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Abstract: Despite intensive efforts to develop hydrothermal liquefaction for the conversion of wet
biomass and biowaste feedstocks into valuable bio-oils, severe corrosion of conversion reactor alloys
and other core components, induced by the pressurized hot water medium, catalysts, and inorganic
and organic corrodants generated during the conversion process, has significantly hindered the
industrial deployment of this attractive technology. In this paper, a general review of major operating
parameters, including biomass feedstock types, temperature, pressure, and catalysts, was conducted
to advance the understanding of their roles in conversion efficiency and the yield and properties
of produced oils. Additionally, the corrosion performance of a representative constructional alloy
(Alloy 33) was investigated in both non-catalytic and catalytic HTL environments at temperatures of
310 ◦C and 365 ◦C, respectively. The alloy experienced general oxidation in the non-catalytic HTL
environment but suffered accelerated corrosion (up to 4.2 µm/year) with the addition of 0.5 M K2CO3

catalyst. The corrosion rate of the alloy noticeably increased with temperature and the presence of
inorganic corrodants (S2− and Cl−) released from biowastes. SEM/XRD characterization showed
that a thin and compact Cr-rich oxide layer grew on the alloy in the non-catalytic HTL environment,
while the surface scale became a double-layer structure, composed of outer porous Fe/Cr/Ni oxides
and inner Cr-rich oxide, with the introduction of the K2CO3 catalyst. From the corrosion perspective,
the alloy is a suitable candidate for construction in the next phase of pilot-scale validation assessment.

Keywords: hydrothermal liquefaction; major operating factors; corrosion; K2CO3 catalyst; inor-
ganic corrodants

1. Introduction

In 2020, CO2 emissions accounted for approximately 79% of total U.S. anthropogenic
greenhouse gas (GHG) emissions alone [1]. Among the sources of CO2 emissions, fossil
fuel combustion for energy accounted for 73% of total U.S. GHG emissions and a staggering
92% of total U.S. anthropogenic CO2 emissions [1]. Tremendous research and development
(R&D) efforts have been dedicated to exploring sustainable and environmentally friendly
alternative energy resources. Among these, biomass stands out as the world’s fourth-largest
energy source, holding great potential due to its renewable nature and significant benefits
for local and international economic growth. Recent estimates suggest that liquid biofuels
derived from diverse biomass feedstocks could potentially contribute up to approximately
15% of global energy consumption [2]. By harnessing the power of biomass and other clean
and renewable energy sources, including wind and solar, it is anticipated that more than
one-third of the world’s primary energy needs in the near future could be fulfilled [3–5].

However, raw biomass feedstocks alone cannot be rapidly converted into bioen-
ergy products at the scale necessary to meet the global annual energy demand, which
was approximately 226 exajoules in 2022, according to a recent study [6]. To bridge this
gap, innovative conversion technologies are essential in transforming biomass into usable
bioenergy products more efficiently and effectively. To date, the developed conversion
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technologies are classified into two main categories: biochemical and thermochemical
methods [7]. Compared to biochemical conversion, thermochemical conversions involve
processes conducted at elevated temperatures and with the assistance of suitable catalysts.
These pathways enable the production of a wide range of value-added bioenergy products,
including syngas from gasification, solid biochar from torrefaction, and bio-oils from fast
pyrolysis and hydrothermal liquefaction. These products generally possess higher heat-
ing value (HHV) and lower moisture content, making them highly desirable for energy
applications [8]. The residence time of thermochemical conversions is typically shorter com-
pared to biochemical processes, leading to higher conversion efficiencies. Thermochemical
conversions are further classified into various methods, including pyrolysis, hydrothermal
liquefaction, gasification, torrefaction, and combustion, based on the biomass feedstocks,
operating conditions, and desired final products [9]. Among the different thermochemical
pathways, hydrothermal liquefaction (HTL) stands out as a highly promising process for
the production of biofuels with high heating value. HTL has the advantage of directly
converting wet biomass and biowastes, eliminating the need for energy-intensive drying
processes required by other conversion technologies. This not only improves the overall
energy efficiency but also offers cost-effective biowaste management solutions. In a HTL
process, raw biomass is mixed with a solvent, typically water, and heated to temperatures
ranging from 250 to 374 ◦C, and pressures up to 25 MPa [10,11]. Under such conditions, the
biomass undergoes a series of reactions, primarily depolymerization and decomposition,
which involve the breakdown of complex organic compounds and the recombination of
the produced intermediates. This process ultimately transforms the biomass into bio-oil,
also known as biocrude, along with other byproducts such as gases and solid residues. The
produced bio-oil can be further upgraded to drop-in fuel or other desired biochemicals.

Despite significant advancements in hydrothermal liquefaction (HTL) technology, its
industrial application has yet to be established due to challenges, such as high capital
investment, clogging, and potential corrosion of key components, including the conversion
reactor and core components. Therefore, this study aimed to advance fundamental under-
standing of key operating parameters on HTL processes, and to investigate the influence of
these factors on corrosion of candidate construction alloys to fill some knowledge gaps on
the cost-effective construction and long-term safe operation of HTL plants. In this study,
the influence of temperature, K2CO3 catalyst, and corrodants presented in biowastes on the
corrosion of a representative constructional alloy (Alloy 33) were investigated in simulated
HTL environments using a standard high temperature autoclave testing methodology and
advanced characterization techniques.

1.1. Overview of Hydrothermal Liquefaction (HTL) Process and Candidate Construction Alloys

The HTL process encompasses a series of chemical reactions, including hydroly-
sis, depolymerization, dehydration, repolymerization, and condensation [12]. During
hydrolysis, water molecules break down complex organic compounds into simpler con-
stituents through the cleavage of chemical bonds. Depolymerization occurs as the resulting
molecules undergo further fragmentation, leading to the breakdown of large polymers into
smaller molecules. Dehydration involves the removal of water molecules from these smaller
compounds, leading to the formation of reactive intermediates. These intermediates can
then undergo repolymerization and condensation reactions, where the smaller molecules
recombine to form larger and more stable compounds, such as bio-oils or solid char. During
HTL conversion, forest and agricultural feedstocks undergo direct disintegration, resulting
in the formation of cellulose, hemicellulose, and lignin fragments. These fragments are
then converted into valuable bioenergy products. Additionally, various biowaste streams,
including sewage sludge, black liquor, hog fuel, and plastic-contaminated streams, can
also be transformed into bioenergy products through de-polymerization, decarboxyla-
tion, and aromatization reactions within the HTL conversion process [13,14]. Numerous
studies [15,16] have also demonstrated that the bio-oil produced through HTL exhibits
significantly lower oxygen content compared to oil generated from fast pyrolysis. This
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characteristic makes HTL bio-oil highly suitable for the production of drop-in fuels through
direct upgrading or co-processing technology at existing petroleum plants. Based on our
literature review, the properties of HTL bioproducts are primarily influenced by three
factors: the types of biomass feedstocks, the operating temperature and pressure, and the
catalysts used. Consequently, the impacts of these factors on HTL conversion efficiency
are reviewed in the subsequent sections. Additionally, the corrosion of core component
alloys is widely recognized as one of the key technical challenges in the commercialization
of HTL technology [10,17]. The corrosion behaviors of candidate constructional materials
are also thoroughly reviewed and discussed, specifically focusing on their performances in
existing high-temperature, high-pressure systems.

1.2. Biomass Feedstocks

Biomass is typically composed of a complex mixture of carbohydrates, proteins, and
minerals, which gives it unique chemical and physical characteristics [18,19]. Depending
on the source of origin, biomass feedstocks used in HTL conversion can be classified
into categories such as agricultural and forest biomass, specially engineered algae, and
domestic municipal and industrial waste streams. The utilization of agricultural and
forest biomass feedstocks, such as straw, corn stalks, and both soft and hard woods, has
several merits [20]. These traditional biosources offer high yield potentials and benefit from
existing supply chains. However, their usage can lead to competition with food production,
conflicts regarding land use, and limited resource efficiency. To address these drawbacks,
specially engineered biological feedstocks have been developed, consisting of microalgae
or macroalgae. These engineered feedstocks offer advantages, such as high productivity,
continuous harvesting, and high lipid contents [21]. Additionally, they have the potential
to facilitate carbon dioxide fixation and wastewater treatment. However, this generation of
feedstocks also faces limitations, including challenges in scaling up production, nutrient
requirements, and difficulties in harvesting and dewatering. Another promising feedstock
for hydrothermal liquefaction is municipal and industrial waste streams. These waste
streams are the most complex and typically consist of highly aggressive components, like
hydroxide, sulfide, and thiosulphate. The conversion of these waste streams into valuable
bioproducts offers significant advantages, such as waste valorization, reduction of landfill
usage, and the potential for decentralized processing. However, these waste streams
also present certain drawbacks. Their compositions and qualities can vary, and they may
contain contaminants. Therefore, pre-processing is often necessary to remove impurities
and optimize conversion processes.

Table 1 presents the biochemical compositions of representative biomass feedstocks.
Forest and agricultural biomasses/residues predominantly consist of three compounds:
cellulose, hemicellulose, and lignin [22]. It is important to note that swine manure, listed
in the table, is also considered an agricultural residue, containing certain amounts of
protein and lipid. In contrast, algae feedstocks typically contain protein, carbohydrate,
and lipid. Biowastes, on the other hand, generally have lower protein content, while their
carbohydrate and lipid contents vary depending on the source. Elemental analyses reveal
that forest and agricultural biomasses tend to have higher oxygen content, while carbon
and hydrogen contents do not exhibit a clear trend. It is worth noting that the components
and elements within biowastes can significantly differ, depending on their sources and
processing conditions. Despite the varying compositions of biomass feedstocks, the general
conversion mechanism under HTL conditions involves the breakdown of intermolecular
hydrogen bonds into monomers, followed by the hydrolysis of biopolymers. However,
the chemical content (O, H, C), structural components (hemicellulose, lignin), lipid, and
carbohydrate composition can significantly differ among different biomass feedstocks.
This variation affects the reaction processes, kinetics, and, ultimately, the yield and quality
of biocrudes. Recent studies [23,24] have attempted to predict the yield and quality of
biocrude from different feedstocks through kinetic modeling and laboratory-scale testing.
However, a comprehensive global kinetic model for predicting HTL product yields, based
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on feedstock chemistry and processing conditions, is still lacking. Table 2 summarizes the
final bioproducts obtained from different feedstocks after HTL conversion at temperatures
of 300–350 ◦C for 30–60 min, based on previous studies [23–28]. Waste streams and
microalgae tend to yield significantly higher biocrude compared to agricultural biomass,
with food waste showing the highest yield at 38.8 wt.%. This can be attributed to its
higher carbohydrate content. Additionally, food waste feedstocks exhibit the lowest oxygen
content in the final products. These findings suggest that HTL could be a more suitable
method for processing waste streams and specially engineered algae compared to other
thermochemical technologies. To summarize, the composition of biomass feedstocks
significantly affects the HTL conversion mechanism, yield, and quality of biocrudes. Recent
studies have examined biocrude production and quality prediction, revealing a need for a
comprehensive global kinetic model. HTL proves effective in converting waste streams and
engineered microalgae, making it a favorable choice among thermochemical technologies.

Table 1. Biochemical compositions of representative HTL feedstocks.

Softwood
[25,29,30]

Hardwood
[25,29,31]

Corn Stalk
[27,28]

Swine
Manure [24]

Spirulina Algae
[26]

Food Waste
[23]

Sewage Sludge
[26]

Lipid (wt.%) – – – 8.80 7.50 21.9 6.90

Protein (wt.%) – – – 21.9 63.4 17.8 33.6

Carbohydrate (wt.%) – – – – 20.5 59.1 20.3

Cellulose (wt.%) 43.2 39.4 32.8 10.1 – – –

Hemicellulose (wt.%) 28.4 22.3 26.5 28.2 – – –

Lignin (wt.%) 13.8 19.5 12.6 4.46 – – –

C (wt.%) 51.0 48.6 54.9 41.2 43.2 58.3 43.4

H (wt.%) 6.2 6.0 4.8 5.67 8.53 10.3 5.91

N (wt.%) 0.74 0.85 2.54 3.86 8.91 2.00 3.18

O (wt.%) 43.5 45.4 25.3 32.5 39.4 29.3 47.5

Ash (wt.%) 0.2 0.6 13.2 17.0 8.60 1.10 39.2

HHV (MJ/Kg) 18.9 17.6 15.6 – 19.8 24.6 14.6

Table 2. Biocrude yield and compositions of representative bioproducts after HTL conversion.

Softwood
[25,29,30]

Hardwood
[25,29,31]

Corn Stalk
[27,28]

Swine
Manure [24]

Spirulina Algae
[26]

Food Waste
[23]

Sewage Sludge
[26]

Biocrude yield (wt.%) 16.30 15.80 19.70 25.60 39.50 38.80 34.50

C (wt.%) 75.20 74.60 68.40 75.60 72.50 79.00 70.30

H (wt.%) 8.60 8.50 9.58 8.96 9.44 10.30 8.72

N (wt.%) 0.85 1.11 1.60 4.54 6.96 4.40 9.70

O (wt.%) 14.20 14.50 17.80 10.90 11.10 6.30 11.30

Energy (MJ/kg) 36.20 35.00 35.60 36.30 36.10 35.60 34.30

1.3. Operating Parameters

Apart from biomass feedstocks, the operating temperature and pressure are recognized
as critical factors in reaction kinetics and biocrude yields. Increasing pressure generally pro-
motes hydrolysis reactions and enhances depolymerization to some extent [35]. However,
temperature plays a more dominant role in the conversion process, affecting factors such
as complete biomass conversion, overall yield of bioproducts, and the physicochemical
properties of the final products [36]. It is worth noting that these two parameters also
impact the cost of the conversion process and the long-term structural integrity of core
components in HTL biorefinery plants, as highlighted in recent publications [10,37].
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Based on previous studies, HTL conversion, conducted within the temperature range
of 200–400 ◦C, is categorized and summarized in Table 3. It should be noted that alkaline
catalysts, such as 0.5–1.0 M Na2CO3 and K2CO3, were commonly employed in these studies.
As observed in the table, the biocrude yield tends to increase with temperature, with an
optimized temperature range potentially lying between 300 and 380 ◦C [38,39]. In the case
of forest and agricultural feedstocks, raising the temperature significantly improves the
hydrolysis rates of cellulose, hemicellulose, and lignin. Additionally, higher temperatures
could potentially accelerate the fragmentation and degradation of microalgae, as depicted
in Table 3. Therefore, the primary role of increasing temperature is to surpass the transition
energy barrier for raw biomass and its corresponding intermediate products, aiding in
the breakdown of chemical bonds. For instance, a previous study [40] investigated the
HTL of barley straw within the temperature range of 280–400 ◦C, utilizing a 0.75 M K2CO3
catalyst. The yield of biocrude oil consistently increased from 280 to 350 ◦C, reaching up to
34.9 wt.%.

In addition to the aforementioned advantages, increasing temperature in HTL has the
potential to reduce the oxygen content in the produced organic phases, which is beneficial
for subsequent direct upgrading or co-processing with petroleum intermediates. For
instance, a study investigating the hydrothermal liquefaction of hardwood within the
temperature range of 280 to 360 ◦C observed a simultaneous decrease in oxygen content as
temperature increased [41]. However, the effect of increasing temperature on the heating
value of the generated biocrudes is marginal. This is likely due to the fact that changes
in hydrogen and carbon content within the organic products, influenced by temperature,
have a combined effect that tends to balance out their impact on the HHV [42]. It is worth
noting that the biocrude yields and properties are also influenced by various factors, such
as the types of solvents, catalysts, residence time, water–biomass ratio, and heating rate
during the HTL conversion, which should be taken into consideration.

Table 3. Effect of temperature on HTL yields and physicochemical properties of final products.

Feedstock Operating
Temperature (◦C) Biocrude Yield (wt.%) HHV (MJ/kg) C (wt.%) O (wt.%) Ref.

Softwood 280–360 19.3–23.8 27.1–30.2 69.6–75.1 19.2–24.8 [43]

Softwood

277–377

13.8–25.8 28.3–31.9 75.4 18.8

[44]Softwood 27.9–31.6 75.2 6.1 -

Hardwood 27.6–31.3 75.1 6.0 -

Hardwood 280–360 18.6–27 26.2 66.8 27.3 [45]

Hardwood 250–400 15–28.4 17.4–34.5 63.8–77.9 14–34.7 [41]

Corn stover 250–375 14.3–27.2 27.5–35.1 64.9–76.3 7.2–8.2 [36]

Barley straw 280–400 19.9–34.9 26.8–35.5 - - [40]

Cherry stones 200–300 3–6 20.8–22.5 58 34–36 [46]

Spirulina algae 200–380 18–39.9 25.2–39.9 55.5–82.1 0.6–28.9 [47]

Although the operating pressure may not have a pronounced influence compared to
temperature, it can still affect the kinetics of HTL conversion and the final biocrude yield,
as discussed earlier. The change in pressure can promote or hinder hydrolysis reactions
and depolymerization during the process [35]. In the subcritical region, increasing pressure
leads to an increase in the density of the solvent. For example, at 330 ◦C, increasing
pressure from 25 to 35 MPa results in an increase in water density to 22 kg/m3, based on
the NIST chemistry database. This higher solvent density allows for better penetration
and interaction of hydrolysis ions within the crystallized zone of cellulose and the surface
of cellulose, hemicellulose, and lignin. A study on the HTL of softwood [41] found that
increasing pressure led to an increase in biocrude yield from 18 to about 25% at 350 ◦C.
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However, the role of pressure may change within the supercritical zone. For example,
Chan et al. [48] studied the HTL of agricultural biomass (fruit bunch and palm shell)
and found that the biocrude yield decreased by 6–9 wt.% in the final product when the
operating pressure increased from 25 to 30 MPa at 390 ◦C. As shown, some previous studies
suggest that elevated pressure levels within the subcritical temperature range may have a
favorable impact on biocrude production. However, a general conclusion regarding the
impact of pressure on biocrude yield has not yet been achieved. In a nutshell, conversion
temperature and pressure are critical factors influencing reaction kinetics and biocrude
yields in HTL. Increasing temperature promotes hydrolysis rates and fragmentation of
biomass, leading to higher biocrude yields and reduced oxygen content. Pressure, while
being less influential, can enhance depolymerization kinetics, leading to better penetration
and interaction of hydrolysis ions, resulting in higher biocrude yields. While some studies
suggest a favorable impact of elevated pressure in the subcritical range, a conclusive
understanding of pressure’s overall effect on biocrude yield is yet to be achieved.

1.4. Catalysts

In addition to the operating parameters, the catalyst applied is a critical factor that
affects the physicochemical properties and yield of biocrude during HTL conversion.
Both homogeneous and heterogeneous catalysts have been extensively studied for this
purpose [49,50]. While heterogeneous catalysis has traditionally been associated with gasi-
fication processes, several studies have investigated the efficacy of various heterogeneous
catalysts, such as Fe, Pd, Ni, Pt, and Al2O3, in the HTL conversion process. It has been
found that the addition of these catalysts can promote deoxygenation and increase the
HHV and quality of biocrude oil [51–53]. For example, a previous study [51] reported that
the application of heterogeneous catalysts, such as carbon nanotubes and Pt/C, increased
the HHV of biocrude oil produced from microalgae by 10%. Another study [54] found that
using Fe metal as a catalyst resulted in biocrude with the highest carbon and hydrogen
contents, as well as HHV, when converting lignocellulosic biomass.

While heterogeneous catalysts have their advantages, such as increased HHV and
improved biocrude quality, they can be costly and may have limited activity and acces-
sibility during HTL conversions. Clogging can also be a potential concern when using
heterogeneous catalysts in pilot-scale continuous reactor systems [55]. As a result, homoge-
neous alkaline catalysts, such as Na2CO3, K2CO3, NaOH, and KOH, have been extensively
studied in recent years. These catalysts have been found to significantly increase biocrude
yield when introduced into the solvent during HTL conversion [56]. Table 4 provides a
summary of the influence of homogeneous catalysts on the efficiency of HTL conversion
and their optimum concentrations. For example, one study [57] suggested that the addition
of 1 M KOH or K2CO3 in the HTL solvent increased biocrude oil yield from pinewood by
26% under the same conversion conditions, while also reducing the oxygen content in the
final products. The introduction of alkaline catalysts can have a significant effect on the
liquefaction behavior of proteins and carbohydrates present in waste streams and algae
feedstocks, promoting hydrolysis reactions [58].

In general, the addition of 0.5–1.0 M of an alkaline catalyst can greatly enhance both the
conversion efficiency and product quality during biomass HTL conversion. The overall rank of
catalyst activity in HTL conversion has been suggested as K2CO3 > KOH > Na2CO3 > NaOH.
However, it is important to note that using homogeneous catalysts has drawbacks. One
major challenge is isolating the product from the liquid media, and another concern is the
accelerated corrosion of reactor alloys, due to changes in the environmental chemistry of
the process environmental. For example, the addition of 0.5 M K2CO3 can increase the
environmental pH to approximately 11.2, causing major alloying elements (Cr, Fe, Ni) to
suffer active corrosion, instead of passivation, during the conversion process [17].
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Table 4. Different concentrations of catalysts used in HTL conversions.

Biomass Feedstocks Catalyst Used Major Observations Ref.

Softwood 0, 0.25, 0.5 and 1 M K2CO3 0.5 M to 1 M gives the highest bio-oil yield. [59]

Softwood 0.235, 0.47 and 0.9 M K2CO3
0.94 M is the best concentration to produce high oil yield

and less residues. [60]

Softwood 1 M NaOH, Na2CO3, KOH and K2CO3

Yield of bio-oil increases from 8 wt.% up to 34 wt.%.
Catalytic activity rank:

K2CO3 > KOH > Na2CO3 > NaOH.
[57]

Corn stalk 0.1 M Na2CO3
Increases the yield of liquid product and its quality, the

biocrude yield also increases from 33.4 wt. % to 47.2 wt.% [61]

Palm fruit bunch 0.1–2.0 M K2CO3 1 M K2CO3 gives the best conversion efficiency [62]

Microalgae 0.4 M Na2CO3
Highest oil yield of 25.8% achieved with addition of

0.4 M Na2CO3.
[63]

Manure digestate &
food waste 0.1 M NaOH

Manure digestate: increase yield of biocrude oil by 15%,
increase yield of aqueous products by 39% and

decreases hydro-char.
Food waste: lower yield of biocrude oil, lower aqueous

product, higher hydro char.

[56]

Swine carcasses 0.2–0.75M NaOH Yield of biocrude oil increases from 4.5 wt.% to 23.5 wt.%. [64]

Wet organic
waste streams 0.75 M K2CO3, 1.5 M K2CO3

When catalyst was reduced from 1.5 M to 0.75 M, the
amount of the oil phase reduced by 2 wt.%. [65]

To put it concisely, in the HTL conversion process, the choice of catalyst is crucial
in influencing the yield and quality of biocrude. Heterogeneous catalysts, such as Fe,
Pd, Ni, Pt, and Al2O3, have shown promise in promoting deoxygenation and enhancing
the HHV of biocrude. However, the cost, limited activity, and potential clogging issues
associated with heterogeneous catalysts have led to increased research on homogeneous
alkaline catalysts, such as Na2CO3, K2CO3, NaOH, and KOH, which have been found to
significantly increase biocrude yield and reduce oxygen content. The addition of 0.5–1.0 M
alkaline catalysts has shown potential to improve conversion efficiency and product quality,
although challenges in isolating the product and dealing with corrosion issues persist.

1.5. Corrosion Concern and Candidate Materials Selection for Core Components Construction

As mentioned earlier, corrosion poses a significant challenge to the commercialization
of HTL technology. High-temperature aqueous corrosion is a primary concern in HTL
reactors, as they involve the use of high-temperature, high-pressure water as the conversion
medium. Our recent findings indicate that operating pressure has only a marginal effect on
corrosion [10]. However, the addition of homogeneous alkaline catalysts can significantly
impact the corrosion modes and extent of construction alloys, as most Fe, Cr, and Ni oxides
are thermodynamically unstable in aqueous environments with a pH higher than 11 [17].
Furthermore, biowastes contain substantial amounts of chloride and sulfide ions, which
are released during the conversion process and can promote various forms of corrosion,
including pitting and stress corrosion cracking, in Fe-based and Ni-based alloys [66,67]. To
address these corrosion challenges, it is crucial to select appropriate construction alloys,
optimize process parameters, and develop cost-effective corrosion-resistant coatings. While
commercial steels and alloys, such as austenitic, ferritic-martensitic, duplex stainless steels,
nickel-based alloys, titanium alloys, and zirconium alloys, have been widely used in the
high-temperature systems of boiler tubes, autoclave liners, and nuclear reactor cores, and
similar, not all of them are suitable for constructing industrial-scale HTL plants, due to
economic and practical considerations [10,17]. For instance, zirconium and titanium alloys
exhibit excellent corrosion resistance in highly aggressive environments but are not practical
for construction due to their high costs. Among the available materials, austenitic stainless
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steels and nickel-based alloys, based on the performance and knowledge gained from
pressurized water nuclear reactors, are the primary candidates for HTL reactor construc-
tion. These materials demonstrate promising high-temperature mechanical properties and
acceptable corrosion resistance in high-temperature environments [68,69]. Additionally, our
previous studies in high-temperature supercritical water environments suggest that high
chromium-based alloys could also be suitable candidates [70,71]. However, limited research
has been conducted on corrosion in biomass thermochemical conversion environments
to date. Among all the candidate construction materials, Alloy 33 has been considered a
promising candidate due to its application in similar high-temperature aqueous systems.
Based on a previous study [72], Alloy 33, a chromium-based austenitic alloy, was found
to develop a thin and compact Cr2O3-based oxide layer on its surface when exposed to
25 MPa supercritical water at 625 ◦C for 500 h. This oxide layer acts as a protective barrier,
preventing extensive oxidation of the substrate, which suggests its potential suitability
for fuel cladding materials. Furthermore, Alloy 33 has demonstrated promising corrosion
resistance in high-temperature steam environments up to 800 ◦C. As a result, Alloy 33
was chosen as a representative high chromium alloy for corrosion studies in simulated
HTL environments. It should be noted that chromium- or nickel-based alloys are generally
more expensive than austenitic stainless steels, as indicated in Table 5. However, our
recent study [71] showed that high chromium-bearing nickel-based alloys exhibit excellent
corrosion performance in simulated HTL conversion environments. Therefore, for long-
term safe operation, it is advisable to consider the use of nickel-based or chromium-based
alloys as suitable construction materials, despite their higher costs compared to austenitic
stainless steels.

Table 5. Relative cost ratios of different types of steels and alloys [73].

Types Relative Cost Ratio Based on the Assumption of the Cost of SS304L = 1.0

SS 310 2.75

SS 316L 1.25

Alloy C-276 5.75

Alloy 625 7.40

Alloy 33 9.80

2. Experimental Procedure and Autoclave Testing Methodology
2.1. Testing Sample Preparation

The Alloy 33 plate used in this study was purchased from VDM Metals LLC., and its
major chemical compositions are listed in Table 6, based on the provided mill test report.
The other minor alloying elements, which are unlikely to significantly affect the corrosion
performance, have been omitted in the table.

Table 6. Chemical composition of Alloy 33 used in this study.

Alloy/Composition Cr Mo Ni Fe Mn C Cu Si P N

Alloy 33 32.8 1.49 30.7 balance 0.62 0.01 0.52 0.24 0.01 0.38

Testing coupons with rectangular shapes measuring 10 mm × 20 mm × 2 mm were
machined from the plate of Alloy 33. Each coupon had a 4 mm diameter hole drilled near
the top for mounting onto the Alloy 625 sample holder. Before conducting the autoclave
test, every coupon underwent careful polishing and thorough cleaning, according to a
standard procedure designed for high temperature corrosion testing [74]. More detailed
information on sample preparation can be found in the references [17,37]. An identification
(ID) was assigned to each sample and was marked on the upper-left corner to ensure
accurate identification after HTL exposure. Prior to the corrosion tests, the freshly prepared
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samples were weighed using a microbalance with a resolution of 1 µg and measured with
a digital caliper of 0.001 cm precision. It is important to note that each autoclave corrosion
test involved four prepared samples of Alloy 33 to improve the accuracy and precision of
the corrosion results.

2.2. Autoclave Testing Methodology

The corrosion performances of Alloy 33 under simulated non-catalytic and catalytic
HTL conversion conditions were evaluated through an autoclave test. The test matrix,
outlining the specific conditions, is presented in Table 7. The tests were carried out in an
Alloy C-276 autoclave, utilizing a pre-oxidized Alloy 625 liner (as shown in Figure 1), in
accordance with ASTM G31, to minimize the influence of the autoclave wall alloy. The
pre-oxidized Alloy 625 liner and Cr–Ni wires were oxidized at 400 ◦C for one day in an
air furnace and were then used to hold the testing solutions and samples. The purpose
of using pre-oxidized Cr–Ni wires was to prevent any galvanic effect between the testing
samples and the sample holder. Once the samples and solution were placed inside the liner,
the autoclave was sealed and purged with nitrogen gas for 60 min to create a de-aerated
environment. A leak test was conducted under high-pressure N2 conditions. The autoclave
was then powered on to reach the desired temperature, and the tests were conducted for
a duration of 10 days. After completing the test period, the autoclave heater was turned
off, and the autoclave was allowed to cool down to room temperature. Subsequently, the
exposed samples were carefully removed from the autoclave, cleaned using distilled water,
dried with pressurized air, and reweighed using the same microbalance as before.

Table 7. Test matrix conducted to assess the corrosion performances of Alloy 33 under simulated
non-catalytic and catalytic HTL conversion conditions.

Test # Testing Conditions

#1 in static Alloy C-276 autoclave with an Alloy 625 liner containing de-aerated
ultrapure water at 310 ◦C for 10 days

#2 in static Alloy C-276 autoclave with an Alloy 625 liner containing de-aerated 0.5 M
K2CO3 at 310 ◦C for 10 days

#3 in static Alloy C-276 autoclave with an Alloy 625 liner containing de-aerated 0.5 M
K2CO3 and 3500 ppm Cl− + 2500 ppm S2− at 310 ◦C for 10 days

#4 in static Alloy C-276 autoclave with an Alloy 625 liner containing de-aerated
ultrapure water at 365 ◦C for 10 days

#5 in static Alloy C-276 autoclave with an Alloy 625 liner containing de-aerated 0.5 M
K2CO3 at 365 ◦C for 10 days
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2.3. Corrosion Rate Assessment

Two techniques are commonly employed to assess the corrosion rates of alloys in
high-temperature aqueous solutions: direct mass change measurement, which determines
the variation in mass of a sample before and after exposure, and indirect weight loss
measurement, which involves removing the formed corrosion products from a sample
(descaling) and then measuring the mass change before exposure and after descaling. Our
recent studies [10,17] indicated that the indirect weight loss method is a more precise
technique to assess corrosion rates in biomass conversion environments compared to direct
mass change, particularly in the presence of catalysts, due to the following reasons:

• localized nodular oxidation and deposition of dissolvable corrosion products can
occur on the alloys during autoclave cooling-down stage;

• the calculation of corrosion rates, by accounting for the molar mass ratio between the
metal and metal oxides (weight gain method), is not accurate enough for assessing
corrosion rates because the formed surface scales are not purely composed of a single
oxide/hydroxide compound;

• the chemical dissolution rates of the formed oxide scales in ultrapure water can differ
significantly from that in 0.5 M K2CO3, which further impacts the accuracy of the direct
mass change method.

It is important to note that the direct mass change measurement assumes that surface
oxidation of the alloy would be the dominant reaction during the high temperature expo-
sure and that the formed corrosion products would be compact without localized nodular
oxidation and/or spallation. Therefore, considering all these factors, weight loss serves as a
more precise and accurate approach in assessing corrosion rates after exposure to catalytic
HTL conversion environments.

The descaling process followed the same procedure described in detail in our previous
studies [10,17]. The average corrosion rate of a sample (µm/year) was calculated using
Equation (1) [75]:

Corr. Rate =
8.76 × 107•∆m

dAt
(1)

where ∆m (g) is the measured mass loss of a sample before exposure and after descaling,
A (cm2) is the surface area of the coupon, d (g/cm3) represents the alloy density, and t (h)
represents the duration of exposure.

2.4. Corrosion Product Characterization

Following the corrosion test, the Alloy 33 sample with a direct mass change value
closest to the average value in the set of four replicates was selected for dedicated mi-
croscopic characterizations using scanning electron microscopy (SEM), energy-dispersive
X-ray spectroscopy (EDS), and Focus Ion Beam (FIB) techniques. Detailed information
regarding the instruments used for the study and their operating procedures can be found
in the references [10,17].

3. Results and Discussion
3.1. Effect of Catalyst on Corrosion Rate

As mentioned earlier, the corrosion rates of Alloy 33 were evaluated in simulated
non-catalytic and catalytic HTL environments, and the results are presented in Figure 2.
At 310 ◦C, the corrosion rate of Alloy 33 in pressurized hot water was approximately
1.8 µm/year, while the rate nearly doubled with the addition of 0.5 M K2CO3 catalyst. The
disparity in corrosion rates was likely due to the accelerated dissolution rates of formed
oxides at different pH values (around 5.7 in ultrapure water and approximately 11.2 in
0.5 M K2CO3 at 310 ◦C), which are discussed further in the following section. As the
temperature increased to 365 ◦C, the corrosion rate of Alloy 33 in ultrapure water rose to
approximately 2.3 µm/year. Our recent study [10] found that increasing temperature sig-
nificantly increased the diffusion rates of ions, resulting in a higher overall oxide formation
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rate. Considering that the chemical dissolution rate of Cr-enriched oxides (which were
observed on Alloy 33 and are discussed in the following section) in high-temperature water
occurs simultaneously, and is enhanced with temperature [76,77], the increased corrosion
rate was likely due to the accelerated formation and dissolution rates of the formed oxides
at the higher temperature. With the addition of 0.5 M K2CO3 catalyst at 365 ◦C, the cor-
rosion rate further increased to approximately 4.2 µm/year, which could be attributed to
the change in pH value and the enhanced oxide dissolution rate at a higher pH value (as
described in Equation (2) in the next section). More importantly, the corrosion rates of the
alloy were much lower than 100 µm/year at both temperatures, which is the suggested
corrosion rate allowance for pressure vessels/reactors used in similar chemical plants over
the projected service interval of 20 years [78,79]. This indicated that the alloy should be
considered for the next phase of pilot-scale tests in real biomass HTL environments.
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3.2. Characterization of Formed Oxide Layers

Top-view SEM images of as-polished and corroded Alloy 33 coupons exposed to
ultrapure water and 0.5 M K2CO3 at 310 ◦C are shown in Figure 3. The oxide layer
formed in ultrapure water was relatively thin with visible grinding lines on the surface,
indicating minimal corrosion damage to the alloy in this environment. A limited number
of particles were randomly distributed on the oxide layer. EDS spot analysis revealed
that this layer primarily consisted of Cr and Fe oxides. However, when exposed to the
catalytic environment, the oxide layer significantly increased in thickness, and nodular
oxide particles were observed on the surface. The cross-sectional morphology of the
corrosion layer, as depicted in Figure 4, underwent a complete transformation with the
addition of 0.5M K2CO3. In the catalytic HTL environment, the corrosion layer consisted
of an outer porous layer and an inner compact oxide layer. Large oxide particles were
observed atop the oxide layer, likely formed through the re-deposition of soluble corrosion
products during the autoclave cooling process.
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oxidation zone near the oxide/metal interface.

EDS analyses were conducted on the specific spots marked in Figure 4b to determine
their compositions, and the results are presented in Figure 5. The large particles observed on
the corrosion layer were primarily composed of iron oxides (spot A in Figure 4b), providing
further evidence that they were formed through the re-deposition process. In contrast, the
inner compact layer consisted predominantly of Cr-rich oxides (spot C in Figure 4b). It
should be noted that nickel was also detected within the spot, likely in the form of cations,
owing to the positive Gibbs free energy of formation of nickel oxides. Additionally, there
was a thin layer composed of small oxide particles (spot B in Figure 4b). The EDS analyses
indicated that these small particles could be a combination of iron oxides and chromium
oxides, likely forming as nodular oxides at local defective sites. Based on our previous
study [17], the presence of nickel hydroxides in this region was also plausible. Notably,
relatively large oxide particles were observed in the inner layer near the oxide/metal
interface (spot D in Figure 4b). Their formation might be attributed to the inward diffusion
of oxygen along the grain boundaries. Further investigation is required to fully understand
this observation.
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Thermodynamic calculations conducted in our previous study [17] indicated that
the Fe, Cr or Fr/Cr oxides could form and be stable in pressurized hot water (pH~5.7 at
310 ◦C), but became unstable in a catalytic HTL environment (pH~11.2). In the catalytic
HTL environment, the chemical dissolution of these oxides would occur via the following
hydrolysis reaction:

M2O3 + 2 OH− + 3 H2O = 2 M(OH)4
− (2)

where M denotes Fe or Cr. In addition to chemical dissolution, the presence of a catalyst in
the HTL environment may also enhance the rate of oxide growth, as indicated by the oxide
layer thickness, shown in Figure 4. This observation can be attributed to the following
factors. Firstly, with the addition of the catalyst, more defects could form in the corrosion
layer, acting as diffusion pathways for cations/anions during oxide growth. Secondly,
the presence of the catalyst might enhance the inward diffusion of O2−, as suggested
by Figure 4b. Previous data and calculations also indicated that the diffusion rates of
oxygen anions in iron oxides and chromium oxides are significantly lower than those of
Fe or Cr cations [80,81]. This suggests that the inward diffusion of oxygen is likely the
rate-limiting factor during the growth of Fe oxides and chromium-enriched oxides, and
O2− inward diffusion within the oxide is likely to be enhanced with the introduction of
K2CO3 catalyst [10,17].
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The formed oxide layer and corrosion rates of Alloy 33 were compared to Fe-based
steels with chromium contents ranging from 9% to 22% [71]. It was found that Alloy 33
exhibited much better corrosion resistance in both non-catalytic and catalytic HTL envi-
ronments. Notably, the significant difference in corrosion rates was likely attributed to
the distinct composition of the oxide layer. Previous studies have shown that steels with
chromium content less than 22 wt.% generally form oxide layers primarily composed of
Fe3O4 and Fe3-xCrxO4 when exposed to high-temperature aqueous solutions [71,82,83].
In contrast, a compact Cr-enriched inner oxide layer is formed on Alloy 33. Considering
the fact that inward oxygen diffusion is the rate-limiting step and considering the appli-
cation of the point defect model (PDM) in similar corrosion systems [84], the corrosion of
Alloy 33 in catalytic HTL environments is likely diffusion-controlled due to the relatively
compact Cr2O3 layer. On the other hand, the corrosion of Fe-based steels with chromium
content < 22 wt.% is likely controlled by the dissolution rates of the formed oxides on the
surface. Moreover, when comparing the corrosion rates of Alloy 33 and Alloy 625 [71], it
was observed that Alloy 33 exhibited only slightly better corrosion resistance in both non-
catalytic and catalytic environments. This suggests that further increasing the chromium
content (when the chromium content is already above 22%) would unlikely lead to a
significant improvement in corrosion resistance during HTL conversion.

4. Conclusions

During the HTL conversion, biomass feedstock types, temperature, pressure, and the
homogeneous and heterogeneous catalysts are important operating parameters affecting
carbon conversion efficiency and the properties of the produced bio-oil, and their roles
were overviewed in this study. From the corrosion perspective, temperature, catalyst,
and inorganic corrodants generated during the conversion process are major factors that
influence the corrosion performance of the conversion reactor and other core component
alloys for safe operation. The study also investigated their impacts on the corrosion of a
representative construction alloy (Alloy 33). It was observed that increasing temperature,
the introduction of 0.5 M K2CO3 catalyst, and the presence of trace amounts of corrodants
(S2− and Cl−) led to a noticeable increase in the corrosion rate. Among these factors, the
alkaline catalyst emerged as the dominant influence, as its addition completely changed
the morphology and chemistry of the surface oxide scales grown on the alloys. Based on
design requirements, Alloy 33 is considered a suitable candidate for further pilot-scale
validation assessment in real biomass-containing HTL environments.
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