Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = domain wall pinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4107 KiB  
Article
Thermal Influence on Chirality-Driven Dynamics and Pinning of Transverse Domain Walls in Z-Junction Magnetic Nanowires
by Mohammed Al Bahri, Salim Al-Kamiyani, Mohammed M. Al Hinaai and Nisar Ali
Symmetry 2025, 17(8), 1184; https://doi.org/10.3390/sym17081184 - 24 Jul 2025
Viewed by 224
Abstract
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning [...] Read more.
Magnetic nanowires with domain walls (DWs) play a crucial role in the advancement of next-generation memory and spintronic devices. Understanding the thermal effects on domain wall behavior is essential for optimizing performance and stability. This study investigates the thermal chirality-dependent dynamics and pinning of transverse domain walls (TDWs) in Z-junction nanowires using micromagnetic simulations. The analysis focuses on head-to-head (HHW) and tail-to-tail (TTW) domain walls with up and down chirality under varying thermal conditions. The results indicate that higher temperatures reduce the pinning strength and depinning current density, leading to enhanced domain wall velocity. At 200 K, the HHWdown domain wall depins at a critical current density of 1.2 × 1011 A/m2, while HHWup requires a higher depinning temperature, indicating stronger pinning effects. Similarly, the depinning temperature (Td) increases with Z-junction depth (d), reaching 300 K at d = 50 nm, while increasing Z-junction (λ) weakens pinning, reducing Td to 150 K at λ = 50 nm. Additionally, the influence of Z-junction geometry and magnetic properties, such as saturation magnetization (Ms) and anisotropy constant (Ku), is examined to determine their effects on thermal pinning and depinning. These findings highlight the critical role of chirality and thermal activation in domain wall motion, offering insights into the design of energy-efficient, high-speed nanowire-based memory devices. Full article
Show Figures

Figure 1

15 pages, 2917 KiB  
Article
The Dual Influence of Silicon Content and Mechanical Stress on Magnetic Barkhausen Noise in Non-Oriented Electrical Steel
by Aroba Saleem, Mehdi Mehdi, P. Ross Underhill, Youliang He and Thomas W. Krause
Metals 2025, 15(6), 600; https://doi.org/10.3390/met15060600 - 27 May 2025
Viewed by 561
Abstract
Magnetic Barkhausen noise (MBN) analysis is a non-destructive evaluation technique that offers significant advantages in assessing the magnetic properties of electrical steels. It is particularly useful for quality control in electrical steel production and for evaluating magnetic quality during core manufacturing and assembly. [...] Read more.
Magnetic Barkhausen noise (MBN) analysis is a non-destructive evaluation technique that offers significant advantages in assessing the magnetic properties of electrical steels. It is particularly useful for quality control in electrical steel production and for evaluating magnetic quality during core manufacturing and assembly. Despite its potential, MBN has not been widely used in electrical steel characterization. One obstacle is that the effects of silicon content in the electrical steel and the residual stress generated during its processing on MBN have not been thoroughly understood, limiting the practical application of the MBN technique in the electrical steel and electric motor industries. To address this knowledge gap, this paper investigates the MBN responses from four non-oriented electrical steel (NOES) sheets with varying silicon contents (0.88, 1.8, 2.8, and 3.2 wt%) but similar other elements. The measurements were performed both with and without applied tensile stress. It is observed that increasing the Si content increases the pinning density, which, together with the microstructure and texture, largely impacts the MBN response. In addition, the MBN energy increases with the applied stress, which can be attributed to the increase in the number of 180° domain walls (DWs) in the direction of stress. The rate of this MBN increase, however, differs among steels with different silicon concentrations. This difference is due to the combined effect of the DWs and pinning density. When the DW spacing becomes less than the jump distance between the pinning sites, no further increase in the MBN energy is observed with additional stress. The reported results provide a basis for the interpretation of MBN signals for varying wt% Si in NOES when residual stresses are present. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

17 pages, 6448 KiB  
Article
Development of NiZn Ferrites Doped with Co for Low Power Losses at High Frequencies (10 MHz) and High Temperatures (>80 °C)
by Stefanos Zaspalis, Georgios Kogias, Vassilios Zaspalis, Eustathios Kikkinides, Elisabeth Rauchenwald, Christoph Vogler and Kevin Ouda
Magnetochemistry 2025, 11(5), 44; https://doi.org/10.3390/magnetochemistry11050044 - 17 May 2025
Viewed by 621
Abstract
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain [...] Read more.
Polycrystalline nickel–zinc (NiZn) ferrites are widely used in high-frequency applications due to their excellent magnetic properties such as low power losses, high magnetic permeability, and adequate saturation induction. However, data on their power loss behavior at 10 MHz, particularly at elevated temperatures, remain limited in the literature. This study investigates the magnetic performance of Co-doped NiZn ferrites at 10 MHz, under varying induction fields (3–10 mT) and temperatures (20–120 °C), with a focus on reducing high-temperature losses. Ferrite samples were synthesized using the conventional mixed oxide method and systematically varied in composition (Fe, Co content and Ni/Zn molar ratio). Key findings reveal that the incorporation of cobalt significantly enhances high-temperature performance by shifting resonance frequencies, attributed to increased domain wall pinning. Samples with optimized compositions and processing demonstrated power losses at 10 MHz, 10 mT and 25 °C, 100 °C and 120 °C as low as 310 mW cm−3, 1233 mW cm−3 and 1400 mW cm−3, respectively, with relative initial permeabilities exceeding 80 at these temperatures. These results provide insights into the design of high-frequency magnetic components and highlight strategies to minimize high-temperature losses. Full article
Show Figures

Figure 1

21 pages, 8014 KiB  
Article
Harnessing Magnetic Properties for Precision Thermal Control of Vortex Domain Walls in Constricted Nanowires
by Mohammed Al Bahri and Salim Al-Kamiyani
Nanomaterials 2025, 15(5), 372; https://doi.org/10.3390/nano15050372 - 27 Feb 2025
Cited by 1 | Viewed by 710
Abstract
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), [...] Read more.
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry. Our results show that increasing Ms and Ku enhances VW pinning, while thermal fluctuations at higher temperatures promote VW depinning. We demonstrate that temperature and magnetic parameters significantly impact VW structural stability, offering insights for designing high-reliability nanowire-based memory devices. These findings contribute to optimizing nanowire designs for thermally stable, energy-efficient spintronic memory systems. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

19 pages, 3458 KiB  
Article
Casein Kinase I Protein Hrr25 Is Required for Pin4 Phosphorylation and Mediates Cell Wall Integrity Signaling in Saccharomyces cerevisiae
by Amita Bhattarai, Manika Bhondeley and Zhengchang Liu
Genes 2025, 16(1), 94; https://doi.org/10.3390/genes16010094 - 17 Jan 2025
Viewed by 1242
Abstract
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in Saccharomyces cerevisiae. Pin4 is a multi-phosphorylated protein that has been reported to be involved in [...] Read more.
Background: Casein kinase I protein Hrr25 plays important roles in many cellular processes, including autophagy, vesicular trafficking, ribosome biogenesis, mitochondrial biogenesis, and the DNA damage response in Saccharomyces cerevisiae. Pin4 is a multi-phosphorylated protein that has been reported to be involved in the cell wall integrity (CWI) pathway and DNA damage response. Pin4 was reported to interact with Hrr25 in yeast two-hybrid and large-scale pulldown assays. Methods/Objectives: Co-immunoprecipitation and yeast two-hybrid assays were utilized to confirm whether Pin4 and Hrr25 interact and to determine how they interact. Genetic interaction analysis was conducted to examine whether hrr25 mutations form synthetic growth defects with mutations in genes involved in CWI signaling. Immunoblotting was used to determine whether Hrr25 phosphorylates Pin4. Results: We show that Hrr25 interacts with Pin4 and is required for Pin4 phosphorylation. pin4 mutations result in synthetic slow-growth phenotypes with mutations in genes encoding Bck1 and Slt2, two of the protein kinases in the MAP kinase cascade that regulates CWI in the budding yeast. We show that hrr25 mutations result in similar phenotypes to pin4 mutations. Hrr25 consists of an N-terminal kinase domain, a middle region, and a C-terminal proline/glutamine-rich domain. The function of the C-terminal P/Q-rich domain of Hrr25 has been elusive. We found that the C-terminal region of Hrr25 is required both for Pin4 interaction and CWI. Conclusions: Our data suggest that Hrr25 is implicated in cell wall integrity signaling via its association with Pin4. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 4414 KiB  
Article
Effect of Alternating Magnetic Field Treatment on the Friction/Wear Resistance of 20Cr2Ni4A Under Lubricated Conditions
by Sufyan Akram, Mose Bevilacqua, Anatolii Babutskyi and Andreas Chrysanthou
Metals 2025, 15(1), 69; https://doi.org/10.3390/met15010069 - 14 Jan 2025
Viewed by 714
Abstract
High-strength nickel–chromium steel (20Cr2Ni4A) is typically used in bearing applications. Alternating magnetic field treatment, which is based on the use of a magnetiser, and which is fast and cost-effective in comparison to conventional processes, was applied to the material to improve its wear [...] Read more.
High-strength nickel–chromium steel (20Cr2Ni4A) is typically used in bearing applications. Alternating magnetic field treatment, which is based on the use of a magnetiser, and which is fast and cost-effective in comparison to conventional processes, was applied to the material to improve its wear resistance. The results of pin-on-disc wear testing using a AISI 52100 alloy counter pin revealed a decrease in the specific wear rate of the treated samples by 58% and a reduction in the value of the coefficient of friction by 28%. X-ray diffraction analysis showed a small increase in the amount of martensite and higher surface compressive residual stresses by 28% leading to improved hardness. The observed changes were not induced thermally. The volume expansion by the formation of martensite was achieved at near room temperature and led to a further increase in compressive residual stresses. The significance of this study is that the improvement in the properties was achieved at a current density value that was two orders of magnitude higher than the threshold for phase transformation and dislocation movement. The reasons for the effect of the alternating magnetic field treatment on the friction and wear properties are discussed in terms of the contribution of the magnetic field to the austenite-to-martensite phase transformation and the interaction between the magnetic domain walls and dislocations. Full article
(This article belongs to the Special Issue Advances in Electromagnetic Processing of Metallic Materials)
Show Figures

Figure 1

13 pages, 4814 KiB  
Article
Effects of Annealing Time on the Structure Characteristics and Magnetic Properties of FeSiBPCCuNb Amorphous Ribbons
by Xi Huang, Lianbo Wang, Song Ding, Jiajun Li, Zemin Wang, Min Liu, Zhanyong Wang and Wenlong Zhu
Coatings 2025, 15(1), 50; https://doi.org/10.3390/coatings15010050 - 5 Jan 2025
Viewed by 1012
Abstract
In this paper, the structure characteristics and magnetic properties of Fe83Si6B6P1.5C1.5Cu1Nb1 amorphous alloy ribbons annealed at 550 °C for different times were systematically investigated using X-ray diffraction, vibrating sample magnetometer, [...] Read more.
In this paper, the structure characteristics and magnetic properties of Fe83Si6B6P1.5C1.5Cu1Nb1 amorphous alloy ribbons annealed at 550 °C for different times were systematically investigated using X-ray diffraction, vibrating sample magnetometer, and atom probe chromatography. The results show that high-density Cu atomic clusters of appropriate sizes help to stabilize the α-Fe(Si) phase and improve the uniformity of the grains to enhance the soft magnetic properties. The solubility difference between the α-Fe(Si) phase and the B-rich phase, the formation of a localized amorphous structure in the transition region, and the inhibition of nanograin growth. However, when the annealing time is extended, the size of the α-Fe(Si) grains decreases, the grain boundary density increases and secondary phases such as Cu clusters become pinning sites for magnetic domain walls. This leads to a decrease in soft magnetic properties, an increase in hard magnetic properties, and a rapid increase in coercivity. When annealed at 550 °C for 20 min, the number density of Cu atomic clusters was 9.18 × 1022 m−3, the spherical equivalent radius was 1.13 ± 0.29 nm, and the ribbons had good soft magnetic properties with a coercivity of 4.59 Oe. The saturation magnetic induction reached a peak value of 185.11 emu/g. Full article
(This article belongs to the Special Issue Advancement in Heat Treatment and Surface Modification for Metals)
Show Figures

Figure 1

25 pages, 5238 KiB  
Article
Numerical Simulation of Electromagnetic Nondestructive Testing Technology for Elasto–Plastic Deformation of Ferromagnetic Materials Based on Magneto–Mechanical Coupling Effect
by Xiangyi Hu, Xiaoqiang Wang, Haichao Cai, Xiaokang Yang, Sanfei Pan, Yafeng Yang, Hao Tan and Jianhua Zhang
Sensors 2024, 24(22), 7103; https://doi.org/10.3390/s24227103 - 5 Nov 2024
Cited by 1 | Viewed by 1122
Abstract
A numerical tool for simulating the detection signals of electromagnetic nondestructive testing technology (ENDT) is of great significance for studying detection mechanisms and improving detection efficiency. However, the quantitative analysis methods for ENDT have not yet been sufficiently studied due to the absence [...] Read more.
A numerical tool for simulating the detection signals of electromagnetic nondestructive testing technology (ENDT) is of great significance for studying detection mechanisms and improving detection efficiency. However, the quantitative analysis methods for ENDT have not yet been sufficiently studied due to the absence of an effective constitutive model. This paper proposed a new magneto–mechanical model that can reflect the dependence of relative permeability on elasto–plastic deformation and proposed a finite element–infinite element coupling method that can replace the traditional finite element truncation boundary. The validity of the finite element–infinite element coupling method is verified by the experimental result of testing electromagnetic analysis methods using TEAM Problem 7. Then, the reliability and accuracy of the proposed model are verified by comparing the simulation results under elasto–plastic deformation with experimental results. This paper also investigates the effect of elasto–plastic deformation on the transient magnetic flux signal, a quantitative hyperbolic tangent model between Bzpp (peak–peak value of the normal component of magnetic flux signal) and elastic stress, and the exponential function relationship between Bzpp and plastic deformation is established. In addition, the difference and mechanism of a magnetic flux signal under elasto–plastic deformations are analyzed. The results reveal that the variation of the transient magnetic flux signal is mainly due to domain wall pinning, which is significantly affected by elasto–plastic deformation. The results of this paper are important for improving the accuracy of quantitative ENDT for elasto–plastic deformation. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 6170 KiB  
Article
Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
by Mohammed Al Bahri, Salim Al-Kamiyani and Al Maha Al Habsi
Nanomaterials 2024, 14(18), 1518; https://doi.org/10.3390/nano14181518 - 19 Sep 2024
Cited by 2 | Viewed by 1210
Abstract
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device [...] Read more.
In this study, we investigate the thermal pinning and depinning behaviors of vortex domain walls (VDWs) in constricted magnetic nanowires, with a focus on potential applications in storage memory nanodevices. Using micromagnetic simulations and spin transfer torque, we examine the impacts of device temperature on VDW transformation into a transverse domain wall (TDW), mobility, and thermal strength pinning at the constricted area. We explore how thermal fluctuations influence the stability and mobility of domain walls within stepped nanowires. The thermal structural stability of VDWs and their pinning were investigated considering the effects of the stepped area depth (d) and its length (λ). Our findings indicate that the thermal stability of VDWs in magnetic stepped nanowires increases with decreasing the depth of the stepped area (d) and increasing nanowire thickness (th). For th ≥ 50 nm, the stability is maintained at temperatures ≥ 1200 K. In the stepped area, VDW thermal pinning strength increases with increasing d and decreasing λ. For values of d ≥ 100 nm, VDWs depin from the stepped area at temperatures ≥ 1000 K. Our results reveal that thermal effects significantly influence the pinning strength at constricted sites, impacting the overall performance and reliability of magnetic memory devices. These insights are crucial for optimizing the design and functionality of next-generation nanodevices. The stepped design offers numerous advantages, including simple fabrication using a single electron beam lithography exposure step on the resist. Additionally, adjusting λ and d allows for precise control over the pinning strength by modifying the dimensions of the stepped areas. Full article
Show Figures

Figure 1

19 pages, 10911 KiB  
Article
Surface Roughness-Induced Changes in Important Physical Features of CoFeSm Thin Films on Glass Substrates during Annealing
by Chi-Lon Fern, Wen-Jen Liu, Yung-Huang Chang, Chia-Chin Chiang, Yuan-Tsung Chen, Pei-Xin Lu, Xuan-Ming Su, Shih-Hung Lin and Ko-Wei Lin
Materials 2023, 16(21), 6989; https://doi.org/10.3390/ma16216989 - 31 Oct 2023
Cited by 3 | Viewed by 1704
Abstract
Co60Fe20Sm20 thin films were deposited onto glass substrates in a high vacuum setting. The films varied in thickness from 10 to 50 nm and underwent annealing processes at different temperatures: room temperature (RT), 100, 200, and 300 °C. [...] Read more.
Co60Fe20Sm20 thin films were deposited onto glass substrates in a high vacuum setting. The films varied in thickness from 10 to 50 nm and underwent annealing processes at different temperatures: room temperature (RT), 100, 200, and 300 °C. Our analysis encompassed structural, magnetic, electrical, nanomechanical, adhesive, and optical properties in relation to film thickness and annealing temperature. X-ray diffraction (XRD) analysis did not reveal characteristic peaks in Co60Fe20Sm20 thin films due to insufficient growth-driving forces. Electrical measurements indicated reduced resistivity and sheet resistance with increasing film thickness and higher annealing temperatures, owing to hindered current-carrier transport resulting from the amorphous structure. Atomic force microscope (AFM) analysis showed a decrease in surface roughness with increased thickness and annealing temperature. The low-frequency alternating current magnetic susceptibility (χac) values increased with film thickness and annealing temperature. Nanoindentation analysis demonstrated reduced film hardness and Young’s modulus with thicker films. Contact angle measurements suggested a hydrophilic film. Surface energy increased with greater film thickness, particularly in annealed films, indicating a decrease in contact angle contributing to this increase. Transmittance measurements have revealed intensified absorption and reduced transmittance with thicker films. In summary, the surface roughness of CoFeSm films at different annealing temperatures significantly influenced their magnetic, electrical, adhesive, and optical properties. A smoother surface reduced the pinning effect on the domain walls, enhancing the χac value. Additionally, diminished surface roughness led to a lower contact angle and higher surface energy. Additionally, smoother surfaces exhibited higher carrier conductivity, resulting in reduced electrical resistance. The optical transparency decreased due to the smoother surface of Co60Fe20Sm20 films. Full article
Show Figures

Figure 1

15 pages, 6813 KiB  
Article
Studying the Effects of Annealing and Surface Roughness on Both the Magnetic Property and Surface Energy of Co60Fe20Sm20 Thin Films on Si(100) Substrate
by Wen-Jen Liu, Yung-Huang Chang, Chia-Chin Chiang, Yuan-Tsung Chen, Pei-Xin Lu, Yu-Jie He and Shih-Hung Lin
Coatings 2023, 13(10), 1783; https://doi.org/10.3390/coatings13101783 - 17 Oct 2023
Cited by 2 | Viewed by 2451
Abstract
In this study, Co60Fe20Sm20 alloy was employed for sputter deposition onto Si(100) substrate within a high vacuum environment, and subsequent thermal treatment was conducted using a vacuum annealing furnace. Thorough measurements and analyses were carried out to evaluate [...] Read more.
In this study, Co60Fe20Sm20 alloy was employed for sputter deposition onto Si(100) substrate within a high vacuum environment, and subsequent thermal treatment was conducted using a vacuum annealing furnace. Thorough measurements and analyses were carried out to evaluate how various film thicknesses and annealing temperatures affect the material. The investigations encompassed observations of structural and physical properties, magnetic traits, mechanical behavior, and material adhesion. The results from the four-point probe measurements clearly demonstrate a trend of decreasing resistivity and sheet resistance with increasing film thickness and higher annealing temperature. Analysis through atomic force microscopy (AFM) shows that heightened annealing temperature corresponds to decreased surface roughness. Furthermore, when analyzing low-frequency alternating current magnetic susceptibility (χac), it became evident that the maximum magnetic susceptibility value consistently rises with increased film thickness, regardless of the annealing temperature. Through magnetic force microscopy (MFM) observations of magnetic domain images in the films, it became apparent that there was a noticeable reduction in the brightness contrast of the magnetic domains. Furthermore, nanoindentation analysis reveals a clear trend. Elevating the film thickness leads to a reduction in both hardness and Young’s modulus. Contact angles range between 67.7° and 83.3°, consistently under 90°, highlighting the hydrophilic aspect. Analysis of surface energy demonstrates an escalation with increasing film thickness, and notably, annealed films exhibit a substantial surge in surface energy. This signifies a connection between the reduction in contact angle and the observed elevation in surface energy. Raising the annealing temperature causes a decline in surface roughness. To summarize, the surface roughness of CoFeSm films at different annealing temperatures significantly impacts their magnetic, electrical, and adhesive properties. A smoother surface reduces the pinning effect on domain walls, thus enhancing the χac value. Furthermore, diminished surface roughness leads to a decline in the contact angle and a rise in surface energy. Conversely, rougher surfaces exhibit higher carrier conductivity, contributing to a reduction in electrical resistance. Full article
Show Figures

Figure 1

40 pages, 17835 KiB  
Review
Coercive Properties of Magnetic Garnet Films
by Gábor Vértesy
Crystals 2023, 13(6), 946; https://doi.org/10.3390/cryst13060946 - 12 Jun 2023
Cited by 3 | Viewed by 2325
Abstract
Magnetic garnet films represent a wide family of materials. By the proper choice of chemical composition and growth parameters, their magnetic behavior can be tuned in a very wide range. On one side, they are suitable for many different applications; on the other [...] Read more.
Magnetic garnet films represent a wide family of materials. By the proper choice of chemical composition and growth parameters, their magnetic behavior can be tuned in a very wide range. On one side, they are suitable for many different applications; on the other side, they are optimal model materials for studying the basic magnetization processes. Many assumptions of the existing theories can be checked or validated by magnetic garnet film investigation. Their production technology was developed many decades ago, but even nowadays, magnetic garnet films have been intensively studied, and newer and newer application possibilities have been found. In this review paper, those results are summarized, which are connected with their coercive properties. Coercivity, or coercive force, is a frequently used magnetic characteristic, but usually, it is considered rather a technical parameter. It is shown that there is no correlation between the so-called “technical coercive force” (which is the half-width of a major hysteresis loop) and the domain wall coercivity (this is frequently called a domain wall pinning field). This latter parameter is considered a real characteristic of domain wall movement. If magnetic garnet films are investigated, the correlation between moving domain wall and material defect structure can be studied. In this paper, the very complex feature of coercivity is shown. It is demonstrated that the domain structure, the properties of domain walls, the existence of mechanical stresses, the temperature, the size of the sample and many other parameters have an influence on the measured coercivity. Full article
Show Figures

Figure 1

44 pages, 1997 KiB  
Review
Review of Play and Preisach Models for Hysteresis in Magnetic Materials
by Gustav Mörée and Mats Leijon
Materials 2023, 16(6), 2422; https://doi.org/10.3390/ma16062422 - 17 Mar 2023
Cited by 27 | Viewed by 4671
Abstract
This paper studies the properties of the Preisach model and the play model, and compare their similarities. Both are history-dependent hysteresis models that are used to model magnetic hysteresis. They are described as discrete sums of simple hysteresis operators but can easily be [...] Read more.
This paper studies the properties of the Preisach model and the play model, and compare their similarities. Both are history-dependent hysteresis models that are used to model magnetic hysteresis. They are described as discrete sums of simple hysteresis operators but can easily be reformulated as integral equations of continuous distribution functions using either a Preisach weight distribution function or a play distribution function. The models are mostly seen as phenomenological or mathematical tools but can also be related to friction-like pinning of domain-wall motions, where Rayleigh’s law of magnetic hysteresis can be seen as the simplest case on either the play model or the Preisach model. They are poor at modeling other domain behavior, such as nucleation-driven hysteresis. Yet another hysteresis model is the stop model, which can be seen as the inverted version of the play model. This type of model has advantages for expressions linked to energy and can be related to Steinmetz equation of hysteresis losses. The models share several mathematical properties, such as the congruency property and wiping-out property, and both models have a history of dependence that can be described by the series of past reversal points. More generally, it is shown that the many models can be expressed as Preisach models, showing that they can be treated as subcategories of the Preisach type models. These include the play model, the stop model and also the alternative KP-hysteron model. Full article
Show Figures

Figure 1

10 pages, 1478 KiB  
Article
Micromagnetic Simulation of Increased Coercivity of (Sm, Zr)(Co, Fe, Cu)z Permanent Magnets
by Mark V. Zheleznyi, Natalia B. Kolchugina, Vladislav L. Kurichenko, Nikolay A. Dormidontov, Pavel A. Prokofev, Yuriy V. Milov, Aleksandr S. Andreenko, Ivan A. Sipin, Andrey G. Dormidontov and Anna S. Bakulina
Crystals 2023, 13(2), 177; https://doi.org/10.3390/cryst13020177 - 19 Jan 2023
Cited by 1 | Viewed by 2014
Abstract
The finite element micromagnetic simulation is used to study the role of complex composition of 2:17R-cell boundaries in the realization of magnetization reversal processes of (Sm, Zr)(Co, Cu, Fe)z alloys intended for high-energy permanent magnets. A modified sandwich model is considered for [...] Read more.
The finite element micromagnetic simulation is used to study the role of complex composition of 2:17R-cell boundaries in the realization of magnetization reversal processes of (Sm, Zr)(Co, Cu, Fe)z alloys intended for high-energy permanent magnets. A modified sandwich model is considered for the combinations of 2:7R/1:5H phase and 5:19R/1:5H phase layers as the 2:17R-cell boundaries in the alloy structure. The results of the simulation represented in the form of coercive force vs. total width of cell boundary showed the possibility of reaching the increased coercivity at the expense of 180°-domain wall pinning at the additional barriers within cell boundaries. The phase and structural states of the as-cast Sm1-xZrx(Co0.702Cu0.088Fe0.210)z alloy sample with x = 0.13 and z = 6.4 are studied, and the presence of the above phases in the vicinity of the 1:5H phase was demonstrated. Full article
(This article belongs to the Special Issue Advanced Energetic Materials: Testing and Modeling)
Show Figures

Figure 1

12 pages, 9129 KiB  
Article
Enhancement of Domain Wall Pinning in High-Temperature Resistant Sm2Co17 Type Magnets by Addition of Y2O3
by Zhuang Liu, Chaoyue Zhang, Haichen Wu, Renjie Chen and Aru Yan
Materials 2022, 15(15), 5160; https://doi.org/10.3390/ma15155160 - 25 Jul 2022
Cited by 5 | Viewed by 1859
Abstract
In this study, the effects of Y2O3 addition on the magnetic properties, microstructure and magnetization reversal behavior of Sm(Co0.79Fe0.09Cu0.09Zr0.03)7.68 magnet were investigated. By addition of Y2O3, the [...] Read more.
In this study, the effects of Y2O3 addition on the magnetic properties, microstructure and magnetization reversal behavior of Sm(Co0.79Fe0.09Cu0.09Zr0.03)7.68 magnet were investigated. By addition of Y2O3, the coercivity was increased from 21.34 kOe to 27.42 kOe at 300 K and from 5.14 kOe to 6.27 kOe at 823 K. A magnet with a maximum magnetic energy product of 9.86 MGOe at 823 K was obtained. With the interdiffusion of Y and Sm after appropriate addition, the Cu content within the cell boundary phase close to the oxide was detected to be nearly twice as high as that away from the oxide. We report for the first time that a collection of lamellar phases were formed on both sides of the inserted oxide, providing a strong pinning field against magnetic domain wall motion based on in-situ Lorentz TEM observation. Furthermore, the ordering process of the original magnet was delayed after Y2O3 addition, resulting in the refinement of cellular structure, which can also enhance the domain wall pinning ability of cellular structures based on micromagnetic simulation. However, excessive addition of Y2O3 led to large Cu-rich phase and Zr-rich impurity phase precipitated at the edge of the oxide, resulting in the destruction of cellular structures and a significant reduction in coercivity. This study provides a new technical approach to regulate the microstructure of Sm2Co17 type magnets. Addition of Y2O3 is expected to play a significant role in improvement of high temperature magnetic properties. Full article
(This article belongs to the Topic Advanced Forming Technology of Metallic Materials)
Show Figures

Figure 1

Back to TopTop