Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = dormant chain activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6852 KiB  
Article
Shifting Mycobacterial Serine Hydrolase Activity Visualized Using Multi-Layer In-Gel Activity Assays
by Allison L. Goss, Renee E. Shudick and R. Jeremy Johnson
Molecules 2024, 29(14), 3386; https://doi.org/10.3390/molecules29143386 - 18 Jul 2024
Viewed by 1525
Abstract
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating [...] Read more.
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

21 pages, 6753 KiB  
Article
Deciphering Complex Morphology and Structural Connectivity of High-Magnitude Deep-Seated Landslides via Airborne Laser Scanning: A Case Study in the Vrancea Seismic Region, Romanian Carpathians
by Mihai Micu, Mirela Vasile, Florin Miron, Alexandru Onaca, Flavius Sîrbu and Skyline Drones Team
Remote Sens. 2023, 15(22), 5286; https://doi.org/10.3390/rs15225286 - 8 Nov 2023
Cited by 1 | Viewed by 1757
Abstract
In the Vrancea seismic region (Romanian Carpathians; the most important intermediate-depth seismic source of Europe), the morphology of the slopes is often marked by the existence of numerous high-magnitude, deep-seated active, dormant or relict landslides, which are the subjects of many cases of [...] Read more.
In the Vrancea seismic region (Romanian Carpathians; the most important intermediate-depth seismic source of Europe), the morphology of the slopes is often marked by the existence of numerous high-magnitude, deep-seated active, dormant or relict landslides, which are the subjects of many cases of functional and structural connectivity. Due to the compact and extensive (coniferous and broad leaved) forest coverage and because of the lack of publicly available regional high-resolution DEMs, it is usually difficult to fully understand the morphogenetic framework of such large, deep-seated landslides in order to assess their frequency–magnitude relationship, a key issue in hazard quantification. However, the high impact of such landslides on river networks requires an in-depth understanding of the multi-hazard framework, as cascading effects are likely to affect the presently growing human activities developing along the valleys. Within a case study represented by a 2.5 km long deep-seated landslide, that caused a 500 m lateral occlusion of Buzău River, we used integrated remote sensing technologies (UAV laser scanning) and in situ (geomorphic mapping and ERT investigations) techniques, which allowed us to better understand the structural connectivity which conditions the landslide hazard in such complex morphogenetic conditions, outlining the present potential of the regional seismo-climatic context to trigger potential high-magnitude chain effects. Full article
(This article belongs to the Special Issue Geomatics and Natural Hazards)
Show Figures

Graphical abstract

21 pages, 8372 KiB  
Article
The Effect of Antimicrobial Photodynamic Inactivation on the Protein Profile of Dormant Mycolicibacterium smegmatis Containing Endogenous Porphyrins
by Denis M. Shashin, Galina R. Demina, Irina A. Linge, Galina N. Vostroknutova, Arseny S. Kaprelyants, Alexander P. Savitsky and Margarita O. Shleeva
Int. J. Mol. Sci. 2023, 24(18), 13968; https://doi.org/10.3390/ijms241813968 - 12 Sep 2023
Cited by 3 | Viewed by 1945
Abstract
During transition into a dormant state, Mycolicibacterium (Mycobacterium) smegmatis cells are able to accumulate free porphyrins that makes them sensitive to photodynamic inactivation (PDI). The formation of dormant cells in a liquid medium with an increased concentration of magnesium (up to [...] Read more.
During transition into a dormant state, Mycolicibacterium (Mycobacterium) smegmatis cells are able to accumulate free porphyrins that makes them sensitive to photodynamic inactivation (PDI). The formation of dormant cells in a liquid medium with an increased concentration of magnesium (up to 25 mM) and zinc (up to 62 µM) resulted in an increase in the total amount of endogenous porphyrins in dormant M. smegmatis cells and their photosensitivity, especially for bacteria phagocytosed by macrophages. To gain insight into possible targets for PDI in bacterial dormant mycobacterial cells, a proteomic profiling with SDS gel electrophoresis and mass spectrometry analysis were conducted. Illumination of dormant forms of M. smegmatis resulted in the disappearance of proteins in the separating SDS gel. Dormant cells obtained under an elevated concentration of metal ions were more sensitive to PDI. Differential analysis of proteins with their identification with MALDI-TOF revealed that 45.2% and 63.9% of individual proteins disappeared from the separating gel after illumination for 5 and 15 min, respectively. Light-sensitive proteins include enzymes belonging to the glycolytic pathway, TCA cycle, pentose phosphate pathway, oxidative phosphorylation and energy production. Several proteins involved in protecting against oxygen stress and protein aggregation were found to be sensitive to light. This makes dormant cells highly vulnerable to harmful factors during a long stay in a non-replicative state. PDI caused inhibition of the respiratory chain activity and destroyed enzymes involved in the synthesis of proteins and nucleic acids, the processes which are necessary for dormant cell reactivation and their transition to multiplying bacteria. Because of such multiple targeting, PDI action via endogenous porphyrins could be considered as an effective approach for killing dormant bacteria and a perspective to inactivate dormant mycobacteria and combat the latent form of mycobacteriosis, first of all, with surface localization. Full article
(This article belongs to the Special Issue Molecular Aspects of Photodynamic Therapy)
Show Figures

Figure 1

18 pages, 4302 KiB  
Article
Electrochemical Investigation of Iron-Catalyzed Atom Transfer Radical Polymerization
by Gianluca Gazzola, Sebastiano Pasinato, Marco Fantin, Niccolò Braidi, Cristina Tubaro, Christian Durante and Abdirisak Ahmed Isse
Molecules 2022, 27(19), 6312; https://doi.org/10.3390/molecules27196312 - 24 Sep 2022
Cited by 5 | Viewed by 2983
Abstract
Use of iron-based catalysts in atom transfer radical polymerization (ATRP) is very interesting because of the abundance of the metal and its biocompatibility. Although the mechanism of action is not well understood yet, iron halide salts are usually used as catalysts, often in [...] Read more.
Use of iron-based catalysts in atom transfer radical polymerization (ATRP) is very interesting because of the abundance of the metal and its biocompatibility. Although the mechanism of action is not well understood yet, iron halide salts are usually used as catalysts, often in the presence of nitrogen or phosphorous ligands (L). In this study, electrochemically mediated ATRP (eATRP) of methyl methacrylate (MMA) catalyzed by FeCl3, both in the absence and presence of additional ligands, was investigated in dimethylformamide. The electrochemical behavior of FeCl3 and FeCl3/L was deeply investigated showing the speciation of Fe(III) and Fe(II) and the role played by added ligands. It is shown that amine ligands form stable iron complexes, whereas phosphines act as reducing agents. eATRP of MMA catalyzed by FeCl3 was investigated in different conditions. In particular, the effects of temperature, catalyst concentration, catalyst-to-initiator ratio, halide ion excess and added ligands were investigated. In general, polymerization was moderately fast but difficult to control. Surprisingly, the best results were obtained with FeCl3 without any other ligand. Electrogenerated Fe(II) effectively activates the dormant chains but deactivation of the propagating radicals by Fe(III) species is less efficient, resulting in dispersity > 1.5, unless a high concentration of FeCl3 is used. Full article
Show Figures

Graphical abstract

18 pages, 4593 KiB  
Article
Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems
by Amjad Ali, Jamile Mohammadi Moradian, Ahmad Naveed, Tariq Aziz, Nadeem Muhammad, Chanez Maouche, Yintian Guo, Waleed Yaseen, Maria Yassen, Fazal Haq, Mobashar Hassan, Zheqing Fan and Li Guo
Polymers 2022, 14(16), 3239; https://doi.org/10.3390/polym14163239 - 9 Aug 2022
Cited by 7 | Viewed by 2336
Abstract
The objectives of this work were to address the fundamental characteristics of ansa-zirconocene catalyzed E/diene copolymerization and E/diene/1-hexene and E/diene/propylene terpolymerizations, and the quantitative relationship between diene structure and polymer chain propagation rate constant in term of quantifiable catalytic active sites. One of [...] Read more.
The objectives of this work were to address the fundamental characteristics of ansa-zirconocene catalyzed E/diene copolymerization and E/diene/1-hexene and E/diene/propylene terpolymerizations, and the quantitative relationship between diene structure and polymer chain propagation rate constant in term of quantifiable catalytic active sites. One of the most important but unknown factors in olefins ansa-zirconocene complexes is the distribution of the catalyst between sites actively participating in polymer chain formation and dormant sites. A set of ethylene/dienes copolymerizations, and ethylene/dienes/1-hexene and ethylene/dienes/1-hexene terpolymerizations catalyzed with ansa-zirconocenes/borate/triisobutylaluminium (rac-Et(Ind)2ZrCl2/[Ph3C][B(C6F5)4]/triisobutylaluminium (TIBA) were performed in toluene at 50 °C To determine the active center [C*]/[Zr] ratio variation in the copolymerization of E with different dienes and their terpolymerization with 1-hexene and propylene, each polymer propagation chain ends were quenched with 2-thiophenecarbonyl, which selectively quenches the metal–polymer bonds through acyl chloride. The ethylene, propylene, 1-hexene, and diene composition-based propagation rate constants (kpE, kpP, kp1-H, and kpdiene), thermal (melting and crystalline) properties, composition (mol% of ethylene, propylene, 1-hexene, and diene), molecular weight, and polydispersity were also studied in this work. Systematic comparisons of the proportion of catalytically [Zr]/[C*] active sites and polymerization rate constant (kp) for ansa-zirconocenes catalyzed E/diene, E/diene/1-hexene, and E/diene/propylene polymerization have not been reported before. We evaluated the addition of 1-hexene and propylene as termonomers in the copolymerization with E/diene. To make a comparison for each diene under identical conditions, we started the polymerization by introducing an 80/20 mole ratio of E/P and 0.12 mol/L of 1-hexene in the system. The catalyst behavior against different dienes, 1-hexene, and propylene is very interesting, including changes in thermal properties, cyclization of 1-hexene, and decreased incorporation of isoprene and butadiene, changes in the diffusion barriers in the system, and its effect on kp. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

26 pages, 7267 KiB  
Article
Terpene Coordinative Chain Transfer Polymerization: Understanding the Process through Kinetic Modeling
by Andrés Ubaldo-Alarcón, Florentino Soriano-Corral, Teresa Córdova, Iván Zapata-González and Ramón Díaz-de-León
Polymers 2022, 14(12), 2352; https://doi.org/10.3390/polym14122352 - 10 Jun 2022
Cited by 7 | Viewed by 2423
Abstract
The interest in the Coordinative Chain Transfer Polymerization (CCTP) of a family of naturally occurring hydrocarbon monomers, namely terpenes, for the production of high-performance rubbers is increasing year by year. In this work, the synthesis of poly(β-myrcene) via CCTP is introduced, using neodymium [...] Read more.
The interest in the Coordinative Chain Transfer Polymerization (CCTP) of a family of naturally occurring hydrocarbon monomers, namely terpenes, for the production of high-performance rubbers is increasing year by year. In this work, the synthesis of poly(β-myrcene) via CCTP is introduced, using neodymium versatate (NdV3), diisobutylaluminum hydrade (DIBAH) as the catalytic system and dimethyldichlorosilane (Me2SiCl2) as the activator. A bimodal distribution in the GPC signal reveals the presence of two populations at low conversions, attributable to dormants (arising from reversible chain transfer reactions) and dead chains (arising from termination and irreversible chain transfer reactions); a unimodal distribution is generated at medium and high conversions, corresponding to the dominant species, the dormant chains. Additionally, a mathematical kinetic model was developed based on the Method of Moments to study a set of selected experiments: ([β-myrcene]0:[NdV3]0:[DIBAH]0:[Me2SiCl2]0 = 660:1:2:1, 885:1:2:1, and 533:1:2:1). In order to estimate the kinetic rate constant of the systems, a minimization of the sum of squared errors (SSE) between the model predicted values and the experimental measurements was carried out, resulting in an excellent fit. A set of the Arrhenius parameters were estimated for the ratio [β-myrcene]0:[NdV3]0:[DIBAH]0:[Me2SiCl2]0 = 660:1:2:1 in a temperature range between 50 to 70 °C. While the end-group functionality (EGF) was predominantly preserved as the ratio [β-myrcene]0:[NdV3]0 was decreased, higher catalytic activity was obtained with a high ratio. Full article
(This article belongs to the Special Issue Polymer Reaction Modeling and Kinetics)
Show Figures

Graphical abstract

16 pages, 1972 KiB  
Article
Impact of the Hydrolysis and Methanolysis of Bidesmosidic Chenopodium quinoa Saponins on Their Hemolytic Activity
by Philippe Savarino, Carolina Contino, Emmanuel Colson, Gustavo Cabrera-Barjas, Julien De Winter and Pascal Gerbaux
Molecules 2022, 27(10), 3211; https://doi.org/10.3390/molecules27103211 - 17 May 2022
Cited by 3 | Viewed by 3013
Abstract
Saponins are specific metabolites abundantly present in plants and several marine animals. Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous applications, provided the relation between [...] Read more.
Saponins are specific metabolites abundantly present in plants and several marine animals. Their high cytotoxicity is associated with their membranolytic properties, i.e., their propensity to disrupt cell membranes upon incorporation. As such, saponins are highly attractive for numerous applications, provided the relation between their molecular structures and their biological activities is understood at the molecular level. In the present investigation, we focused on the bidesmosidic saponins extracted from the quinoa husk, whose saccharidic chains are appended on the aglycone via two different linkages, a glycosidic bond, and an ester function. The later position is sensitive to chemical modifications, such as hydrolysis and methanolysis. We prepared and characterized three sets of saponins using mass spectrometry: (i) bidesmosidic saponins directly extracted from the ground husk, (ii) monodesmosidic saponins with a carboxylic acid group, and (iii) monodesmosidic saponins with a methyl ester function. The impact of the structural modifications on the membranolytic activity of the saponins was assayed based on the determination of their hemolytic activity. The natural bidesmosidic saponins do not present any hemolytic activity even at the highest tested concentration (500 µg·mL−1). Hydrolyzed saponins already degrade erythrocytes at 20 µg·mL−1, whereas 100 µg·mL−1 of transesterified saponins is needed to induce detectable activity. The observation that monodesmosidic saponins, hydrolyzed or transesterified, are much more active against erythrocytes than the bidesmosidic ones confirms that bidesmosidic saponins are likely to be the dormant form of saponins in plants. Additionally, the observation that negatively charged saponins, i.e., the hydrolyzed ones, are more hemolytic than the neutral ones could be related to the red blood cell membrane structure. Full article
(This article belongs to the Topic Bioactives and Ingredients from Agri-Food Wastes)
Show Figures

Figure 1

20 pages, 21729 KiB  
Article
Methods for Predicting Ethylene/Cyclic Olefin Copolymerization Rates Promoted by Single-Site Metallocene: Kinetics Is the Key
by Amjad Ali, Ahmad Naveed, Tahir Rasheed, Tariq Aziz, Muhammad Imran, Ze-Kun Zhang, Muhammad Wajid Ullah, Ameer Ali Kubar, Aziz Ur Rehman, Zhiqiang Fan and Li Guo
Polymers 2022, 14(3), 459; https://doi.org/10.3390/polym14030459 - 24 Jan 2022
Cited by 9 | Viewed by 3838
Abstract
In toluene at 50 °C, the vinyl addition polymerization of 4-vinyl-cyclohexene (VCH) comonomers with ethylene is investigated using symmetrical metallocene (rac-Et(Ind)2ZrCl2) combined with borate/TIBA. To demonstrate the polymerizations’ living character, cyclic VCH with linear-exocyclicπ and endocyclic [...] Read more.
In toluene at 50 °C, the vinyl addition polymerization of 4-vinyl-cyclohexene (VCH) comonomers with ethylene is investigated using symmetrical metallocene (rac-Et(Ind)2ZrCl2) combined with borate/TIBA. To demonstrate the polymerizations’ living character, cyclic VCH with linear-exocyclicπ and endocyclicπ bonds produces monomodal polymers, but the dispersity (Ɖ) was broader. The copolymers obtained can be dissolved in conventional organic solvent and have excellent thermal stability and crystalline temperature (ΔHm), and their melting temperature (Tm) varies from 109 to 126 °C, and ΔHm ranges from 80 to 128 (J/g). Secondly, the distribution of polymeric catalysts engaged in polymer chain synthesis and the nature of the dormant state are two of the most essential yet fundamentally unknown aspects. Comprehensive and exhaustive kinetics of E/VCH have shown numerous different kinetic aspects that are interpreted as manifestations of polymeric catalysts or of the instability of several types of active center [Zr]/[C*] fluctuations and formation rates of chain propagation RpE, RpVCH, and propagation rate constants kpE and kpVCH, the quantitative relationship between RpE, RpVCH and kpE, kpVCH and catalyst structures, their constituent polymer Mw, and their reactivity response to the endocyclic and exocyclic bonds of VCH. The kinetic parameters RpE, RpVCH, kpE, and kpVCH, which are the apparent rates for the metallocene-catalyzed E/VCH, RpE, and kpE values, are much more significant than RpVCH and kpVCH at 120 s, RpE and RpVCH 39.63 and 0.78, and the kpE and kpVCH values are 6461 and 93 L/mol·s, respectively, and minor diffusion barriers are recommended in the early stages. Compared with previously reported PE, RpE and kpE values are 34.2 and 7080 L/mol·s. VCH increases the RpE in the initial stage, as we are expecting; this means that the exocyclic bond of VCH is more active at the initial level, and that the chain transfer reaction of cyclic internal π double is increased with the reaction time. The tp versus Rp, kp, and [Zr]/[C*] fraction count may be fitted to a model that invokes deactivation of growing polymer chains. At tp 120–360 s higher, the incorporation rate of VCH suppresses E insertion, resulting in reduced molecular weight. Full article
(This article belongs to the Topic Sustainable Polymer Technologies)
Show Figures

Graphical abstract

20 pages, 5770 KiB  
Article
Kinetic and Thermal Study of Ethylene and Propylene Homo Polymerization Catalyzed by ansa-Zirconocene Activated with Alkylaluminum/Borate: Effects of Alkylaluminum on Polymerization Kinetics and Polymer Structure
by Amjad Ali, Nadeem Muhammad, Shahid Hussain, Muhammad Imran Jamil, Azim Uddin, Tariq Aziz, Muhammad Khurram Tufail, Yintian Guo, Tiantian Wei, Ghulam Rasool, Zhiqiang Fan and Li Guo
Polymers 2021, 13(2), 268; https://doi.org/10.3390/polym13020268 - 15 Jan 2021
Cited by 30 | Viewed by 5790
Abstract
The kinetics of ethylene and propylene polymerization catalyzed by homogeneous metallocene were investigated using 2-thiophenecarbonyl chloride followed by quenched-flow methods. The studied metallocene catalysts are: rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (Mt-I), rac-Et(Ind)2ZrCl2 (Mt-II) activated with ([Me2 [...] Read more.
The kinetics of ethylene and propylene polymerization catalyzed by homogeneous metallocene were investigated using 2-thiophenecarbonyl chloride followed by quenched-flow methods. The studied metallocene catalysts are: rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 (Mt-I), rac-Et(Ind)2ZrCl2 (Mt-II) activated with ([Me2NPh][B(C6F5)4] (Borate-I), [Ph3C][B(C6F5)4] (Borate-II), and were co-catalyzed with different molar ratios of alkylaluminum such as triethylaluminium (TEA) and triisobutylaluminium (TIBA). The change in molecular weight, molecular weight distribution, microstructure and thermal properties of the synthesized polymer are discussed in detail. Interestingly, both Mt-I and Mt-II showed high activity in polyethylene with productivities between 3.17 × 106 g/molMt·h to 5.06 × 106 g/molMt·h, activities were very close to each other with 100% TIBA, but Mt-II/borate-II became more active when TEA was more than 50% in cocatalyst. Similarly, Polypropylene showed the highest activity of 11.07 106 g /molMt·h with Mt-I/Borate-I/TIBA. The effects of alkylaluminum on PE molecular weight were much more complicated; MWD curve changed from mono-modal in Mt-I/borate-I/TIBA to bimodal type when TIBA was replaced by different amounts of TEA. In PE, the active center fractions [C*]/[Zr] of Mt-I/borate were higher than that of Mt-II/borate and average chain propagation rate constant (kp) value slightly decreased with the increase of TEA/TIBA ratio, but the Mt-II/borate systems showed higher kp 1007 kp (L/mol·s). In PP, the Mt-I/borate presented much higher [C*]/[Zr] and kp value than the Mt-II. This work also extend to investigate the mechanistic features of zirconocenes catalyzed olefin polymerizations that addressed the largely unknown issues in zirconocenes in the distribution of the catalyst, between species involved in polymer chain growth and dormant state. In both metallocene systems, chain transfer with alkylaluminum is the dominant way of chain termination. To understand the mechanism of cocatalyst effects on PE Mw and (MWD), the unsaturated chain ends formed via β-H transfer have been investigated by 1H NMR analysis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

20 pages, 9987 KiB  
Article
Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study
by Mehdi Shishehbor and M. Reza Pouranian
Nanomaterials 2020, 10(1), 154; https://doi.org/10.3390/nano10010154 - 16 Jan 2020
Cited by 16 | Viewed by 5415
Abstract
Improving the adhesion properties of carbon nanotubes (CNTs) at the molecular scale can significantly enhance dispersion of CNT fibers in polymer matrix and unleash the dormant extraordinary mechanical properties of CNTs in CNT-polymer nanocomposites. Inspired by the outstanding adhesion, dispersion, mechanical, and surface [...] Read more.
Improving the adhesion properties of carbon nanotubes (CNTs) at the molecular scale can significantly enhance dispersion of CNT fibers in polymer matrix and unleash the dormant extraordinary mechanical properties of CNTs in CNT-polymer nanocomposites. Inspired by the outstanding adhesion, dispersion, mechanical, and surface functionalization properties of crystalline nanocellulose (CNC), this paper studies the mechanical and adhesion properties of CNT wrapped by aligned cellulose chains around CNT using molecular dynamic simulations. The strength, elastic modulus, and toughness of CNT-cellulose fiber for different cellulose contents are obtained from tensile and compression tests. Additionally, the effect of adding cellulose on the surface energy, interfacial shear modulus, and strength is evaluated. The result shows that even adding a single layer cellulose wrap (≈55% content) significantly decreases the mechanical properties, however, it also dramatically enhances the adhesion energy, interfacial shear strength, and modulus. Adding more cellulose layers, subsequently, deceases and increases mechanical properties and adhesion properties, respectively. In addition, analysis of nanopapers of pristine CNT, pristine CNC, and CNT-wrapped cellulose reveals that CNT-wrapped cellulose nanopapers are strong, stiff, and tough, while for CNT and CNC either strength or toughness is compromised. This research shows that cellulose wraps provide CNT fibers with tunable mechanical properties and adhesion energy that could yield strong and tough materials due to the excellent mechanical properties of CNT and active surface and hydrogen bonding of cellulose. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 4267 KiB  
Article
A New Insight into Flowering Regulation: Molecular Basis of Flowering Initiation in Magnolia × soulangeana ‘Changchun’
by Zheng Jiang, Liyong Sun, Qiang Wei, Ye Ju, Xuan Zou, Xiaoxia Wan, Xu Liu and Zengfang Yin
Genes 2020, 11(1), 15; https://doi.org/10.3390/genes11010015 - 23 Dec 2019
Cited by 13 | Viewed by 3927
Abstract
Magnolia × soulangeana ‘Changchun’ are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in ‘Changchun’. During the process of flowering initiation [...] Read more.
Magnolia × soulangeana ‘Changchun’ are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in ‘Changchun’. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in ‘Changchun’. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1567 KiB  
Article
Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions
by Ali Mohammad Rabea and Shiping Zhu
Polymers 2015, 7(5), 819-835; https://doi.org/10.3390/polym7050819 - 28 Apr 2015
Cited by 39 | Viewed by 8784
Abstract
In high-conversion atom transfer radical polymerization (ATRP), all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect [...] Read more.
In high-conversion atom transfer radical polymerization (ATRP), all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect”) and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1) radical deactivation–activation cycles and (2) monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state. Full article
(This article belongs to the Special Issue Precision Polymer Synthesis)
Show Figures

Graphical abstract

22 pages, 973 KiB  
Article
Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains
by Dagmar R. D'hooge, Paul H. M. Van Steenberge, Marie-Françoise Reyniers and Guy B. Marin
Polymers 2014, 6(4), 1074-1095; https://doi.org/10.3390/polym6041074 - 10 Apr 2014
Cited by 62 | Viewed by 8048
Abstract
Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000), optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP). Methyl methacrylate [...] Read more.
Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000), optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP). Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine) as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation (<GD>) polymer property. Careful selection or fed-batch addition of the conventional radical initiator I2 allows a reduction of the polymerization time with ca. a factor 2 compared to the corresponding batch case, while preserving control over polymer properties (<GD> ≈ 0.30; dispersity ≈ 1.1). Fed-batch addition of not only I2, but also comonomer and deactivator (50 ppm) under starved conditions yields a <GD> below 0.25 and, hence, an excellent linear gradient quality for the dormant polymer molecules, albeit at the expense of an increase of the overall polymerization time. The excellent control is confirmed by the visualization of the monomer sequences of ca. 1000 copolymer chains. Full article
(This article belongs to the Special Issue Controlled/Living Radical Polymerization)
Show Figures

Graphical abstract

Back to TopTop