Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (170)

Search Parameters:
Keywords = doped carbides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5518 KB  
Article
First-Principles Calculation and Experimental Study on Interface Stability, Electronic Characteristics, and Mechanical Properties of WC-Co-Y Cemented Carbide
by Zewen Li, Hao Chen, Liyong Chen, Jianbo Zhang, Fan Zhang and Xiaolong Xie
Materials 2026, 19(2), 441; https://doi.org/10.3390/ma19020441 - 22 Jan 2026
Viewed by 113
Abstract
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining [...] Read more.
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining first-principles calculations and experimental verification, the interfacial energy, density of states, and charge density of WC/Co and WC/CoY interfaces were systematically investigated. Three alloys (WC-10Co, WC-10Co-0.5Y, and WC-10Co-1Y) were prepared, and the effects of Y addition were quantitatively evaluated through microstructural characterization, mechanical testing, and tribological experiments. The calculation results indicate that Y doping reduces interfacial energy, enhances interfacial bonding, and increases surface energy, which contributes to improved toughness. At the atomic scale, the orbital hybridization between Y and W promotes the formation of strong covalent bonds at the interface, thereby enhancing interfacial bonding strength. The experimental results show that the introduction of Y significantly improves the overall performance of the material, with the alloy containing 0.5 wt.% Y exhibiting the best performance. Its Vickers hardness reaches (1454 ± 1.3) HV, fracture toughness is (9.84 ± 0.15) MPa·m1/2, and the wear rate is as low as 0.794 × 10−5 mm3·N−1·m−1. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

31 pages, 5475 KB  
Review
Tunable SiC-Based Photocatalysts for Hydrogen Generation and Environmental Remediation
by Dina Bakranova, David Nagel, Nurlan Bakranov, Farida Kapsalamova and Danil Boukhvalov
Int. J. Mol. Sci. 2026, 27(2), 774; https://doi.org/10.3390/ijms27020774 - 13 Jan 2026
Viewed by 242
Abstract
Silicon carbide (SiC) has emerged as a robust and tunable semiconductor for advanced photocatalytic applications. This review provides a comprehensive overview of recent progress in the development of SiC-based materials for environmental remediation and solar-driven hydrogen production. Key aspects discussed include morphological engineering, [...] Read more.
Silicon carbide (SiC) has emerged as a robust and tunable semiconductor for advanced photocatalytic applications. This review provides a comprehensive overview of recent progress in the development of SiC-based materials for environmental remediation and solar-driven hydrogen production. Key aspects discussed include morphological engineering, heterostructure design, doping strategies, and plasmonic enhancement. Emphasis is placed on structure–activity relationships, insights from density functional theory (DFT) and machine learning (ML) models, and synergistic effects in composite systems. This review concludes with a critical analysis of current challenges and future research directions, highlighting the potential of SiC implementation as a sustainable platform for next-generation photocatalytic technologies. Full article
(This article belongs to the Special Issue Functional Materials in Photocatalysis: From Design to Application)
Show Figures

Figure 1

23 pages, 3143 KB  
Article
Influence of Deposition Temperature on the Mechanical and Tribological Properties of Cr/Ni Co-Doped Diamond-like Carbon Films
by Hassan Zhairabany, Hesam Khaksar, Edgars Vanags, Anatolijs Šarakovskis, Enrico Gnecco and Liutauras Marcinauskas
Crystals 2026, 16(1), 52; https://doi.org/10.3390/cryst16010052 - 12 Jan 2026
Viewed by 157
Abstract
This study aimed to examine the influence of sputtering temperature on the bonding structure and properties of non-hydrogenated chromium/nickel co-doped diamond-like carbon (DLC) films synthesized via direct current magnetron sputtering. The Cr/Ni doping levels in the coatings were regulated by varying the shield [...] Read more.
This study aimed to examine the influence of sputtering temperature on the bonding structure and properties of non-hydrogenated chromium/nickel co-doped diamond-like carbon (DLC) films synthesized via direct current magnetron sputtering. The Cr/Ni doping levels in the coatings were regulated by varying the shield opening above a chromium-nickel (20/80 at.%) target, resulting in a total metal co-doping concentration ranging from 6.1 to 8.9 at.%. The thickness of the Cr/Ni-DLC films ranged from 160 to 180 nm. Meanwhile, the deposition temperatures of 185 °C and 235 °C were achieved by adjusting the substrate-to-target distance. The XPS and Raman spectroscopy results indicated enhanced graphitization of the Cr/Ni-DLC films with a decrease in the synthesis temperature. XPS results indicated the formation of carbon-oxide and metal-oxide bonds, with no evidence of metal carbide formation in the doped DLC films. Furthermore, both the nanohardness and Young’s modulus demonstrated significant improvement, while the friction coefficient was reduced more than twice as the deposition temperature increased. These findings provide valuable insights into the influence of deposition temperature on Cr/Ni co-doped DLC films, highlighting their potential as advanced functional coatings. Full article
(This article belongs to the Special Issue Functional Thin Films: Growth, Characterization, and Applications)
Show Figures

Figure 1

19 pages, 2498 KB  
Article
Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
by Rahul Agrawal, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan and Breogán Pato-Doldán
Nanoenergy Adv. 2026, 6(1), 4; https://doi.org/10.3390/nanoenergyadv6010004 - 9 Jan 2026
Viewed by 181
Abstract
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology [...] Read more.
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology is a promising solution but has challenges such as solar intermittency. This challenge can be solved by integrating SHDH with the phase change material as a solar energy storage medium. Therefore, a novel nano-enhanced binary eutectic phase change material (NEPCM) was developed in this project. PCM consisting of 70 wt.% stearic acid (ST) and 30 wt.% suberic acid (SBU) with a varying concentration of silicon carbide (SiC) nanoparticles (NPs) (0.1 to 3 wt.%) was synthesized specifically considering the need of SHDH application. The systematic thermophysical characterization was conducted to investigate their energy storage capacity, thermal durability, and performance consistency over repeated cycles. DSC analysis revealed that the addition of SiC NPs preserved the thermal stability of the NEPCM, while the phase transition temperature remained nearly unchanged with a variation of less than 0.74%. The value of latent heat is inversely related to the nanoparticle concentration, i.e., from 142.75 kJ/kg for the base PCM to 131.24 kJ/kg at 3 wt.% loading. This corresponds to reductions in latent heat ranging between 0.98% and 8.06%. The FTIR measurement confirms that no chemical reactions or no new functional groups were formed. All original functional groups of ST and SBU remained intact, showing that incorporating the SiC NP to the PCM lead to physical interactions (e.g., hydrogen bonding or surface adsorption). The TGA analysis showed that the SiC NPs in the NEPCM act as supporting material, and its nano-doping enhanced the final degradation temperature and thermal stability. There was negligible change in thermal conductivity for nanoparticle loadings of 0.1% and 0.4%; however, it increased progressively by 5.2%, 10.8%, 23.12%, and 25.8% at nanoparticle loadings of 0.7%, 1%, 2%, and 3%, respectively, at 25 °C. Thermal reliability was analyzed through a DSC thermal cycling test which confirmed the suitability of the material for the desired applications. Full article
(This article belongs to the Special Issue Innovative Materials for Renewable and Sustainable Energy Systems)
Show Figures

Figure 1

27 pages, 3043 KB  
Review
Recent Advances and Techno-Economic Prospects of Silicon Carbide-Based Photoelectrodes for Solar-Driven Hydrogen Generation
by Dina Bakranova, Abay Serikkanov, Farida Kapsalamova, Murat Rakhimzhanov, Zhanar Mukash and Nurlan Bakranov
Catalysts 2025, 15(12), 1159; https://doi.org/10.3390/catal15121159 - 10 Dec 2025
Viewed by 997
Abstract
Silicon carbide (SiC) has attracted increasing attention as a robust photoelectrode material for solar water splitting due to its exceptional chemical stability, mechanical strength, and resistance to photocorrosion. Recent advances in nanostructuring—particularly the development of nanoporous SiC architectures—have dramatically improved light absorption, charge [...] Read more.
Silicon carbide (SiC) has attracted increasing attention as a robust photoelectrode material for solar water splitting due to its exceptional chemical stability, mechanical strength, and resistance to photocorrosion. Recent advances in nanostructuring—particularly the development of nanoporous SiC architectures—have dramatically improved light absorption, charge separation, and charge transport in this material. This review summarizes current strategies to enhance the PEC performance of SiC, including hierarchical nanostructuring, defect engineering (e.g., doping to tailor band structure), heterojunction formation with co-catalysts, and incorporation of plasmonic nanoparticles. Remaining challenges are discussed, notably the wide band gap of common SiC polytypes (limiting visible-light utilization) and rapid charge-carrier recombination. In addition, we examine the techno-economic prospects for SiC-based PEC systems, outlining the efficiency and durability benchmarks required for commercial hydrogen production. Finally, we propose future research directions to achieve efficient, durable SiC photoelectrodes and to guide the development of scalable PEC water-splitting devices. This review uniquely integrates material design strategies with techno-economic evaluation, providing a roadmap for SiC-based PEC systems. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

14 pages, 1899 KB  
Article
Investigation of the Damage Characteristics and Mechanisms in Silicon Carbide Crystals Induced by Nanosecond Pulsed Lasers at the Fundamental Frequency
by Penghao Xu, Erxi Wang, Teng Wang, Chong Shan, Xiaohui Zhao, Huamin Kou, Dapeng Jiang, Qinghui Wu, Zhan Sui and Yanqi Gao
Photonics 2025, 12(12), 1207; https://doi.org/10.3390/photonics12121207 - 8 Dec 2025
Viewed by 396
Abstract
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the [...] Read more.
Silicon carbide (SiC) single crystals are extensively utilized in various fields due to their exceptional properties, such as a wide bandgap and a high breakdown threshold. Nevertheless, the intrinsic high hardness of SiC creates significant challenges for contact machining. This study investigates the surface damage characteristics and underlying mechanisms involved in processing both high-purity silicon carbide (HP-SiC) and nitrogen-doped silicon carbide (N-SiC) crystals using fundamental-frequency nanosecond pulsed lasers. This study establishes a laser-induced damage threshold (LIDT) testing platform and employs the internationally standardized 1-ON-1 test method to evaluate the damage characteristics of HP-SiC and N-SiC crystals under single-pulse laser irradiation. Experimental results indicate that N-SiC crystals exhibit superior absorption characteristics and a lower LIDT compared with HP-SiC crystals. Subsequently, a defect analysis model was established to conduct a theoretical examination of defect information across various types of SiC. Under fundamental-frequency nanosecond pulsed laser irradiation, N-SiC crystals demonstrate a lower average damage threshold and a broader defect damage threshold distribution than their HP-SiC counterparts. By integrating multi-dimensional analytical methods—including photothermal weak absorption mechanisms and damage morphology analysis—the underlying damage mechanisms of the distinct SiC forms were comprehensively elucidated. Moreover, although N-SiC crystals show weaker photothermal absorption properties, they exhibit more pronounced absorption and damage response processes. These factors collectively account for the different laser damage resistances observed in the two types of silicon carbide crystals, implying that distinct processing methodologies should be employed for nanosecond pulsed laser treatment of different SiC crystals. This paper elucidates the damage characteristics of various SiC materials induced by near-infrared nanosecond pulsed lasers and explores their underlying physical mechanisms. Additionally, it provides reliable data and a comprehensive mechanistic explanation for the efficient removal of these materials in practical applications. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

14 pages, 1985 KB  
Review
Toughening Mechanisms of Diamond-like Carbon Films via Non-Carbide Metal Doping
by Jiahao Liu, Zhifang Yang, Guangying Cui, Jiayin Lv and Xiang Yu
Lubricants 2025, 13(11), 496; https://doi.org/10.3390/lubricants13110496 - 14 Nov 2025
Viewed by 638
Abstract
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due [...] Read more.
The inherent brittleness and poor fracture toughness of diamond-like carbon (DLC) films significantly limit their long-term reliability in mechanical and tribological applications. Among various strategies to enhance toughness, doping with non-carbide-forming metals (e.g., Ag, Cu) has emerged as a highly effective approach due to their ductile properties and compatibility with carbon matrices. This review comprehensively examines the underlying toughening mechanisms induced by non-carbide metal doping in DLC films. We systematically analyze how metal incorporation influences film microstructure, stress state, and crack behavior throughout the entire lifecycle—from deposition to mechanical testing. Five primary toughening mechanisms are identified and discussed: (I) bombardment-induced compressive stress relaxation during film growth; (II) refinement of carbon atomic clusters and enhancement of grain boundary sliding; (III) inhibition of dislocation accumulation through moderated carbon atom repulsion; (IV) plastic deformation, crack bridging, and strain field relaxation at crack tips; (V) shear-induced stress relief via soft metal particles. Among these, Mechanism IV (ductile phase toughening) is identified as the dominant contributor, and their synergistic action can lead to orders of magnitude improvement in wear resistance and a significant increase in crack propagation resistance. Furthermore, the critical role of doping content is emphasized, revealing an optimal concentration range (e.g., ~10–15 at.% for Ag and Cu) beyond which toughness may deteriorate due to excessive boundary formation or hardness loss. This work provides a mechanistic framework for designing toughened DLC films and guides future efforts in developing high-performance, durable carbon-based coatings. Full article
(This article belongs to the Special Issue Recent Advances in Lubricated Tribological Contacts)
Show Figures

Figure 1

11 pages, 3671 KB  
Article
Research on Linear Energy Transfer of SiC Materials Based on Monte Carlo Method
by Jiamu Xiao, Heng Xie, Shougang Du, Shulong Wang, Tianlong Zhao and Hongxia Liu
Micromachines 2025, 16(10), 1092; https://doi.org/10.3390/mi16101092 - 26 Sep 2025
Viewed by 574
Abstract
The energy deposition process for the main components of SIC Schottky diodes is simulated based on Geant4. Particle bombardment results were simulated under different angles, target materials and doping concentrations on the same target material for different light particles and heavy ions, and [...] Read more.
The energy deposition process for the main components of SIC Schottky diodes is simulated based on Geant4. Particle bombardment results were simulated under different angles, target materials and doping concentrations on the same target material for different light particles and heavy ions, and then the Linear Energy Transfer of SiC materials and external conditions that affect LET are obtained. The results show that the LET value of protons exhibits significant oscillations at low energy incidence, gradually decreasing exponentially after 10−1 MeV. Alpha particles have a LET peak near 1 MeV, while beta particles show an exponential decrease. The LET values at low energy levels increase exponentially, while at high energy levels, the LET values show a similar linear relationship with energy. For different incident angles, the average LET value of protons in the low-level region gradually increases as the incident angle increases. The average LET value of protons in the remaining energy ranges is less affected by angle; the incident angle has no significant effect on the LET distribution of alpha particles within the full spectrum range. The results provide important references for understanding the energy deposition process and LET distribution of silicon carbide devices under single-particle interaction. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 3rd Edition)
Show Figures

Figure 1

18 pages, 2289 KB  
Article
GaN/InN HEMT-Based UV Photodetector on SiC with Hexagonal Boron Nitride Passivation
by Mustafa Kilin and Firat Yasar
Photonics 2025, 12(10), 950; https://doi.org/10.3390/photonics12100950 - 24 Sep 2025
Cited by 1 | Viewed by 1063
Abstract
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the [...] Read more.
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the Silvaco Atlas platform, providing detailed electrothermal and optoelectronic analysis of the proposed device. The device is constructed on a high-thermal-conductivity silicon carbide (SiC) substrate and incorporates an n-GaN buffer, an indium nitride (InN) channel layer for improved electron mobility and two-dimensional electron gas (2DEG) confinement, and a dual-passivation scheme combining silicon nitride (SiN) and hexagonal boron nitride (h-BN). A p-GaN layer is embedded between the passivation interfaces to deplete the 2DEG in dark conditions. In the device architecture, the metal contacts consist of a 2 nm Nickel (Ni) adhesion layer followed by Gold (Au), employed as source and drain electrodes, while a recessed gate embedded within the substrate ensures improved electric field control and effective noise suppression. Numerical simulations demonstrate that the integration of a hexagonal boron nitride (h-BN) interlayer within the dual passivation stack effectively suppresses the gate leakage current from the typical literature values of the order of 108 A to approximately 1010 A, highlighting its critical role in enhancing interfacial insulation. In addition, consistent with previous reports, the use of a SiC substrate offers significantly improved thermal management over sapphire, enabling more stable operation under UV illumination. The device demonstrates strong photoresponse under 360 nm ultraviolet (UV) illumination, a high photo-to-dark current ratio (PDCR) found at approximately 106, and tunable performance via structural optimization of p-GaN width between 0.40 μm and 1.60 μm, doping concentration from 5×1016 cm3 to 5×1018 cm3, and embedding depth between 0.060 μm and 0.068 μm. The results underscore the proposed structure’s notable effectiveness in passivation quality, suppression of gate leakage, and thermal management, collectively establishing it as a robust and reliable platform for next-generation UV photodetectors operating under harsh environmental conditions. Full article
Show Figures

Figure 1

12 pages, 6232 KB  
Article
Effect of Nano-SiC Loading on Surface Discharge Performance of Polyimide at High-Frequency Electric Stress
by Ruoqing Hong, Qingmin Li, Huan Li and Qingming Xin
Polymers 2025, 17(18), 2526; https://doi.org/10.3390/polym17182526 - 18 Sep 2025
Viewed by 659
Abstract
This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge [...] Read more.
This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge resistance and thermal stability under high-frequency electric stress. Experimental results show that 10 wt% SiC doping significantly improves insulation performance, extending failure time from 17 to 50 min and reducing maximum discharge amplitude by 76%, owing to enhanced charge trapping and interfacial polarization suppression. Surface and volume resistivity measurements further confirmed the improvement; at 120 °C, the 10 wt% SiC composite maintained high surface resistivity 3.30 × 1014 Ω and volume resistivity 1.41 × 1015 Ω·cm, significantly outperforming pure PI. In contrast, 20 wt% SiC, though still resistive, showed reduced stability due to agglomeration and interfacial defects, with a surface resistivity of 2.07 × 1014 Ω and degraded dielectric performance. Dielectric analysis revealed that 10 wt% SiC suppressed dielectric constant and loss across the frequency range, while 20 wt% SiC exhibited increased values at high frequency. These results highlight 10 wt% SiC as an optimal formulation for HFPT winding insulation. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

19 pages, 10992 KB  
Article
Research on Electromagnetic and Rheological Performance of Microwave-Sensitive Emulsified Asphalt Containing SiC and Fe3O4
by Peng Wu, Shuyin Li, Haoyan Guo, Haibao Zhang and Rui He
Materials 2025, 18(18), 4283; https://doi.org/10.3390/ma18184283 - 12 Sep 2025
Viewed by 570
Abstract
The limited microwave-heating performance caused by moisture and ordinary aggregates limits the application efficiency of emulsified asphalt in rapid pavement repair engineering. Silicon carbide (SiC) and ferrosoferric oxide (Fe3O4) were introduced as modifiers to prepare the microwave-sensitive emulsified asphalt [...] Read more.
The limited microwave-heating performance caused by moisture and ordinary aggregates limits the application efficiency of emulsified asphalt in rapid pavement repair engineering. Silicon carbide (SiC) and ferrosoferric oxide (Fe3O4) were introduced as modifiers to prepare the microwave-sensitive emulsified asphalt used in this work. The electromagnetic properties, microwave heating properties, microstructural evolution law, and rheological performance of emulsified asphalt or its evaporation residue were studied. The results show that modification through SiC and Fe3O4 can produce a pronounced synergistic effect and can significantly enhance both the electromagnetic and high temperature rheological properties. Coupling polarization enhancement with magnetic responsiveness increases the dielectric constant and loss peaks compared with single doped samples. This compensates for the weak magnetic response or insufficient stiffness of single doped systems and leads to a maximum early-stage microwave heating rate increase of 176.2%. The rheological performance of the compound doped system is also markedly improved. The R (3.2 kPa) of the 2% SiC + 3% Fe3O4 group sample increased by 59.7% and the Jnr (3.2 kPa) decreased by 68.9% compared to the control group. The rigid and elastic complementarity of the two modifiers effectively suppresses irreversible deformation at high temperatures. Moreover, the modifiers accelerate the microstructural transition of the asphalt from a particulate state to a continuous phase under microwave exposure. Adjusting the compound doping ratio of SiC and Fe3O4 allows the system to be tailored for either high temperature stability or rapid heating, providing technical support for its application in microwave-assisted pavement repair field. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

36 pages, 5122 KB  
Review
Advanced Electrocatalyst Supports for High-Temperature Proton Exchange Membrane Fuel Cells: A Comprehensive Review of Materials, Degradation Mechanisms, and Performance Metrics
by Qingqing Liu, Huiyuan Liu, Weiqi Zhang, Qian Xu and Huaneng Su
Catalysts 2025, 15(9), 871; https://doi.org/10.3390/catal15090871 - 11 Sep 2025
Cited by 2 | Viewed by 2934
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer distinct advantages over their low-temperature counterparts. However, their commercial viability is significantly hampered by durability challenges stemming from electrocatalyst support degradation in the corrosive phosphoric acid environment. This review provides a comprehensive analysis of advanced [...] Read more.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer distinct advantages over their low-temperature counterparts. However, their commercial viability is significantly hampered by durability challenges stemming from electrocatalyst support degradation in the corrosive phosphoric acid environment. This review provides a comprehensive analysis of advanced strategies to overcome this critical durability issue. Two main research directions are explored. The first involves engineering more robust carbon-based materials, including graphitized carbons, carbon nanostructures (nanotubes and graphene), and heteroatom-doped carbons, which enhance stability by modifying the carbon’s intrinsic structure and surface chemistry. The second direction focuses on replacing carbon entirely with intrinsically stable non-carbonaceous materials. These include metal oxides (e.g., TiO2, SnO2), transition metal carbides (e.g., WC, TiC), and nitrides (e.g., Nb4N5). For these non-carbon materials, a key focus is on overcoming their typically low electronic conductivity through strategies such as doping and the formation of multi-component composites. The analysis benchmarks the performance and durability of these advanced supports, concluding that rationally designed composite materials, which combine the strengths of different material classes, represent the most promising path toward developing next-generation, long-lasting catalysts for HT-PEMFCs. Full article
(This article belongs to the Special Issue Carbon-Based Materials Catalysts for Energy and Hydrogen Productions)
Show Figures

Graphical abstract

16 pages, 5939 KB  
Article
Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser
by Erxi Wang, Chong Shan, Xiaohui Zhao, Huamin Kou, Qinghui Wu, Dapeng Jiang, Xing Peng, Penghao Xu, Zhan Sui and Yanqi Gao
Nanomaterials 2025, 15(18), 1398; https://doi.org/10.3390/nano15181398 - 11 Sep 2025
Viewed by 3932
Abstract
In this study, we examine the characteristics of laser-induced periodic surface structures (LIPSSs) fabricated on N-doped 4H-SiC (N-SiC) and high-purity 4H-SiC (HP-SiC) crystals using femtosecond–picosecond lasers. The effects of various laser parameters on the orientation, size, and morphology of the LIPSS are systematically [...] Read more.
In this study, we examine the characteristics of laser-induced periodic surface structures (LIPSSs) fabricated on N-doped 4H-SiC (N-SiC) and high-purity 4H-SiC (HP-SiC) crystals using femtosecond–picosecond lasers. The effects of various laser parameters on the orientation, size, and morphology of the LIPSS are systematically investigated. The results reveal that, under identical laser irradiation conditions, the area of LIPSS on both N-SiC and HP-SiC increases linearly with the number of pulses, with N-SiC exhibiting a higher growth coefficient. Furthermore, analysis of differences in photothermal weak absorption and electric field modulation during the LIPSS fabrication process indicates that distinct SiC crystals yield varied LIPSS formation outcomes. This work not only elucidates the underlying physical mechanisms governing LIPSS formation on different silicon carbide crystal surfaces but also provides valuable guidance for precisely controlling the size and orientation of LIPSS regions on various 4H-SiC substrates. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

22 pages, 2805 KB  
Review
Recent Developments in Self-Lubricating Thin-Film Coatings Deposited by a Sputtering Technique: A Critical Review of Their Synthesis, Properties, and Applications
by Sunil Kumar Tiwari, Turali Narayana, Rashi Tyagi, Gaurav Pant and Piyush Chandra Verma
Lubricants 2025, 13(8), 372; https://doi.org/10.3390/lubricants13080372 - 21 Aug 2025
Cited by 2 | Viewed by 1693
Abstract
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches [...] Read more.
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches to synthesize thin-film coatings, along with post-deposition treatments. The need for self-lubricating materials in extreme situations such as high-temperature applications, cryogenic temperatures, and vacuum systems has attracted the attention of researchers. They have fabricated several types of thin films using CVD and PVD techniques to meet this demand. Among the various techniques used for fabricating self-lubricating coatings, sputtering stands out as a special one. It contributes to developing smooth, homogeneous, and crack-free dense microstructures, which further enhance the coatings’ properties. This review explains the need for self-lubricating materials and the different techniques used to synthesize them. It discusses and summarizes the concept of synthesizing various types of self-lubricating films. It shows the different types of self-lubricating material systems, like transition metal-based nitrides and carbides, diamond-like carbon-based materials, and so on. This work also reflects the governing factors like the deposition temperature, doping elements, thickness of the film, deposition pressure, gas flow rate, etc., that influence the deposition results and, consequently, the properties of the film, as well as their advanced applications in different areas. This work reflects the self-lubricating properties of different kinds of films exposed to various environments in terms of their coefficient of friction and wear rate, emphasizing how the friction coefficient affects the wear rate. Full article
Show Figures

Figure 1

38 pages, 6998 KB  
Review
Silicon Carbide (SiC) and Silicon/Carbon (Si/C) Composites for High-Performance Rechargeable Metal-Ion Batteries
by Sara Adnan Mahmood, Nadhratun Naiim Mobarak, Arofat Khudayberdieva, Malika Doghmane, Sabah Chettibi and Kamel Eid
Int. J. Mol. Sci. 2025, 26(16), 7757; https://doi.org/10.3390/ijms26167757 - 11 Aug 2025
Cited by 2 | Viewed by 5175
Abstract
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical [...] Read more.
Silicon carbide (SiC) and silicon nanoparticle-decorated carbon (Si/C) materials are electrodes that can potentially be used in various rechargeable batteries, owing to their inimitable merits, including non-flammability, stability, eco-friendly nature, low cost, outstanding theoretical capacity, and earth abundance. However, SiC has inferior electrical conductivity, volume expansion, a low Li+ diffusion rate during charge–discharge, and inevitable repeated formation of a solid–electrolyte interface layer, which hinders its commercial utilization. To address these issues, extensive research has focused on optimizing preparation methods, engineering morphology, doping, and creating composites with other additives (such as carbon materials, metal oxides, nitrides, chalcogenides, polymers, and alloys). Owing to the upsurge in this research arena, providing timely updates on the use of SiC and Si/C for batteries is of great importance. This review summarizes the controlled design of SiC-based and Si/C composites using various methods for rechargeable metal-ion batteries like lithium-ion (LIBs), sodium-ion (SIBs), zinc-air (ZnBs), and potassium-ion batteries (PIBs). The experimental and predicted theoretical performance of SiC composites that incorporate various carbon materials, nanocrystals, and non-metal dopants are summarized. In addition, a brief synopsis of the current challenges and prospects is provided to highlight potential research directions for SiC composites in batteries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

Back to TopTop