste feedstocks into valuable bio-oils, severe corrosion of conversion reactor alloys and other core components, induced by the pressurized hot water medium, catalysts, and inorganic and organic corrodants generated during the conversion process, has significantly hindered the industrial deployment of this attractive technology. In this paper, a general review of major operating parameters, including biomass feedstock types, temperature, pressure, and catalysts, was conducted to advance the understanding of their roles in conversion efficiency and the yield and properties of produced oils. Additionally, the corrosion performance of a representative constructional alloy (Alloy 33) was investigated in both non-catalytic and catalytic HTL environments at temperatures of 310 °C and 365 °C, respectively. The alloy experienced general oxidation in the non-catalytic HTL environment but suffered accelerated corrosion (up to 4.2 µm/year) with the addition of 0.5 M K2CO3 catalyst. The corrosion rate of the alloy noticeably increased with temperature and the presence of inorganic corrodants (S2− and Cl) released from biowastes. SEM/XRD characterization showed that a thin and compact Cr-rich oxide layer grew on the alloy in the non-catalytic HTL environment, while the surface scale became a double-layer structure, composed of outer porous Fe/Cr/Ni oxides and inner Cr-rich oxide, with the introduction of the K2CO3 catalyst. From the corrosion perspective, the alloy is a suitable candidate for construction in the next phase of pilot-scale validation assessment. Full article
(This article belongs to the Special Issue Frontiers in Bio-Energy Production and Applications)
Show Figures

Figure 1

15 pages, 16423 KB  
Article
Performance Optimization of CsPb(I1–xBrx)3 Inorganic Perovskite Solar Cells with Gradient Bandgap
by Luning Wang, Sui Yang, Tingting Xi, Qingchen Yang, Jie Yi, Hongxing Li and Jianxin Zhong
Energies 2023, 16(10), 4135; https://doi.org/10.3390/en16104135 - 17 May 2023
Cited by 5 | Viewed by 2665
Abstract
In recent years, inorganic perovskite solar cells (PSCs) based on CsPbI3 have made significant progress in stability compared to hybrid organic–inorganic PSCs by substituting the volatile organic component with Cs cations. However, the cubic perovskite structure of α-CsPbI3 changes to the [...] Read more.
In recent years, inorganic perovskite solar cells (PSCs) based on CsPbI3 have made significant progress in stability compared to hybrid organic–inorganic PSCs by substituting the volatile organic component with Cs cations. However, the cubic perovskite structure of α-CsPbI3 changes to the orthorhombic non-perovskite phase at room temperature resulting in efficiency degradation. The partial substitution of an I ion with Br ion benefits for perovskite phase stability. Unfortunately, the substitution of Br ion would enlarge bandgap reducing the absorption spectrum range. To optimize the balance between band gap and stability, introducing and optimizing the spatial bandgap gradation configuration is an effective method to broaden the light absorption and benefit the perovskite phase stability. As the bandgap of the CsPb(I1–xBrx)3 perovskite layer can be adjusted by I-Br composition engineering, the performance of CsPb(I1–xBrx)3 based PSCs with three different spatial variation Br doping composition profiles were investigated. The effects of uniform doping and gradient doping on the performance of PSCs were investigated. The results show that bandgap (Eg) and electron affinity(χ) attributed to an appropriate energy band offset, have the most important effects on PSCs performance. With a positive conduction band offset (CBO) of 0.2 eV at the electron translate layer (ETL)/perovskite interface, and a positive valence band offset (VBO) of 0.24 eV at the hole translate layer (HTL)/perovskite interface, the highest power conversion efficiency (PCE) of 22.90% with open–circuit voltage (VOC) of 1.39 V, short–circuit current (JSC) of 20.22 mA/cm2 and filling factor (FF) of 81.61% was obtained in uniform doping CsPb(I1–xBrx)3 based PSCs with x = 0.09. By carrying out a further optimization of the uniform doping configuration, the evaluation of a single band gap gradation configuration was investigated. By introducing a back gradation of band gap directed towards the back contact, an optimized band offset (front interface CBO = 0.18 eV, back interface VBO = 0.15 eV) was obtained, increasing the efficiency to 23.03%. Finally, the double gradient doping structure was further evaluated. The highest PCE is 23.18% with VOC close to 1.44 V, JSC changes to 19.37 mA/cm2 and an FF of 83.31% was obtained. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

14 pages, 2186 KB  
Article
Numerical Investigation of Power Conversion Efficiency of Sustainable Perovskite Solar Cells
by Vivek Bhojak, Praveen K. Jain, Deepak Bhatia, Shashi Kant Dargar, Michał Jasinski, Radomir Gono and Zbigniew Leonowicz
Electronics 2023, 12(8), 1762; https://doi.org/10.3390/electronics12081762 - 7 Apr 2023
Cited by 11 | Viewed by 2306
Abstract
Perovskite solar cells have been researched for high efficiency only in the last few years. These cells could offer an efficiency increase of about 3% to more than 15%. However, lead-based perovskite materials are very harmful to the environment. So, it is imperative [...] Read more.
Perovskite solar cells have been researched for high efficiency only in the last few years. These cells could offer an efficiency increase of about 3% to more than 15%. However, lead-based perovskite materials are very harmful to the environment. So, it is imperative to find lead-free materials and use them in designing solar cells. This research investigates the potential for using a lead-free double-perovskite material, La2NiMnO6, as an absorbing layer in perovskite solar cells to enhance power conversion efficiency (PCE). Given the urgent need for environmentally friendly energy sources, the study addresses the problem of developing alternative materials to replace lead-based perovskite materials. Compared to single-perovskite materials, double perovskites offer several advantages, such as improved stability, higher efficiency, and broader absorption spectra. In this research work, we have simulated and analyzed a double-perovskite La2NiMnO6 as an absorbing material in a variety of electron transport layers (ETLs) and hole transport layers (HTLs) to maximize the capacity for high-efficiency power conversion (PCE). It has been observed that for a perovskite solar cells with La2NiMnO6 absorbing layer, C60 and Cu2O provide good ETLs and HTLs, respectively. Therefore, the achieved power conversion efficiency (PCE) is improved. The study demonstrates that La2NiMnO6, as a lead-free double-perovskite material can serve as an effective absorbing layer in perovskite solar cells. The findings of this study contribute to the growing body of research on developing high-efficiency, eco-friendly perovskite solar cell technologies and have important implications for the advancement of renewable energy production. Full article
Show Figures

Figure 1

14 pages, 2789 KB  
Article
Device Modeling of Efficient PBDB-T:PZT-Based All-Polymer Solar Cell: Role of Band Alignment
by Marwa S. Salem, Ahmed Shaker and Mostafa Mohamed Salah
Polymers 2023, 15(4), 869; https://doi.org/10.3390/polym15040869 - 9 Feb 2023
Cited by 13 | Viewed by 3188
Abstract
In this study, we present some design suggestions for all-polymer solar cells by utilizing device simulation. The polymer solar cell under investigation is formed by a photoactive film of a blend comprising PBDB-T as a polymer donor and PZT as a polymerized small [...] Read more.
In this study, we present some design suggestions for all-polymer solar cells by utilizing device simulation. The polymer solar cell under investigation is formed by a photoactive film of a blend comprising PBDB-T as a polymer donor and PZT as a polymerized small molecule acceptor. The initial cell is based on a fabricated cell whose structure is ITO/PEDOT:PSS/PBDB-T:PZT/PFN-Br/Ag, which has a power conversion efficiency (PCE) of about 14.9%. A calibration procedure is then performed by comparing the simulation results with experimental data to confirm the simulation models, and the material parameters, implemented in the SCAPS (Solar Cell Capacitance Simulator) simulator. To boost the open circuit voltage, we investigate a group of hole transport layer (HTL) materials. An HTL of CuI or P3HT, that may replace the PEDOT:PSS, results in a PCE of higher than 20%. However, this enhanced efficiency results in a minor S-shape curve in the current density-voltage (J-V) characteristic. So, to suppress the possibility of the appearance of an S-curve, we propose a double HTL structure, for which the simulation shows a higher PCE with a suppressed kink phenomenon due to the proper band alignment. Moreover, the designed cell is investigated when subjected to a low light intensity, and the cell shows a good performance, signifying the cell’s suitability for indoor applications. The results of this simulation study can add to the potential development of highly efficient all-polymer solar cells. Full article
(This article belongs to the Special Issue Advanced Polymers for Solar Cells Applications)
Show Figures

Figure 1

14 pages, 3714 KB  
Article
Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell
by Tarek I. Alanazi
Crystals 2023, 13(2), 267; https://doi.org/10.3390/cryst13020267 - 3 Feb 2023
Cited by 43 | Viewed by 5293
Abstract
The advancement of lead-free double perovskite materials has drawn great interest thanks to their reduced toxicity, and superior stability. In this regard, Cs2AgBiBr6 perovskites have appeared as prospective materials for photovoltaic (PV) applications. In this work, we present design and [...] Read more.
The advancement of lead-free double perovskite materials has drawn great interest thanks to their reduced toxicity, and superior stability. In this regard, Cs2AgBiBr6 perovskites have appeared as prospective materials for photovoltaic (PV) applications. In this work, we present design and numerical simulations, using SCAPS-1D device simulator, of Cs2AgBiBr6-based double perovskite solar cell (PSC). The initial calibrated cell is based on an experimental study in which the Cs2AgBiBr6 layer has the lowest bandgap (Eg = 1.64 eV) using hydrogenation treatment reported to date. The initial cell (whose structure is ITO/SnO2/Cs2AgBiBr6/Spiro-OMeTAD/Au) achieved a record efficiency of 6.58%. The various parameters that significantly affect cell performance are determined and thoroughly analyzed. It was found that the conduction band offset between the electron transport layer (ETL) and the Cs2AgBiBr6 layer is the most critical factor that affects the power conversion efficiency (PCE), in addition to the thickness of the absorber film. Upon engineering these important technological parameters, by proposing a double ETL SnO2/ZnO1-xSx structure with tuned absorber thickness, the PCE can be boosted to 14.23%. Full article
(This article belongs to the Special Issue Advances of Perovskite Solar Cells)
Show Figures

Figure 1

9 pages, 2427 KB  
Article
Optoelectronic Properties of MAPbBr3 Perovskite Light-Emitting Diodes Using Anti-Solvent and PEDOT:PSS/PVK Double-Layer Hole Transport Layers
by Kai Zhang, Shisong Yu, Peng Tu, Xiangcheng Cai, Yuanming Zhou and Fei Mei
Micromachines 2022, 13(12), 2122; https://doi.org/10.3390/mi13122122 - 30 Nov 2022
Cited by 3 | Viewed by 2347
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted extensive attention due to their advantages such as low-temperature solution processing, high photoluminescence quantum efficiency, high color purity, tunable wavelength, and excellent carrier mobility. The hole transport layer plays an important role in the device’s performance. In [...] Read more.
Perovskite light-emitting diodes (PeLEDs) have attracted extensive attention due to their advantages such as low-temperature solution processing, high photoluminescence quantum efficiency, high color purity, tunable wavelength, and excellent carrier mobility. The hole transport layer plays an important role in the device’s performance. In this paper, the effect of anti-solvent (ethyl acetate) on the performance of PeLEDs was studied in order to determine the optimal anti-solvent condition. The effect of PEDOT:PSS/PVK double-layer hole transport layers on the optoelectronic properties of MAPbBr3 PeLEDs was investigated. The device with 8 mg/mL PVK produced the best results, with a maximum luminance of 5139 cd/m2 and a maximum current efficiency of 2.77 cd/A. Compared with the control device with PEDOT:PSS HTL, the maximum luminance of the device with 8 mg/mL PVK is increased by 2.02 times, and the maximum current efficiency is increased by 188%. The experimental results show that the addition of PVK helps to reduce the size of perovskite particles, contributing to the spatial confinement of excitons, and suppress the quenching of luminescence occurring at the interface between PEDOT:PSS and MAPbBr3, thereby enhancing the optoelectronic performance of PeLEDs. The results of this paper can provide a basis for the improvement and industrialization of PeLEDs. Full article
(This article belongs to the Special Issue Organic Light Emitting Diodes (OLEDs))
Show Figures

Figure 1

12 pages, 2820 KB  
Article
Marked Efficiency Improvement of FAPb0.7Sn0.3Br3 Perovskite Light-Emitting Diodes by Optimization of the Light-Emitting Layer and Hole-Transport Layer
by Lufeng Hu, Zhixiang Ye, Dan Wu, Zhaojin Wang, Weigao Wang, Kai Wang, Xiangqian Cui, Ning Wang, Hongyu An, Bobo Li, Bingxi Xiang and Mingxia Qiu
Nanomaterials 2022, 12(9), 1454; https://doi.org/10.3390/nano12091454 - 25 Apr 2022
Cited by 8 | Viewed by 3062
Abstract
Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable [...] Read more.
Highly luminescent FAPb0.7Sn0.3Br3 nanocrystals with an average photoluminescence (PL) quantum yield of 92% were synthesized by the ligand-assisted reprecipitation method. The 41-nm-thick perovskite film with a smooth surface and strong PL intensity was proven to be a suitable luminescent layer for perovskite light-emitting diodes (PeLEDs). Electrical tests indicate that the double hole-transport layers (HTLs) played an important role in improving the electrical-to-optical conversion efficiency of PeLEDs due to their cascade-like level alignment. The PeLED based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,40-(N-(p-butylphenyl))-diphenylamine)] (TFB)/poly(9-vinylcarbazole) (PVK) double HTLs produced a high external quantum efficiency (EQE) of 9%, which was improved by approximately 10.9 and 5.14 times when compared with single HTL PVK or the TFB device, respectively. The enhancement of the hole transmission capacity by TFB/PVK double HTLs was confirmed by the hole-only device and was responsible for the dramatic EQE improvement. Full article
Show Figures

Graphical abstract

13 pages, 2391 KB  
Article
Combination of Metal Oxide and Polytriarylamine: A Design Principle to Improve the Stability of Perovskite Solar Cells
by Marina M. Tepliakova, Alexandra N. Mikheeva, Pavel A. Somov, Eugene S. Statnik, Alexander M. Korsunsky and Keith J. Stevenson
Energies 2021, 14(16), 5115; https://doi.org/10.3390/en14165115 - 19 Aug 2021
Cited by 12 | Viewed by 3469
Abstract
In the last decade, perovskite photovoltaics gained popularity as a potential rival for crystalline silicon solar cells, which provide comparable efficiency for lower fabrication costs. However, insufficient stability is still a bottleneck for technology commercialization. One of the key aspects for improving the [...] Read more.
In the last decade, perovskite photovoltaics gained popularity as a potential rival for crystalline silicon solar cells, which provide comparable efficiency for lower fabrication costs. However, insufficient stability is still a bottleneck for technology commercialization. One of the key aspects for improving the stability of perovskite solar cells (PSCs) is encapsulating the photoactive material with the hole-transport layer (HTL) with low gas permeability. Recently, it was shown that the double HTL comprising organic and inorganic parts can perform the protective function. Herein, a systematic investigation and comparison of four double HTLs incorporating polytriarylamine and thermally evaporated transition metal oxides in the highest oxidation state are presented. In particular, it was shown that MoOx, WOx, and VOx-based double HTLs provided stable performance of PSCs for 1250 h, while devices with NbOx lost 30% of their initial efficiency after 1000 h. Additionally, the encapsulating properties of all four double HTLs were studied in trilayer stacks with HTL covering perovskite, and insignificant changes in the absorber composition were registered after 1000 h under illumination. Finally, it was demonstrated using ToF-SIMS that the double HTL prevented the migration of perovskite volatile components within the structure. Our findings pave the way towards improved PSC design that ensures their long-term operational stability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

17 pages, 7524 KB  
Article
CuI/Spiro-OMeTAD Double-Layer Hole Transport Layer to Improve Photovoltaic Performance of Perovskite Solar Cells
by Chaoqun Lu, Weijia Zhang, Zhaoyi Jiang, Yulong Zhang and Cong Ni
Coatings 2021, 11(8), 978; https://doi.org/10.3390/coatings11080978 - 17 Aug 2021
Cited by 14 | Viewed by 6167
Abstract
The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new [...] Read more.
The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs. Full article
(This article belongs to the Special Issue Advanced Perovskite Films for Photovoltaic Application)
Show Figures

Figure 1

18 pages, 5059 KB  
Article
Bio-Crude Production through Aqueous Phase Recycling of Hydrothermal Liquefaction of Sewage Sludge
by Ayaz A. Shah, Saqib S. Toor, Tahir H. Seehar, Rasmus S. Nielsen, Asbjørn H. Nielsen, Thomas H. Pedersen and Lasse A. Rosendahl
Energies 2020, 13(2), 493; https://doi.org/10.3390/en13020493 - 19 Jan 2020
Cited by 68 | Viewed by 5841
Abstract
Hydrothermal liquefaction (HTL) is a promising technology for the production of bio-crude. However, some unresolved issues still exist within HTL, which need to be resolved before its promotion on a commercial scale. The management of the aqueous phase is one of the leading [...] Read more.
Hydrothermal liquefaction (HTL) is a promising technology for the production of bio-crude. However, some unresolved issues still exist within HTL, which need to be resolved before its promotion on a commercial scale. The management of the aqueous phase is one of the leading challenges related to HTL. In this study, the sewage sludge has been liquefied at 350 °C with and without catalyst (K2CO3). Subsequently, aqueous phase recycling was applied to investigate the effect of recycling on bio-crude properties. Obtained results showed that the energy recovery in the form of bio-crude increased by 50% via aqueous phase recirculation, whereas nitrogen content in the bio-crude was approximately doubled after eight rounds of recycling. GCMS characterization of the aqueous phase indicated acetic acid as a major water-soluble compound, which employed as a catalyst (0.56 M), and resulted in a negligible increase in bio-crude yield. ICP-AES highlighted that the majority of the inorganics were transferred to the solid phase, while the higher accumulation of potassium and sodium was found in the aqueous phase via successive rounds of recycling. Full article
(This article belongs to the Special Issue Thermochemical Biorefining II)
Show Figures

Graphical abstract

14 pages, 8605 KB  
Article
Copper Iodide Interlayer for Improved Charge Extraction and Stability of Inverted Perovskite Solar Cells
by Danila Saranin, Pavel Gostischev, Dmitry Tatarinov, Inga Ermanova, Vsevolod Mazov, Dmitry Muratov, Alexey Tameev, Denis Kuznetsov, Sergey Didenko and Aldo Di Carlo
Materials 2019, 12(9), 1406; https://doi.org/10.3390/ma12091406 - 30 Apr 2019
Cited by 46 | Viewed by 9894
Abstract
Nickel oxide (NiO) is one of the most promising and high-performing Hole Transporting Layer (HTL) in inverted perovskite solar cells due to ideal band alignment with perovskite absorber, wide band gap, and high mobility of charges. At the same time, however, NiO does [...] Read more.
Nickel oxide (NiO) is one of the most promising and high-performing Hole Transporting Layer (HTL) in inverted perovskite solar cells due to ideal band alignment with perovskite absorber, wide band gap, and high mobility of charges. At the same time, however, NiO does not provide good contact and trap-free junction for hole collection. In this paper, we examine this problem by developing a double hole transport configuration with a copper iodide (CuI) interlayer for efficient surface passivation. Transient photo-current (TPC) measurements showed that Perovskite/HTL interface with CuI interlayer has an improved hole injection; CuI passivation reduces the concentration of traps and the parasitic charge accumulation that limits the flow of charges. Moreover, we found that CuI protect the HTL/perovskite interface from degradation and consequently improve the stability of the cell. The presence of CuI interlayer induces an improvement of open-circuit voltage VOC (from 1.02 V to 1.07 V), an increase of the shunt resistance RSH (100%), a reduction of the series resistance RS (−30%), and finally a +10% improvement of the solar cell efficiency. Full article
(This article belongs to the Special Issue Interface Engineering in Organic/Inorganic Hybrid Solar Cells)
Show Figures

Figure 1

Back to TopTop