The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells
Abstract
:1. Introduction
2. Influence of Crystallization Kinetics on Morphology of Active Layer
3. Regulating Film-Forming Process to Fabricate Highly Crystalline Interpenetrating Network
3.1. Fabricating Bicontinuous Structure via Film-Forming Kinetics
3.2. Enhancing Crystallinity via Film-Forming Kinetics
4. Optimizing Domain Size via Sequential Crystallization
4.1. Combining Solution Temperature and Thermal Annealing
4.2. Combining Solution Temperature and Solvent Vapor Annealing
5. Regulating the Diffusivity to Adjust Molecular Orientation
Regulation Methods and Corresponding Results | ||||||
---|---|---|---|---|---|---|
Ref. | Material System | JSC (mA cm−2) | VOC (V) | FF | PCE | |
Section 3.1 Regulation of bicontinuous structure | ||||||
[91] | P3HT: O-IDTBR (CB) | Without TCB → isolated spherical structures | 8.81 | 0.77 | 0.64 | 4.45% |
With TCB → bicontinuous networks | 13.49 | 0.76 | 0.70 | 7.18% | ||
Section 3.2 Regulation of crystallinity | ||||||
[93] | P3HT: O-IDTBR (CB) | Without additive → low crystallinity | 9.34 | 0.77 | 0.64 | 4.60% |
With TCB → medium crystallinity | 13.53 | 0.76 | 0.70 | 7.20% | ||
With CN → high crystallinity | 10.01 | 0.76 | 0.70 | 5.32% | ||
Section 4 Regulation of domain size | ||||||
[104] | PBDB-T: N2200 | Simultaneous crystallization → small domain size | 11.46 | 0.84 | 0.65 | 6.55% |
Sequential crystallization → modest domain size | 13.42 | 0.82 | 0.67 | 7.78% | ||
Section 5 Regulation of molecular orientation | ||||||
[114] | DRCN5T: ITIC-Th | Medium diffusion rate → face-on | 7.94 | 0.94 | 0.41 | 3.06% |
Fast diffusion rate → edge-on | 9.18 | 0.99 | 0.52 | 4.73% |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bi, P.; Zhang, S.; Ren, J.; Chen, Z.; Zheng, Z.; Cui, Y.; Wang, J.; Wang, S.; Zhang, T.; Li, J.; et al. A High-Performance Nonfused Wide-Bandgap Acceptor for Versatile Photovoltaic Applications. Adv. Mater. 2022, 34, e2108090. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Guo, J.; Min, J. A Cost Analysis of Fully Solution-Processed ITO-Free Organic Solar Modules. Adv. Energy Mater. 2018, 9, 1802521. [Google Scholar] [CrossRef]
- Song, J.; Zhang, C.; Li, C.; Qiao, J.; Yu, J.; Gao, J.; Wang, X.; Hao, X.; Tang, Z.; Lu, G.; et al. Green-Solvent-Processed Organic Solar Cells with Approaching 20% Efficiency and Improved Photostability. Angew. Chem. Int. Ed. Engl. 2024, e202404297. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Sun, R.; Wang, T.; Yuan, X.; Wu, Y.; Wu, Q.; Shi, M.; Yang, W.; Jiao, X.; Min, J. Improving Photovoltaic Performance of Non-Fullerene Polymer Solar Cells Enables by Fine-Tuning Blend Microstructure via Binary Solvent Mixtures. Adv. Funct. Mater. 2020, 31, 2008767. [Google Scholar] [CrossRef]
- Zhan, L.; Yin, S.; Li, Y.; Li, S.; Chen, T.; Sun, R.; Min, J.; Zhou, G.; Zhu, H.; Chen, Y.; et al. Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency, Thick-Film, and Large-Area Organic Photovoltaics. Adv. Mater. 2022, 34, e2206269. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, F.; Li, Y. Recent Progress in Large-Area Organic Solar Cells. Small Sci. 2023, 3, 2300004. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, challenges and molecular design of different material types used in organic solar cells. Nat. Rev. Mater. 2023, 9, 46–62. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Wu, J.; Tang, H.; Wang, H.; Yang, Q.; Fu, Y.; Xie, Z. Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, B.; Hu, B.; Xu, X.; Ma, W. Blade-Cast Nonfullerene Organic Solar Cells in Air with Excellent Morphology, Efficiency, and Stability. Adv. Mater. 2018, 30, e1800343. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, G.; Wang, Y.; Xiao, T.; Adil, M.A.; Lu, G.; Zhang, J.; Wei, Z. A Sequential Slot-Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar RRL 2019, 3, 1800333. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; et al. Recent progress in organic solar cells (Part II device engineering). Sci. China Chem. 2022, 65, 1457–1497. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F.; Zhu, X. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nature Energy 2018, 3, 952–959. [Google Scholar] [CrossRef]
- Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors. Acta Phys. Chim. Sin. 2020, 37, 2009056. [Google Scholar] [CrossRef]
- Liang, Q.; Lu, H.; Chang, Y.; He, Z.; Zhao, Y.; Liu, J. Morphology Control in Organic Solar Cells. Energies 2022, 15, 5344. [Google Scholar] [CrossRef]
- Liu, J.; Wang, E.; Zhao, K. Editorial: Polymer Solar Cells: Molecular Design and Microstructure Control. Front. Chem. 2020, 8, 697. [Google Scholar] [CrossRef]
- Li, Y. All-Small-Molecule Organic Solar Cells: Hierarchical Morphology Control Achieves Efficiency Breakthrough. Acta Phys. Chim. Sin. 2020, 36, 2001011. [Google Scholar] [CrossRef]
- Gao, W.; Qi, F.; Peng, Z.; Lin, F.R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C.S.; Marks, T.J.; et al. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Adv. Mater. 2022, 34, e2202089. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.; Wang, T.; Guo, J.; Liu, C.; et al. Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Adv. Mater. 2022, 34, e2110147. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, Z.; Lu, G.; Yu, N.; Li, C.; Gao, J.; Gu, X.; Hao, X.; Lu, G.; Tang, Z.; et al. Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Adv. Mater. 2022, 34, e2204718. [Google Scholar] [CrossRef]
- He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.; et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 12482. [Google Scholar] [CrossRef]
- Shen, Z.; Han, Q.; Luo, X.; Shen, Y.; Wang, Y.; Yuan, Y.; Zhang, Y.; Yang, Y.; Han, L. Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photonics 2024. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, P.; Dumur, F.; Lalevée, J. Organic dye-based photoinitiating systems for visible-light-induced photopolymerization. J. Polym. Sci. 2021, 59, 1338–1389. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Xin, J.; Zhang, Y.; Wen, L.; Liang, Q.; Miao, Z. Dual Function of the Third Component in Ternary Organic Solar Cells: Broaden the Spectrum and Optimize the Morphology. Small 2024, e2308863. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2024, 36, e2212236. [Google Scholar] [CrossRef]
- Kim, H.K.; Yu, H.; Pan, M.; Shi, X.; Zhao, H.; Qi, Z.; Liu, W.; Ma, W.; Yan, H.; Chen, S. Linker Unit Modulation of Polymer Acceptors Enables Highly Efficient Air-Processed All-Polymer Solar Cells. Adv. Sci. 2022, 9, e2202223. [Google Scholar] [CrossRef]
- Gurney, R.S.; Lidzey, D.G.; Wang, T. A review of non-fullerene polymer solar cells: From device physics to morphology control. Rep. Prog. Phys. 2019, 82, 036601. [Google Scholar] [CrossRef]
- Xie, B.; Chen, Z.; Ying, L.; Huang, F.; Cao, Y. Near-infrared organic photoelectric materials for light-harvesting systems: Organic photovoltaics and organic photodiodes. InfoMat 2019, 2, 57–91. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, J.; Zhong, H.; Everett, C.R.; Jiang, X.; Reus, M.A.; Chumakov, A.; Roth, S.V.; Adedeji, M.A.; Jili, N.; et al. Control of the Crystallization and Phase Separation Kinetics in Sequential Blade-Coated Organic Solar Cells by Optimizing the Upper Layer Processing Solvent. Adv. Energy Mater. 2023, 13, 2203496. [Google Scholar] [CrossRef]
- Weng, K.; Ye, L.; Zhu, L.; Xu, J.; Zhou, J.; Feng, X.; Lu, G.; Tan, S.; Liu, F.; Sun, Y. Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat. Commun. 2020, 11, 2855. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; et al. Aggregation-Induced Multilength Scaled Morphology Enabling 11.76% Efficiency in All-Polymer Solar Cells Using Printing Fabrication. Adv. Mater. 2019, 31, e1902899. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Collins, B.A.; Jiao, X.; Zhao, J.; Yan, H.; Ade, H. Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Adv. Energy Mater. 2018, 8, 1703058. [Google Scholar] [CrossRef]
- Ye, L.; Hu, H.; Ghasemi, M.; Wang, T.; Collins, B.A.; Kim, J.H.; Jiang, K.; Carpenter, J.H.; Li, H.; Li, Z.; et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bao, S.; Cui, N.; Fan, H.; Hu, K.; Cui, C.; Li, Y. Morphology Optimization of the Photoactive Layer through Crystallinity and Miscibility Regulation for High-performance Polymer Solar Cells. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216338. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Ye, L.; Ade, H. Quantitative Morphology–Performance Correlations in Organic Solar Cells: Insights from Soft X-ray Scattering. Adv. Energy Mater. 2017, 7, 1700084. [Google Scholar] [CrossRef]
- Neupane, U.; Bahrami, B.; Biesecker, M.; Baroughi, M.F.; Qiao, Q. Kinetic Monte Carlo modeling on organic solar cells: Domain size, donor-acceptor ratio and thickness. Nano Energy 2017, 35, 128–137. [Google Scholar] [CrossRef]
- Sajjad, M.T.; Ruseckas, A.; Samuel, I.D.W. Enhancing Exciton Diffusion Length Provides New Opportunities for Organic Photovoltaics. Matter 2020, 3, 341–354. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Sin, D.H.; Kim, S.W.; Jeong, M.S.; Cho, K. Effect of donor–acceptor molecular orientation on charge photogeneration in organic solar cells. NPG Asia Mater. 2018, 10, 469–481. [Google Scholar] [CrossRef]
- Li, W.; Chen, M.; Cai, J.; Spooner, E.L.K.; Zhang, H.; Gurney, R.S.; Liu, D.; Xiao, Z.; Lidzey, D.G.; Ding, L.; et al. Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule 2019, 3, 819–833. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Wan, S.; Yin, P.; Wang, P.; Cai, D.; Liu, F.; Zheng, Q. Efficient Organic Solar Cells from Molecular Orientation Control of M-Series Acceptors. Joule 2021, 5, 197–209. [Google Scholar] [CrossRef]
- Ye, L.; Weng, K.; Xu, J.; Du, X.; Chandrabose, S.; Chen, K.; Zhou, J.; Han, G.; Tan, S.; Xie, Z.; et al. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat. Commun. 2020, 11, 6005. [Google Scholar] [CrossRef]
- Liang, Q.; Duan, M.; Geng, Z.; Zhang, M.; Xu, W.; Geng, H.; He, Z.; Liu, J. Regulation of molecular orientation in organic solar cells. Chem. Eng. J. 2024, 488, 150783. [Google Scholar] [CrossRef]
- Dong, Y.; Nikolis, V.C.; Talnack, F.; Chin, Y.C.; Benduhn, J.; Londi, G.; Kublitski, J.; Zheng, X.; Mannsfeld, S.C.B.; Spoltore, D.; et al. Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nat. Commun. 2020, 11, 4617. [Google Scholar] [CrossRef] [PubMed]
- Heumueller, T.; Mateker, W.R.; Sachs-Quintana, I.T.; Vandewal, K.; Bartelt, J.A.; Burke, T.M.; Ameri, T.; Brabec, C.J.; McGehee, M.D. Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity. Energy Environ. Sci. 2014, 7, 2974–2980. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Zhang, J.; Peng, Z.; Ma, L.k.; Xin, J.; Huang, J.; Ma, T.; Jiang, K.; Zhang, G.; et al. Effect of Ring-Fusion on Miscibility and Domain Purity: Key Factors Determining the Performance of PDI-Based Nonfullerene Organic Solar Cells. Adv. Energy Mater. 2018, 8, 18000234. [Google Scholar] [CrossRef]
- Liang, Q.; Hu, Z.; Yao, J.; Wu, Z.; Ding, Z.; Zhao, K.; Jiao, X.; Liu, J.; Huang, W. Blending Donors with Different Molecular Weights: An Efficient Strategy to Resolve the Conflict between Coherence Length and Intermixed Phase in Polymer/Nonfullerene Solar Cells. Small 2022, 18, e2103804. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, M.; Zhu, L.; Zhang, Y.; Liu, F. Complex multilength-scale morphology in organic photovoltaics. Trends Chem. 2022, 4, 699–713. [Google Scholar] [CrossRef]
- Huang, Y.; Kramer, E.J.; Heeger, A.J.; Bazan, G.C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006–7043. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chan, C.C.S.; Kim, J.; Liu, H.; Su, C.J.; Jeng, U.S.; Su, H.; Lu, X.; Wong, K.S.; Choy, W.C.H. 1-Chloronaphthalene-Induced Donor/Acceptor Vertical Distribution and Carrier Dynamics Changes in Nonfullerene Organic Solar Cells and the Governed Mechanism. Small Methods 2022, 6, e2101475. [Google Scholar] [CrossRef] [PubMed]
- Jee, M.H.; Ryu, H.S.; Lee, D.; Lee, W.; Woo, H.Y. Recent Advances in Nonfullerene Acceptor-Based Layer-by-Layer Organic Solar Cells Using a Solution Process. Adv. Sci. 2022, 9, e2201876. [Google Scholar] [CrossRef]
- Liang, Q.; Hu, Z.; Yao, J.; Yin, Y.; Wei, P.; Chen, Z.; Li, W.; Liu, J. Recent advances in intermixed phase of organic solar cells: Characterization, regulating strategies and device applications. J. Polym. Sci. 2021, 60, 917–944. [Google Scholar] [CrossRef]
- Liang, Q.; Yao, J.; Hu, Z.; Wei, P.; Lu, H.; Yin, Y.; Wang, K.; Liu, J. Recent Advances of Film–Forming Kinetics in Organic Solar Cells. Energies 2021, 14, 7604. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Liu, X.; Wen, L.; Wan, L.; Song, C.; Xin, J.; Liang, Q. Solution Sequential Deposition Pseudo-Planar Heterojunction: An Efficient Strategy for State-of-Art Organic Solar Cells. Small Methods 2024, e2301803. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, Y.; Peng, Z.; Hou, J.; Ade, H. Low Temperature Aggregation Transitions in N3 and Y6 Acceptors Enable Double-Annealing Method That Yields Hierarchical Morphology and Superior Efficiency in Nonfullerene Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2005011. [Google Scholar] [CrossRef]
- Bin, H.; Zhang, Z.G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. J. Am. Chem. Soc. 2016, 138, 4657–4664. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Güldal, N.S.; Guo, J.; Fang, C.; Jiao, X.; Hu, H.; Heumüller, T.; Ade, H.; Brabec, C.J. Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J. Mater. Chem. A 2017, 5, 18101–18110. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Lee, J.W.; Jiang, Z.; Qiao, J.; Wang, J.; Yang, J.; Feng, K.; Liao, Q.; An, M.; et al. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat. Commun. 2023, 14, 967. [Google Scholar] [CrossRef]
- Qiao, X.-L.; Yang, J.; Han, L.-H.; Zhang, J.-D.; Zhu, M.-F. Synergistic Effects of Solvent Vapor Assisted Spin-coating and Thermal Annealing on Enhancing the Carrier Mobility of Poly(3-hexylthiophene) Field-effect Transistors. Chin. J. Polym. Sci. 2021, 39, 849–855. [Google Scholar] [CrossRef]
- Ge, J.; Hong, L.; Song, W.; Xie, L.; Zhang, J.; Chen, Z.; Yu, K.; Peng, R.; Zhang, X.; Ge, Z. Solvent Annealing Enables 15.39% Efficiency All-Small-Molecule Solar Cells through Improved Molecule Interconnection and Reduced Non-Radiative Loss. Adv. Energy Mater. 2021, 11, 2100800. [Google Scholar] [CrossRef]
- Harreiß, C.; Langner, S.; Wu, M.; Berlinghof, M.; Rechberger, S.; Will, J.; Conroy, M.; Bangert, U.; Unruh, T.; Brabec, C.J.; et al. Understanding and Controlling the Evolution of Nanomorphology and Crystallinity of Organic Bulk-Heterojunction Blends with Solvent Vapor Annealing. Solar RRL 2022, 6, 2200127. [Google Scholar] [CrossRef]
- Zhao, H.; Naveed, H.B.; Lin, B.; Zhou, X.; Yuan, J.; Zhou, K.; Wu, H.; Guo, R.; Scheel, M.A.; Chumakov, A.; et al. Hot Hydrocarbon-Solvent Slot-Die Coating Enables High-Efficiency Organic Solar Cells with Temperature-Dependent Aggregation Behavior. Adv. Mater. 2020, 32, e2002302. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; et al. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053. [Google Scholar] [CrossRef]
- Chen, L.; Ma, R.; Yi, J.; Dela Peña, T.A.; Li, H.; Wei, Q.; Yan, C.; Wu, J.; Li, M.; Cheng, P.; et al. Exploiting the donor-acceptor-additive interaction’s morphological effect on the performance of organic solar cells. Aggregate 2023, 5, e455. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Wang, G.; Qiu, X.; Minnaard, A.J.; Chiechi, R.C.; Koster, L.J.A. 1,8-diiodooctane acts as a photo-acid in organic solar cells. Sci. Rep. 2019, 9, 4350. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, Y.; Du, S.; Tong, J.; Shi, X.; Li, J.; Bao, X.; Xia, Y.; Liu, T.; et al. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Appl. Mater. Interfaces 2021, 13, 11117–11124. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, K.; Kan, Y.; Zhang, M.; Qiu, C.; Zhu, L.; Zhao, Z.; Peng, X.; Feng, W.; Qian, Z.; et al. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat. Commun. 2021, 12, 332. [Google Scholar] [CrossRef]
- Shen, Z.; Yu, J.; Lu, G.; Wu, K.; Wang, Q.; Bu, L.; Liu, X.; Zhu, Y.; Lu, G. Surface crystallinity enhancement in organic solar cells induced by spinodal demixing of acceptors and additives. Energy Environ. Sci. 2023, 16, 2945–2956. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Peng, Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Adv. Mater. 2022, 34, e2107476. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Zhong, W.; Leng, S.; Zhou, G.; Zou, Y.; Su, X.; Ding, H.; Gu, P.; Liu, F.; et al. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ. Sci. 2021, 14, 4341–4357. [Google Scholar] [CrossRef]
- Sun, X.; Lv, J.; Zhang, C.; Wang, K.; Yang, C.; Hu, H.; Ouyang, X. Morphology Controlling of All-Small-Molecule Organic Solar Cells: From Donor Material Design to Device Engineering. Solar RRL 2023, 7, 2300332. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Meng, L.; Han, C.; Wan, X.; Chen, Y. Recent Progress in All-Small-Molecule Organic Solar Cells. Small 2023, 19, e2205594. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wang, J.; Chen, L.; Chen, J.; Zhou, L.; Wang, P.; Shen, W.; Zheng, N.; Wen, S.; Li, Y.; et al. Balancing Intermolecular Interactions between Acceptors and Donor/Acceptor for Efficient Organic Photovoltaics. Adv. Funct. Mater. 2021, 31, 2107026. [Google Scholar] [CrossRef]
- Fu, J.; Fong, P.W.K.; Liu, H.; Huang, C.S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760. [Google Scholar] [CrossRef] [PubMed]
- Dibb, G.F.; Jamieson, F.C.; Maurano, A.; Nelson, J.; Durrant, J.R. Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. J. Chem. Phys. Lett. 2013, 4, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Liu, S.F.; Tress, W. Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. Engl. 2021, 60, 26440–26453. [Google Scholar] [CrossRef]
- Meng, B.; Fu, Y.; Xie, Z.; Liu, J.; Wang, L. Phosphonate-Functionalized Donor Polymer as an Underlying Interlayer To Improve Active Layer Morphology in Polymer Solar Cells. Macromolecules 2014, 47, 6246–6251. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Zhang, D.; Zhang, J.; Zhou, J.; Liu, J.; Xie, S.; Zhao, Y.; Zhang, Y.; Wei, Z.; et al. Regulating Bulk-Heterojunction Molecular Orientations through Surface Free Energy Control of Hole-Transporting Layers for High-Performance Organic Solar Cells. Adv. Mater. 2019, 31, e1806921. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, S.; Wang, J.; Zhang, J.; Zhang, D.; Zhang, Y.; Wei, Z.; Tang, Z.; Hou, J.; Zhou, H. Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. J. Mater. Chem. A 2019, 7, 3570–3576. [Google Scholar] [CrossRef]
- Liang, Q.; Han, J.; Song, C.; Wang, Z.; Xin, J.; Yu, X.; Xie, Z.; Ma, W.; Liu, J.; Han, Y. Tuning molecule diffusion to control the phase separation of the p-DTS(FBTTh2)2/EP-PDI blend system via thermal annealing. J. Mater. Chem. C 2017, 5, 6842–6851. [Google Scholar] [CrossRef]
- Liang, Q.; Han, J.; Song, C.; Yu, X.; Smilgies, D.-M.; Zhao, K.; Liu, J.; Han, Y. Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 2018, 6, 15610–15620. [Google Scholar] [CrossRef]
- Liu, J.; Han, J.; Liang, Q.; Xin, J.; Tang, Y.; Ma, W.; Yu, X.; Han, Y. Balancing Crystal Size in Small-Molecule Nonfullerene Solar Cells through Fine-Tuning the Film-Forming Kinetics to Fabricate Interpenetrating Network. ACS Omega 2018, 3, 7603–7612. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chang, Y.; Liang, C.; Zhu, H.; Guo, Z.; Liu, J. Application of Crystallization Kinetics Strategy in Morphology Control of Solar Cells Based on Nonfullerene Blends. Acta Phys. Chim. Sin. 2023, 39, 2212006. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Ji, H.; Li, S.; Miao, X.; Zhu, C.; Wang, W.; Huang, D.; Dong, X. A review on smart strategies for active layer phase separation regulation of organic solar cells. APL Mater. 2023, 11, 120601. [Google Scholar] [CrossRef]
- Chen, L.; Yi, J.; Ma, R.; Ding, L.; Dela Pena, T.A.; Liu, H.; Chen, J.; Zhang, C.; Zhao, C.; Lu, W.; et al. An Isomeric Solid Additive Enables High-Efficiency Polymer Solar Cells Developed Using a Benzo-Difuran-Based Donor Polymer. Adv. Mater. 2023, 35, e2301231. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, X.; Zhao, H.; Yuan, J.; Zhou, K.; Chen, K.; Wu, H.; Guo, R.; Scheel, M.A.; Chumakov, A.; et al. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy Environ. Sci. 2020, 13, 2467–2479. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, L.; Zhang, M.; Zhu, L.; Hao, T.; Zhou, G.; Zhou, Z.; Chen, J.; Zhong, W.; Qiu, C.; et al. Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules 2021, 54, 4030–4041. [Google Scholar] [CrossRef]
- Liang, Q.; Jiao, X.; Yan, Y.; Xie, Z.; Lu, G.; Liu, J.; Han, Y. Separating Crystallization Process of P3HT and O-IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation. Adv. Funct. Mater. 2019, 29, 1807591. [Google Scholar] [CrossRef]
- Ye, L.; Li, S.; Liu, X.; Zhang, S.; Ghasemi, M.; Xiong, Y.; Hou, J.; Ade, H. Quenching to the Percolation Threshold in Organic Solar Cells. Joule 2019, 3, 443–458. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, S.; Jing, P.; Zhao, K.; Liang, Q. Investigating the effect of cosolvents on P3HT/O-IDTBR film-forming kinetics and film morphology. J. Energy Chem. 2020, 51, 333–341. [Google Scholar] [CrossRef]
- Liang, Z.; Li, M.; Wang, Q.; Qin, Y.; Stuard, S.J.; Peng, Z.; Deng, Y.; Ade, H.; Ye, L.; Geng, Y. Optimization Requirements of Efficient Polythiophene:Nonfullerene Organic Solar Cells. Joule 2020, 4, 1278–1295. [Google Scholar] [CrossRef]
- Fanta, G.M.; Jarka, P.; Szeluga, U.; Tanski, T.; Kim, J.Y. Phase Behavior of Amorphous/Semicrystalline Conjugated Polymer Blends. Polymers 2020, 12, 1726. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, G.; Li, Y.; Yan, K.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C.Z. High-Performance Organic Solar Cells from Non-Halogenated Solvents. Adv. Funct. Mater. 2021, 32, 2107827. [Google Scholar] [CrossRef]
- Torsi, L.; Dodabalapur, A.; Rothberg, L.J.; Fung, A.W.P.; Katz, H.E. Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors. Science 1996, 272, 1462–1464. [Google Scholar] [CrossRef]
- Marcus, R.A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. II. Applications to Data on the Rates of Isotopic Exchange Reactions. J. Chem. Phys. 1957, 26, 867–871. [Google Scholar] [CrossRef]
- Cao, R.; Cheng, Y.; Wang, R.; Wen, J.; Zhu, L.; Kong, W.; Qiao, X.; Zhu, M. Polymer-based hybrid materials and their application in personal health. Nano Res. 2022, 16, 3956–3975. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, X.; Xie, Z.; Liu, J.; Han, Y. Optimizing H-/J-Type Aggregation and Vertical Phase Separation To Improve Photovoltaic Efficiency of Small Molecule Solar Cells by Adding a Macromolecule Additive. ACS Appl. Energy Mater. 2018, 1, 6338–6344. [Google Scholar] [CrossRef]
- Xie, R.; Weisen, A.R.; Lee, Y.; Aplan, M.A.; Fenton, A.M.; Masucci, A.E.; Kempe, F.; Sommer, M.; Pester, C.W.; Colby, R.H.; et al. Glass transition temperature from the chemical structure of conjugated polymers. Nat. Commun. 2020, 11, 893. [Google Scholar] [CrossRef]
- Kurosawa, T.; Gu, X.; Gu, K.L.; Zhou, Y.; Yan, H.; Wang, C.; Wang, G.J.N.; Toney, M.F.; Bao, Z. Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance. Adv. Energy Mater. 2017, 8, 1701552. [Google Scholar] [CrossRef]
- Liu, J.; Yin, Y.; Wang, K.; Wei, P.; Lu, H.; Song, C.; Liang, Q.; Huang, W. Domain size control in all-polymer solar cells. iScience 2022, 25, 104090. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, S.; Zhang, Z.; Peng, J.; Liang, Q. Optimizing the Phase-Separated Domain Size of the Active Layer via Sequential Crystallization in All-Polymer Solar Cells. J. Chem. Phys. Lett. 2020, 11, 2314–2321. [Google Scholar] [CrossRef]
- Ye, L.; Xiong, Y.; Chen, Z.; Zhang, Q.; Fei, Z.; Henry, R.; Heeney, M.; O’Connor, B.T.; You, W.; Ade, H. Sequential Deposition of Organic Films with Eco-Compatible Solvents Improves Performance and Enables Over 12%-Efficiency Nonfullerene Solar Cells. Adv. Mater. 2019, 31, e1808153. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Zhang, W.; Meng, X.; Ma, W.; Yartsev, A.; Inganas, O.; Andersson, M.R.; Janssen, R.A.; Wang, E. High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. J. Am. Chem. Soc. 2016, 138, 10935–10944. [Google Scholar] [CrossRef]
- Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and phase segregation of spin-casted films of Polyfluorene/PCBM blends. Macromolecules 2007, 40, 8291–8301. [Google Scholar] [CrossRef]
- Hou, J.; Inganas, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Y.; Alotaibi, A.; Yuan, J.; Jiang, C.; Xin, J.; Liu, X.; Collins, B.A.; Zhang, F.; Ma, W. Molecular and Energetic Order Dominate the Photocurrent Generation Process in Organic Solar Cells with Small Energetic Offsets. ACS Energy Lett. 2020, 5, 589–596. [Google Scholar] [CrossRef]
- Perdigon-Toro, L.; Zhang, H.; Markina, A.; Yuan, J.; Hosseini, S.M.; Wolff, C.M.; Zuo, G.; Stolterfoht, M.; Zou, Y.; Gao, F.; et al. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell. Adv. Mater. 2020, 32, e1906763. [Google Scholar] [CrossRef]
- Yao, H.; Cui, Y.; Qian, D.; Ponseca, C.S., Jr.; Honarfar, A.; Xu, Y.; Xin, J.; Chen, Z.; Hong, L.; Gao, B.; et al. 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. J. Am. Chem. Soc. 2019, 141, 7743–7750. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zou, Y.; Yuan, J.; Yang, H.; Wu, Y.; Cui, C.; Li, Y. Ternary Polymer Solar Cells Facilitating Improved Efficiency and Stability. Adv. Mater. 2019, 31, e1904601. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, H.; Yin, Y.; Wang, K.; Wei, P.; Song, C.; Miao, Z.; Liang, Q. Thermodynamic and kinetic insights for regulating molecular orientation in nonfullerene all-small-molecule solar cells. Battery Energy 2022, 1, 20220013. [Google Scholar] [CrossRef]
- An, Y.K.; Liao, X.F.; Chen, L.; Xie, Q.; Zhang, M.; Huang, B.; Liao, Z.H.; Guo, H.; Jazib, A.; Han, J.H.; et al. A1–A2 Type Wide Bandgap Polymers for High-Performance Polymer Solar Cells: Energy Loss and Morphology. Solar RRL 2019, 3, 1800291. [Google Scholar] [CrossRef]
- Nam, M.; Kang, J.h.; Shin, J.; Na, J.; Park, Y.; Cho, J.; Kim, B.; Lee, H.H.; Chang, R.; Ko, D.H. Ternary Organic Blend Approaches for High Photovoltaic Performance in Versatile Applications. Adv. Energy Mater. 2019, 9, 1901856. [Google Scholar] [CrossRef]
- Güldal, N.S.; Kassar, T.; Berlinghof, M.; Ameri, T.; Osvet, A.; Pacios, R.; Li Destri, G.; Unruh, T.; Brabec, C.J. Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup. J. Mater. Chem. C 2016, 4, 2178–2186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Wu, W.; Jiang, M.; Yin, X.; He, Z.; Liu, J. The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells. Energies 2024, 17, 2262. https://doi.org/10.3390/en17102262
Wan L, Wu W, Jiang M, Yin X, He Z, Liu J. The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells. Energies. 2024; 17(10):2262. https://doi.org/10.3390/en17102262
Chicago/Turabian StyleWan, Longjing, Wangbo Wu, Ming Jiang, Xipeng Yin, Zemin He, and Jiangang Liu. 2024. "The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells" Energies 17, no. 10: 2262. https://doi.org/10.3390/en17102262
APA StyleWan, L., Wu, W., Jiang, M., Yin, X., He, Z., & Liu, J. (2024). The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells. Energies, 17(10), 2262. https://doi.org/10.3390/en17102262