Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = donor-acceptor blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4067 KiB  
Article
Thin Films of PNDI(2HD)2T and PCPDTBT Polymers Deposited Using the Spin Coater Technique for Use in Solar Cells
by Michał Sładek, Patryk Radek, Magdalena Monika Szindler and Marek Szindler
Coatings 2025, 15(5), 603; https://doi.org/10.3390/coatings15050603 - 18 May 2025
Viewed by 473
Abstract
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to [...] Read more.
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to traditional photovoltaic materials. This study investigates the properties of a polymer blend composed of PCPDTBT (donor) and PNDI(2HD)2T (acceptor), used as the active layer in bulk heterojunction (BHJ) solar cells. The motivation behind this research was the search for a novel n-type polymer material with potentially better properties than the commonly used P(NDI2OD-T2). Comprehensive characterization of thin films made from the individual polymers and their blend was conducted using Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), four-point probe conductivity measurements, and photovoltaic testing. The prepared films were continuous, uniform, and exhibited low surface roughness (Ra < 2.5 nm). Spectroscopic analysis showed that the blend absorbs light in a broad range of the spectrum, with slight bathochromic shifts compared to individual polymers. Electrical measurements indicated that the blend’s conductivity (9.1 µS/cm) was lower than that of pure PCPDTBT but higher than that of PNDI(2HD)2T, with an optical band gap of 1.34 eV. Photovoltaic devices fabricated using the blend demonstrated an average power conversion efficiency (PCE) of 6.45%, with a short-circuit current of 14.37 mA/cm2 and an open-circuit voltage of 0.89 V. These results confirm the feasibility of using PCPDTBT:PNDI(2HD)2T blends as active layers in BHJ solar cells and provide a promising direction for further optimization in terms of polymer ratio and processing conditions. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

58 pages, 5907 KiB  
Review
The Transformation Experiment of Frederick Griffith II: Inclusion of Cellular Heredity for the Creation of Novel Microorganisms
by Günter A. Müller
Bioengineering 2025, 12(5), 532; https://doi.org/10.3390/bioengineering12050532 - 15 May 2025
Cited by 1 | Viewed by 1142
Abstract
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a “fit” [...] Read more.
So far, synthetic biology approaches for the construction of artificial microorganisms have fostered the transformation of acceptor cells with genomes from donor cells. However, this strategy seems to be limited to closely related bacterial species only, due to the need for a “fit” between donor and acceptor proteomes and structures. “Fitting” of cellular regulation of metabolite fluxes and turnover between donor and acceptor cells, i.e. cybernetic heredity, may be even more difficult to achieve. The bacterial transformation experiment design 1.0, as introduced by Frederick Griffith almost one century ago, may support integration of DNA, macromolecular, topological, cybernetic and cellular heredity: (i) attenuation of donor Pneumococci of (S) serotype fosters release of DNA, and hypothetically of non-DNA structures compatible with subsequent transfer to and transformation of acceptor Pneumococci from (R) to (S) serotype; (ii) use of intact donor cells rather than of subcellular or purified fractions may guarantee maximal diversity of the structural and cybernetic matter and information transferred; (iii) “Blending” or mixing and fusion of donor and acceptor Pneumococci may occur under accompanying transfer of metabolites and regulatory circuits. A Griffith transformation experiment design 2.0 is suggested, which may enable efficient exchange of DNA as well as non-DNA structural and cybernetic matter and information, leading to unicellular hybrid microorganisms with large morphological/metabolic phenotypic differences and major features compared to predeceding cells. The prerequisites of horizontal gene and somatic cell nuclear transfer, the molecular mechanism of transformation, the machineries for the biogenesis of bacterial cytoskeleton, micelle-like complexes and membrane landscapes are briefly reviewed on the basis of underlying conceptions, ranging from Darwin’s “gemmules” to “stirps”, cytoplasmic and “plasmon” inheritance, “rhizene agency”, “communicology”, “transdisciplinary membranology” to up to Kirschner’s “facilitated variation”. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

24 pages, 8896 KiB  
Article
Morphological and Spectroscopic Characterization of Multifunctional Self-Healing Systems
by Liberata Guadagno, Elisa Calabrese, Raffaele Longo, Francesca Aliberti, Luigi Vertuccio, Michelina Catauro and Marialuigia Raimondo
Polymers 2025, 17(10), 1294; https://doi.org/10.3390/polym17101294 - 8 May 2025
Viewed by 581
Abstract
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing [...] Read more.
Multifunctional self-healing supramolecular structural toughened resins, formulated to counteract the insulating properties of epoxy polymers and integrating auto-repair mechanisms, are morphologically and spectroscopically characterized using Tunneling Atomic Force Microscopy (TUNA) and Fourier transform infrared spectroscopy (FT-IR), respectively. Specifically, the multifunctional resin comprises self-healing molecular fillers and electrically conductive carbon nanotubes (CNTs) embedded in the matrix. The selected self-healing molecules can form non-covalent bonds with the hydroxyl (OH) and carbonyl (C=O) groups of the toughened epoxy matrix through their H-bonding donor and acceptor sites. An FT-IR analysis has been conducted to evaluate the interactions that the barbiturate acid derivatives, serving as self-healing fillers, can form with the constituent parts of the toughened epoxy blend. Tunneling Atomic Force Microscopy (TUNA) highlights the morphological characteristics of CNTs, their dispersion within the polymeric matrix, and their affinity for the globular rubber domains. The TUNA technique maps the samples’ electrical conductivity at micro- and nanoscale spatial domains. Detecting electrical currents reveals supramolecular networks, determined by hydrogen bonds, within the samples, showcasing the morphological features of the sample containing an embedded conductive nanofiller in the hosting matrix. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

49 pages, 8327 KiB  
Review
The Transformation Experiment of Frederick Griffith I: Its Narrowing and Potential for the Creation of Novel Microorganisms
by Günter A. Müller
Bioengineering 2025, 12(3), 324; https://doi.org/10.3390/bioengineering12030324 - 20 Mar 2025
Cited by 1 | Viewed by 1847
Abstract
The construction of artificial microorganisms often relies on the transfer of genomes from donor to acceptor cells. This synthetic biology approach has been considerably fostered by the J. Craig Venter Institute but apparently depends on the use of microorganisms, which are very closely [...] Read more.
The construction of artificial microorganisms often relies on the transfer of genomes from donor to acceptor cells. This synthetic biology approach has been considerably fostered by the J. Craig Venter Institute but apparently depends on the use of microorganisms, which are very closely related. One reason for this limitation of the “creative potential” of “classical” transformation is the requirement for adequate “fitting” of newly synthesized polypeptide components, directed by the donor genome, to interacting counterparts encoded by the pre-existing acceptor genome. Transformation was introduced in 1928 by Frederick Griffith in the course of the demonstration of the instability of pneumococci and their conversion from rough, non-pathogenic into smooth, virulent variants. Subsequently, this method turned out to be critical for the identification of DNA as the sole matter of inheritance. Importantly, the initial experimental design (1.0) also considered the inheritance of both structural (e.g., plasma membranes) and cybernetic information (e.g., metabolite fluxes), which, in cooperation, determine topological and cellular heredity, as well as fusion and blending of bacterial cells. In contrast, subsequent experimental designs (1.X) were focused on the use of whole-cell homogenates and, thereafter, of soluble and water-clear fractions deprived of all information and macromolecules other than those directing protein synthesis, including outer-membrane vesicles, bacterial prions, lipopolysaccharides, lipoproteins, cytoskeletal elements, and complexes thereof. Identification of the reasons for this narrowing may be helpful in understanding the potential of transformation for the creation of novel microorganisms. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

21 pages, 2914 KiB  
Article
The Numerical Simulation of a Non-Fullerene Thin-Film Organic Solar Cell with Cu2FeSnS4 (CFTS) Kesterite as a Hole Transport Layer Using SCAPS-1D
by Edson L. Meyer, Sindisiwe Jakalase, Azile Nqombolo, Nicholas Rono and Mojeed A. Agoro
Coatings 2025, 15(3), 266; https://doi.org/10.3390/coatings15030266 - 23 Feb 2025
Cited by 3 | Viewed by 1119
Abstract
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy [...] Read more.
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy supply. Thin-film organic solar cells (TFOSCs) use organic semiconductors as light-absorbing layer materials. TFOSCs have attracted wide research interest due to several advantages, such as easy fabrication, affordability, light weight, and environmental friendliness. Over the years, TFOSCs have been dominated by donor–acceptor blends based on polymer donors and fullerene acceptors. However, a new class of non-fullerene acceptors (NFAs) has gained prominence in TFOSCs owing to their significant improvement in the power conversion efficiency (PCE) of non-fullerene-based devices. In this study, the One-Dimensional Solar Cell Capacitance Simulator (SCAPS-1D) numerical simulator was used to study the performance of a device with a configuration of FTO/PDINO/PBDB-T/ITIC/CFTS/Al. Here, the PBDB-T/ITIC polymer blend represents poly[(2,6-(4,8-bis(5-(2 ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo [1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB)/3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno [1,2-b:5,6-b]dithiophene) (ITIC) and the non-fullerene acceptor (NFA) and serves as the absorber layer. The electron transport layer (ETL) was 2,9-Bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO), and Cu2FeSnS4 (CFTS) was used as a hole transport layer (HTL). This research article aims to address the global challenges of environmental pollution and global warming caused by the overuse of fossil fuels by exploring alternative energy solutions. Upon optimization, the device achieved a power conversion efficiency (PCE) of 16.86%, a fill factor (FF) of 79.12%, a short-circuit current density (JSC) of 33.19 mA cm−2, and an open-circuit voltage (VOC) of 0.64 V. The results obtained can guide the fabrication of NFA-based TFOSCs in the near future. Full article
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Effects of Additional Flexible and Rigid Structure on BDT-BDD Terpolymer and the Performance of Organic Solar Cells
by Xin Jing, Xuebing Li, Yong Zhao, Quanliang Wang, Xiao Kang, Xiaojie Liu, Aziz Saparbaev, Feng Li and Mingliang Sun
Polymers 2025, 17(2), 248; https://doi.org/10.3390/polym17020248 - 20 Jan 2025
Viewed by 947
Abstract
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and [...] Read more.
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance. The material and quantum chemical property investigations show that the selection and design of the blocks are important for the properties of the terpolymers, and the resulting polymer:Y6 devices achieve improvements in performance from 13.85% to 15.66% (especially for fill factors from 63.37% up to 69.81%). This result contributes to designing and optimizing efficient polymers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 4117 KiB  
Article
Novel Long-Conjugated Backbone-Based Non-Fullerene Acceptors for Efficient and Eco-Friendly Ternary Organic Solar Cells
by Sung Jae Jeon, Nam Gyu Yang and Doo Kyung Moon
Sustainability 2025, 17(2), 512; https://doi.org/10.3390/su17020512 - 10 Jan 2025
Cited by 1 | Viewed by 1296
Abstract
Organic solar cells (OSCs) are made from carbon-rich organic compounds with low environmental impacts, unlike the silicon in traditional solar panels. Some of these organic materials can be broken down and reprocessed, enabling the recovery of valuable components. Specifically, the active-layer materials that [...] Read more.
Organic solar cells (OSCs) are made from carbon-rich organic compounds with low environmental impacts, unlike the silicon in traditional solar panels. Some of these organic materials can be broken down and reprocessed, enabling the recovery of valuable components. Specifically, the active-layer materials that make up OSCs can be designed with sustainability in mind. However, it is important to note that practical active materials that can be used for the commercialization of OSCs are still an area of research and development due to their low efficiency/stability and processability. Herein, we designed and synthesized three A-D-A’-D-A-type long-conjugated non-fullerene acceptors (NFAs) by incorporating various electron-withdrawing groups into the benzothiadiazole-diindacenodithiophene core. These NFAs, by changing their end-capping groups, exhibit not only distinct physical, optical, and electrochemical properties, but also differences in crystallinity and exciton dissociation. As a result, they exhibited significant differences in photovoltaic performance in PM6 donor-based binary devices. The introduction of small amounts of NFAs as a third component in the PM6:BTP-eC9 blend significantly enhanced its photon harvesting capabilities and influenced its charge transfer dynamics. Finally, we achieved a remarkable power conversion efficiency of nearly 17% by utilizing an eco-friendly solvent. This study provides valuable insights for the development of NFAs in efficient and eco-friendly OSCs. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 10219 KiB  
Article
Effect of Alkyl Side Chain Length on Electrical Performance of Ion-Gel-Gated OFETs Based on Difluorobenzothiadiazole-Based D-A Copolymers
by Han Zhou, Zaitian Cheng, Guoxing Pan, Lin Hu and Fapei Zhang
Polymers 2024, 16(23), 3287; https://doi.org/10.3390/polym16233287 - 26 Nov 2024
Viewed by 1067
Abstract
The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric–semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain [...] Read more.
The performance of organic field-effect transistors (OFETs) is highly dependent on the dielectric–semiconductor interface, especially in ion-gel-gated OFETs, where a significantly high carrier density is induced at the interface at a low gate voltage. This study investigates how altering the alkyl side chain length of donor–acceptor (D-A) copolymers impacts the electrical performance of ion-gel-gated OFETs. Two difluorobenzothiadiazole-based D-A copolymers, PffBT4T-2OD and PffBT4T-2DT, are compared, where the latter features longer alkyl side chains. Although PffBT4T-2DT shows a 2.4-fold enhancement of charge mobility in the SiO2-gated OFETs compared to its counterpart due to higher crystallinity in the film, PffBT4T-2OD outperforms PffBT4T-2DT in the ion-gel-gated OFETs, manifested by an extraordinarily high mobility of 17.7 cm2/V s. The smoother surface morphology, as well as stronger interfacial interaction between the ion-gel dielectric and PffBT4T-2OD, enhances interfacial charge accumulation, which leads to higher mobility. Furthermore, PffBT4T-2OD is blended with a polymeric elastomer SEBS to achieve ion-gel-gated flexible OFETs. The blend devices exhibit high mobility of 8.6 cm2/V s and high stretchability, retaining 45% of initial mobility under 100% tensile strain. This study demonstrates the importance of optimizing the chain structure of polymer semiconductors and the semiconductor–dielectric interface to develop low-voltage and high-performance flexible OFETs for wearable electronics applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

53 pages, 20673 KiB  
Review
The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells
by Laura Crociani
Molecules 2024, 29(15), 3625; https://doi.org/10.3390/molecules29153625 - 31 Jul 2024
Cited by 2 | Viewed by 2290
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction [...] Read more.
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor–acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE. Full article
Show Figures

Graphical abstract

12 pages, 3274 KiB  
Article
Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends
by Laura Hrostea, Anda Oajdea and Liviu Leontie
Polymers 2024, 16(10), 1324; https://doi.org/10.3390/polym16101324 - 8 May 2024
Cited by 2 | Viewed by 2051
Abstract
This paper investigates the influence of constituent weight ratios on optical and electrical properties, with a particular focus on the intrinsic properties (such as electrical mobility) of ternary organic blends, highlighting the role of a third component. The study explores novel donor:acceptor1:acceptor2 (D:A [...] Read more.
This paper investigates the influence of constituent weight ratios on optical and electrical properties, with a particular focus on the intrinsic properties (such as electrical mobility) of ternary organic blends, highlighting the role of a third component. The study explores novel donor:acceptor1:acceptor2 (D:A1:A2) matrix blends with photovoltaic potential, systematically adjusting the ratio of the two acceptors in the mixtures, while keeping constant the donor:acceptor weight ratio (D:A = 1:1.4). Herein, depending on this adjustment, six different samples of 100–400 nm thickness are methodically characterized. Optical analysis demonstrates the spectral complementarity of the component materials and exposes the optimal weight ratio (D:A1:A2 = 1:1:0.4) for the highest optical absorption coefficient. Atomic force microscopy (AFM) analysis reveals improved and superior morphological attributes with the addition of the third component (fullerene). In terms of the electrical mobility of charge carriers, this study finds that the sample in which A1 = A2 has the greatest recorded value [μmax=1.41×104cm2/(Vs)]. This thorough study on ternary organic blends reveals the crucial relationship between acceptor ratios and the properties of the final blend, highlighting the critical function of the third component in influencing the intrinsic factors such as electrical mobility, offering valuable insights for the optimization of ternary organic solar cells. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage)
Show Figures

Graphical abstract

19 pages, 4709 KiB  
Review
The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells
by Longjing Wan, Wangbo Wu, Ming Jiang, Xipeng Yin, Zemin He and Jiangang Liu
Energies 2024, 17(10), 2262; https://doi.org/10.3390/en17102262 - 8 May 2024
Cited by 2 | Viewed by 1834
Abstract
Organic photovoltaics (OPVs) have attracted widespread attention and became an important member of clean energy. Recently, their power conversion efficiency (PCE) has surpassed 19%. As is well known, the morphology of the active layer in OPVs crucially influences the PCE. In consideration of [...] Read more.
Organic photovoltaics (OPVs) have attracted widespread attention and became an important member of clean energy. Recently, their power conversion efficiency (PCE) has surpassed 19%. As is well known, the morphology of the active layer in OPVs crucially influences the PCE. In consideration of the intricate interactions between the donor molecules and acceptor molecules, the precise control of the morphology of the active layer is extremely challenging. Hence, it is urgent to develop effective methods to fabricate the hierarchical structure of the active layer. One significant driving force for the morphological evolution of the active layer is crystallization. Therefore, regulating the crystallization kinetics is an effective strategy for morphology control. In this review, we present the kinetic strategies recently developed to highlight their significance and effectiveness in morphology control. By applying these kinetic strategies, the hierarchical structure, including phase separation, domain size, crystallinity, and molecular orientation of the active layer can be optimized in different blend systems, leading to an improved PCE of OPVs. The outcomes set the stage for future advancements in device performance. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 2707 KiB  
Article
Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Properties
by Quentin Eynaud, Tomoyuki Koganezawa, Hidehiro Sekimoto, Mohamed el Amine Kramdi, Gilles Quéléver, Olivier Margeat, Jörg Ackermann, Noriyuki Yoshimoto and Christine Videlot-Ackermann
Electronics 2024, 13(9), 1752; https://doi.org/10.3390/electronics13091752 - 2 May 2024
Cited by 1 | Viewed by 1711
Abstract
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order [...] Read more.
Ternary organic solar cells contain a single three-component photoactive layer with a wide absorption window, achieved without the need for multiple stacking. However, adding a third component into a well-known binary blend can influence the energetics, optical window, charge carrier transport, crystalline order and conversion efficiency. In the form of binary blends, the low-bandgap regioregular polymer donor poly(3-hexylthiophene-2,5-diyl), known as P3HT, is combined with the acceptor PC61BM, an inexpensive fullerene derivative. Two different non-fullerene acceptors (ITIC and eh-IDTBR) are added to this binary blend to form ternary blends. A systematic comparison between binary and ternary systems was carried out as a function of the thermal annealing temperature of organic layers (100 °C and 140 °C). The power conversion efficiency (PCE) is improved due to increased fill factor (FF) and open-circuit voltage (Voc) for thermal-annealed ternary blends at 140 °C. The transport properties of electrons and holes were investigated in binary and ternary blends following a Space-Charge-Limited Current (SCLC) protocol. A favorable balanced hole–electron mobility is obtained through the incorporation of either ITIC or eh-IDTBR. The charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from atomic force microscopy (AFM), contact water angle (CWA) measurement and 2D grazing-incidence X-ray diffractometry (2D-GIXRD). Full article
Show Figures

Figure 1

16 pages, 3891 KiB  
Article
Density Functional Theory Simulation of Dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-Based Organic Solar Cells
by Daniel Dodzi Yao Setsoafia, Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, David Ompong and Jai Singh
Energies 2024, 17(2), 313; https://doi.org/10.3390/en17020313 - 8 Jan 2024
Cited by 3 | Viewed by 1753
Abstract
We have simulated the effect of changing the end groups in BTP core with five organic units of 1,3-Indandione (IN), 2-thioxothiazolidin-4-one (Rhodanine), propanedinitrile (Malononitrile), (2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile) (CPTCN) and 2-(3-oxo-2,3-dihydroinden-1-ylidene (IC), and two halogenated units of (4F) IC and (4Cl) IC [...] Read more.
We have simulated the effect of changing the end groups in BTP core with five organic units of 1,3-Indandione (IN), 2-thioxothiazolidin-4-one (Rhodanine), propanedinitrile (Malononitrile), (2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile) (CPTCN) and 2-(3-oxo-2,3-dihydroinden-1-ylidene (IC), and two halogenated units of (4F) IC and (4Cl) IC on the optical and photovoltaic properties of the BTP DA’D core molecular unit. Thus modified, seven molecular structures are considered and their optical properties, including HOMO and LUMO energies and absorption spectra are simulated in this paper. On the basis of HOMO and LUMO energies, it is found that two of the seven molecules, BTP-IN and BTP-Rhodanine, can act as donors and the other four, BTP-(4F) IC, BTP-(4Cl) IC, BTP-CPTCN and BTP-IC, as acceptors in designing bulk heterojunction (BHJ) organic solar cells (OSCs). Using these combinations of donors and acceptors in the active layer, eight BHJ OSCs, such as BTP-IN: BTP-(4F) IC, BTP-IN: BTP-(4Cl) IC, BTP-IN: BTP-CPTCN, BTP-IN: BTP-IC, BTP-Rhodanine: BTP-(4F) IC, BTP-Rhodanine: BTP-(4Cl) IC, BTP-Rhodanine: BTP-CPTCN and BTP-Rhodanine: BTP-IC, are designed, and their photovoltaic performance is simulated. The photovoltaic parameters Jsc, Voc and FF for all eight BHJ OSCs and their power conversion efficiency (PCE) are simulated. It is found that the BHJ OSC of the BTP-IN: BTP-CPTCN donor–acceptor blend gives the highest PCE (14.73%) and that of BTP-Rhodanine: BTP-(4F) IC gives the lowest PCE (12.07%). These results offer promising prospects for the fabrication of high-efficiency BHJ OSCs with the blend of both donor and acceptor based on the same core structure. Full article
(This article belongs to the Special Issue Advances in High-Performance Perovskite Solar Cells)
Show Figures

Figure 1

1 pages, 176 KiB  
Correction
Correction: Im et al. Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems. Polymers 2021, 13, 1770
by Chan Im, Sang-Woong Kang, Jeong-Yoon Choi and Jongdeok An
Polymers 2023, 15(22), 4358; https://doi.org/10.3390/polym15224358 - 8 Nov 2023
Viewed by 1295
Abstract
There was an error in Equation (1) in the original publication [...] Full article
(This article belongs to the Section Polymer Physics and Theory)
21 pages, 5029 KiB  
Article
Efficient and Stable Air-Processed Ternary Organic Solar Cells Incorporating Gallium-Porphyrin as an Electron Cascade Material
by Anastasia Soultati, Maria Verouti, Ermioni Polydorou, Konstantina-Kalliopi Armadorou, Zoi Georgiopoulou, Leonidas C. Palilis, Ioannis Karatasios, Vassilis Kilikoglou, Alexander Chroneos, Athanassios G. Coutsolelos, Panagiotis Argitis and Maria Vasilopoulou
Nanomaterials 2023, 13(20), 2800; https://doi.org/10.3390/nano13202800 - 21 Oct 2023
Cited by 5 | Viewed by 2263
Abstract
Two gallium porphyrins, a tetraphenyl GaCl porphyrin, termed as (TPP)GaCl, and an octaethylporphyrin GaCl porphyrin, termed as (OEP)GaCl, were synthesized to use as an electron cascade in ternary organic bulk heterojunction films. A perfect matching of both gallium porphyrins’ energy levels with that [...] Read more.
Two gallium porphyrins, a tetraphenyl GaCl porphyrin, termed as (TPP)GaCl, and an octaethylporphyrin GaCl porphyrin, termed as (OEP)GaCl, were synthesized to use as an electron cascade in ternary organic bulk heterojunction films. A perfect matching of both gallium porphyrins’ energy levels with that of poly(3-hexylthiophene-2,5-diyl) (P3HT) or poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) polymer donor and the 6,6-phenyl C71 butyric acid methyl ester (PCBM) fullerene acceptor, forming an efficient cascade system that could facilitate electron transfer between donor and acceptor, was demonstrated. Therefore, ternary organic solar cells (OSCs) using the two porphyrins in various concentrations were fabricated where a performance enhancement was obtained. In particular, (TPP)GaCl-based ternary OSCs of low concentration (1:0.05 vv%) exhibited a ~17% increase in the power conversion efficiency (PCE) compared with the binary device due to improved exciton dissociation, electron transport and reduced recombination. On the other hand, ternary OSCs with a high concentration of (TPP)GaCl (1:0.1 vv%) and (OEP)GaCl (1:0.05 and 1:0.1 vv%) showed the poorest efficiencies due to very rough nanomorphology and suppressed crystallinity of ternary films when the GaCl porphyrin was introduced to the blend, as revealed from X-ray diffraction (XRD) and atomic force microscopy (AFM). The best performing devices also exhibited improved photostability when exposed to sunlight illumination for a period of 8 h than the binary OSCs, attributed to the suppressed photodegradation of the ternary (TPP)GaCl 1:0.05-based photoactive film. Full article
Show Figures

Figure 1

Back to TopTop