Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,449)

Search Parameters:
Keywords = distribution station area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3171 KB  
Article
Visualising the Environmental Effects of Working near Home: Remote Working Hubs and Co-Working Spaces in England and Wales
by Maren Schnieder
Environments 2025, 12(10), 375; https://doi.org/10.3390/environments12100375 (registering DOI) - 13 Oct 2025
Abstract
Background: The pressure on the transport sector to decarbonise intensifies the need to look beyond the usual recommendations (e.g., walking, cycling, technological innovations). Therefore, strategies to avoid or modify commutes to places of work have long been seen as an option to decarbonise. [...] Read more.
Background: The pressure on the transport sector to decarbonise intensifies the need to look beyond the usual recommendations (e.g., walking, cycling, technological innovations). Therefore, strategies to avoid or modify commutes to places of work have long been seen as an option to decarbonise. Recognised for achieving an optimal balance between working from home and working in an office, co-working spaces may also minimise the length of commutes and therefore reduce emissions, traffic congestion, road maintenance, stress experienced by drivers, and other negative externalities of traffic. Methods: This study quantifies the above using a digital model of England and Wales. Two distributions of co-working spaces have been compared in this paper (i.e., one co-working space (i) in each Middle-layer Super Output Area or (ii) at the nearest train station). Results: The overall reduction in travel time and distance exceeds 70% if everyone who commutes by car outside their home MSOA drives to a co-working space. Despite a change in the place of work having no impact on the cold start emissions, substantial emission savings can still be achieved. These range from 35.8% to 92.1% depending on the pollutant, scenario, and distribution of co-working spaces. Full article
Show Figures

Figure 1

18 pages, 680 KB  
Article
Wide-Area Backup Protection Area Division Method Considering Communication Constraints
by Wei Han, Baojiang Tian, Gaofeng Hao, Zhen Liu, Fengqing Cui, Xiaoyu Li, Miao Chen and Yikai Wang
Electronics 2025, 14(20), 3999; https://doi.org/10.3390/electronics14203999 (registering DOI) - 12 Oct 2025
Abstract
Aiming at the partition requirements of regional centralized wide-area backup protection systems, this paper proposes a grid partition method considering communication constraints. Firstly, a mathematical model is constructed by combining the communication delay threshold and the channel bandwidth utilization rate, and the optimal [...] Read more.
Aiming at the partition requirements of regional centralized wide-area backup protection systems, this paper proposes a grid partition method considering communication constraints. Firstly, a mathematical model is constructed by combining the communication delay threshold and the channel bandwidth utilization rate, and the optimal number of master stations is dynamically determined. The communication delay threshold strictly meets the backup protection requirements of 10 to 15 ms, and the bandwidth utilization rate is optimized to a 50% balance point. Secondly, a weighted evaluation function is established based on the shortest communication distance and site connectivity, and the master station is selected according to a geographical dispersion constraint. Furthermore, the dual factors of data transmission delay and propagation delay are combined, in which the minimum bandwidth of the transmission delay correlation path and the length of the propagation delay correlation path are used to realize the optimal division of sub-stations using a graph theory algorithm. Finally, a standby master station with a physical isolation distance of not less than 50 km is selected in each sub-area to effectively deal with failure problems caused by a master station failure. The simulation results show that the proposed method can reduce the propagation delay and significantly improve the reliability of the protection system, while maintaining a balanced distribution of the number of substations. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

20 pages, 3306 KB  
Article
Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations
by Nikolina Račić, Stanko Ružičić, Gordana Pehnec, Ivana Jakovljević, Zdravka Sever Štrukil, Jasmina Rinkovec, Silva Žužul, Iva Smoljo, Željka Zgorelec and Mario Lovrić
Toxics 2025, 13(10), 866; https://doi.org/10.3390/toxics13100866 (registering DOI) - 12 Oct 2025
Abstract
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations [...] Read more.
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations in Zagreb, Croatia. While previous work identified primary emission sources affecting PM10 composition in the area, this study extends the analysis to investigate potential pollutant transfer and accumulation in soils. Multivariate statistical tools, including correlation analysis and principal component analysis (PCA), were employed to gain a deeper understanding of the sources and behavior of pollutants. Results reveal significant correlations between air and soil concentrations for several PTEs and PAHs, particularly when air pollutant data are averaged over extended periods (up to 6 months), indicating cumulative deposition effects. Σ11PAH concentrations in soils ranged from 1.2 to 524 µg/g, while mean BaP in PM10 was 2.2 ng/m3 at traffic-affected stations. Strong positive air–soil correlations were found for Pb and Cu, whereas PAH associations strengthened at longer averaging windows (3–6 months), especially at 10 cm depth. Seasonal variations were observed, with stronger associations in autumn, reflecting intensified emissions and atmospheric conditions that facilitate pollutant transfer. PCA identified similar pollutant groupings in both air and soil matrices, suggesting familiar sources such as traffic emissions, industrial activities, and residential heating. The integrated PCA approach, which jointly analyzed air and soil pollutants, showed coherent behaviour for heavier PAHs and several PTEs (e.g., Pb, Cu), as well as divergence in more volatile or mobile species (e.g., Flu, Zn). Spatial differences among monitoring sites show localized influences on pollutant accumulation. Furthermore, this work demonstrates the value of coordinated air–soil monitoring in urban environments and provides an understanding of pollutant distributions across different components of the environment. Full article
Show Figures

Graphical abstract

22 pages, 37263 KB  
Article
Assessing Fire Station Accessibility in Guiyang, a Mountainous City, with Nighttime Light and POI Data: An Application of the Enhanced 2SFCA Approach
by Xindong He, Boqing Wu, Guoqiang Shen, Qianqian Lyu and Grace Ofori
ISPRS Int. J. Geo-Inf. 2025, 14(10), 393; https://doi.org/10.3390/ijgi14100393 - 9 Oct 2025
Viewed by 199
Abstract
Mountainous urban areas like Guiyang face unique fire safety challenges due to rugged terrain and complex road networks, which hinder fire station accessibility. This study proposes a GIS-based framework that integrates nighttime light (NPP/VIIRS) and point of interest (POI) data to assess fire [...] Read more.
Mountainous urban areas like Guiyang face unique fire safety challenges due to rugged terrain and complex road networks, which hinder fire station accessibility. This study proposes a GIS-based framework that integrates nighttime light (NPP/VIIRS) and point of interest (POI) data to assess fire risk and accessibility. Kernel density estimation quantified POI distributions across four risk categories, and the Spatial Appraisal and Valuation of Environment and Ecosystems (SAVEE) model combined these with NPP/VIIRS data to generate a composite fire risk map. Accessibility was evaluated using the enhanced two-step floating catchment area (E2SFCA) method with road network travel times; 80.13% of demand units were covered within the five-minute threshold, while 53.25% of all units exhibited low accessibility. Spatial autocorrelation analysis (Moran’s I) revealed clustered high risk in central basins and service gaps on surrounding hills, reflecting the dominant influence of terrain alongside protected forests and farmlands. The results indicate that targeted road upgrades and station relocations can improve fire service coverage. The approach is scalable and supports more equitable emergency response in mountainous settings. Full article
Show Figures

Figure 1

14 pages, 2263 KB  
Article
Seasonal Variations in Density Distribution of Larimichthys polyactis in Zhejiang Coastal Waters, China
by Xiangyu Long, Dong Wang, Pengbo Song, Mengwen Han, Rijin Jiang, Kaida Xu and Yongdong Zhou
Fishes 2025, 10(10), 508; https://doi.org/10.3390/fishes10100508 - 9 Oct 2025
Viewed by 130
Abstract
Larimichthys polyactis, a key species in East Asian coastal ecosystems, shows distinct seasonal changes in density distribution, shaped by environmental factors and migratory behaviors of two dominant populations (East China Sea and South Yellow Sea). This study explored its 2023 density dynamics [...] Read more.
Larimichthys polyactis, a key species in East Asian coastal ecosystems, shows distinct seasonal changes in density distribution, shaped by environmental factors and migratory behaviors of two dominant populations (East China Sea and South Yellow Sea). This study explored its 2023 density dynamics in Zhejiang coastal waters using quarterly surveys across 83 stations, combined with generalized additive models (GAM) and random forest (RF) models. Results showed that RF outperformed GAM overall, with bottom dissolved oxygen (SBO), salinity, and depth as the most influential environmental drivers. Density peaked in summer (77.88 thousand ind./km2) in central and northern offshore areas, dominated by the South Yellow Sea population migrating into the region. Autumn densities (3.76 thousand ind./km2) declined sharply as populations moved to overwintering grounds, while spring (0.41 thousand ind./km2) and winter (0.26 thousand ind./km2) densities were lowest. These findings highlight the role of seasonal environmental filters and population-specific migrations in shaping distribution patterns. RF models provide robust tools for predicting habitats, supporting seasonally tailored conservation strategies to protect critical spawning, foraging, and overwintering areas, which are vital for the sustainable management of this ecologically and economically important species. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

22 pages, 7879 KB  
Review
Effectiveness of Small Hydropower Plants Dismantling in the Chishui River Watershed and Recommendations for Follow-Up Studies
by Wenzhuo Gao, Zhigang Wang, Ke Wang, Xianxun Wang, Xiao Li and Qunli Jiang
Water 2025, 17(19), 2909; https://doi.org/10.3390/w17192909 - 9 Oct 2025
Viewed by 217
Abstract
With the characteristic of “decentralized distribution and local power supply”, small hydropower (SHP) in China has become a core means of solving the problem of insufficient power supply in rural and remote mountainous areas, effectively promoting the improvement of local livelihoods. However, for [...] Read more.
With the characteristic of “decentralized distribution and local power supply”, small hydropower (SHP) in China has become a core means of solving the problem of insufficient power supply in rural and remote mountainous areas, effectively promoting the improvement of local livelihoods. However, for a long time, SHP has had many problems, such as irrational development, old equipment, and poor economic efficiency, resulting in some rivers with connectivity loss and reduced biodiversity, etc. The Chishui River Watershed is an ecologically valuable river in the upper reaches of the Yangtze River. As an important habitat for rare fish in the upper reaches of the Yangtze River and the only large-scale tributary that maintains a natural flow pattern, the SHP plants’ dismantling and ecological restoration practices in the Chishui River Watershed can set a model for regional sustainable development. This paper adopts the methods of literature review, field research, and case study analysis, combined with the comparison of ecological conditions before and after the dismantling, to systematically analyze the effectiveness and challenges of SHP rectification in the Chishui River Watershed. The study found that after dismantling 88.2% of SHP plants in ecologically sensitive areas, the number of fish species upstream and downstream of the original dam site increased by about 6.67% and 70%, respectively; the natural hydrological connectivity has been restored to the downstream of the Tongzi River, the Gulin River and other rivers, but there are short-term problems such as sediment underflow, increased economic pressure, and the gap of alternative energy sources; the retained power stations have achieved the success and challenges of power generation and ecological management ecological flow control and comprehensive utilization, achieving a balance between power generation and ecological protection. Based on the above findings, the author proposes dynamic monitoring and interdisciplinary tracking research to fill the gap of systematic data support and long-term effect research in the SHP exit mechanism, and the results can provide a reference for the green transition of SHP. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 1435 KB  
Article
Reconstruction of Historical Arable Land Area and Spatial Distribution Patterns in Southeastern Tibet
by Juan Zhou, Fenggui Liu, Qiong Chen, Hongxia Pan, Yiyun He and Qiang Zhou
Land 2025, 14(10), 1989; https://doi.org/10.3390/land14101989 (registering DOI) - 3 Oct 2025
Viewed by 343
Abstract
The southeastern Tibet region is characterized by rugged terrain and relative isolation, which has significantly constrained the development of agriculture. However, due to the extremely limited archaeological and historical records available, its important role in the history of agricultural development in Tibet has [...] Read more.
The southeastern Tibet region is characterized by rugged terrain and relative isolation, which has significantly constrained the development of agriculture. However, due to the extremely limited archaeological and historical records available, its important role in the history of agricultural development in Tibet has been overlooked. This study focuses on the Linzhi and Changdu regions of southeastern Tibet, integrating limited archival, historical, and documentary data. By reconstructing historical settlement patterns and population data, this study estimates the arable land area during the Tubo, Yuan, Ming, and Qing dynasties. Using a grid-based model, it reconstructs the distribution patterns of arable land during these periods, aiming to provide a reference for the development of agriculture in Tibet. The research findings indicate the following: (1) During historical periods, settlements in southeastern Tibet were primarily distributed in flat, resource-rich alluvial plains at medium to high altitudes. Settlement types exhibited spatial differentiation: Post stations were primarily situated along major transportation routes that connected river valleys, as well as at high mountain passes. Temples tended to occupy moderately steep slopes, while manors were concentrated in low-lying valleys. (2) During the Tubo, Yuan, Ming, and Qing periods, the total arable land area and cultivation rate in southeastern Tibet were generally low, with total arable land areas of 28,085 hm2, 29,449 hm2, 25,319 hm2, and 24,371 hm2, respectively, and cultivation rates of 0.12%, 0.13%, 0.11%, and 0.11%, respectively. (3) Farmland was predominantly distributed along the Yarlung Zangbo, Jinsha, Lancang, and Nu Rivers and their broader tributary valleys. Natural constraints resulted in a highly fragmented farmland distribution. Full article
Show Figures

Figure 1

30 pages, 25126 KB  
Article
Study on Seismic Performance of Asymmetric Rectangular Prefabricated Subway Station Structures in Soft Soil
by Yi Zhang, Tongwei Zhang, Shudong Zhou, Tao Du, Jinsheng Huang, Ming Zhang and Xun Cheng
Buildings 2025, 15(19), 3537; https://doi.org/10.3390/buildings15193537 - 1 Oct 2025
Viewed by 174
Abstract
With the continuous improvement of the prefabricated modular technology system, the prefabricated subway station structures are widely used in underground engineering projects. However, prefabricated subway stations in soft soil can suffer significant adverse effects under seismic action. In order to study the seismic [...] Read more.
With the continuous improvement of the prefabricated modular technology system, the prefabricated subway station structures are widely used in underground engineering projects. However, prefabricated subway stations in soft soil can suffer significant adverse effects under seismic action. In order to study the seismic performance of a prefabricated subway station, this work is based on an actual project of a subway station in soft soil. And the nonlinear static and dynamic coupling two-dimensional finite element models of cast-in-place structures (CIPs), assembly splicing structures (ASSs), and assembly monolithic structures (AMSs) are established, respectively. The soil-structure interaction is considered, and different peak ground accelerations (PGA) are selected for incremental dynamic analysis. The displacement response, internal force characteristics, and structural damage distribution for three structural forms are compared. The research results show that the inter-story displacement of the AMS is slightly greater than that of the CIP, while the inter-story displacement of the ASS is the largest. The CIP has the highest internal force in the middle column, the ASS has the lowest internal force in the middle column, and the AMS is between the two. The damage to the CIP is concentrated at the bottom of the middle column and sidewall. The AMS compression damage moves upward, but the tensile damage mode is similar to the CIP. The ASS can effectively reduce damage to the middle column and achieve redistribution of internal force. Further analysis shows that the joint splicing interface between cast-in-place and prefabricated components is the key to controlling the overall deformation and seismic performance of the structure. The research results can provide a theoretical basis for the seismic design optimization of subway stations in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

6 pages, 714 KB  
Proceeding Paper
Development of a Spatial Methodology for Minimum Temperature Estimation for Early Frost Management in Agricultural Areas of Central Macedonia
by Kostas Chronopoulos, Elias Christoforides, Athanasios Kamoutsis and Ioulia Panagiotou
Environ. Earth Sci. Proc. 2025, 35(1), 55; https://doi.org/10.3390/eesp2025035055 - 29 Sep 2025
Viewed by 135
Abstract
This research develops a reliable methodology for estimating minimum temperature distribution in agricultural areas, focusing on frost conditions threatening crop production. The data was collected across the plain of Krya Vrysi in Central Macedonia. The approach uses linear regression equations between daily minimum [...] Read more.
This research develops a reliable methodology for estimating minimum temperature distribution in agricultural areas, focusing on frost conditions threatening crop production. The data was collected across the plain of Krya Vrysi in Central Macedonia. The approach uses linear regression equations between daily minimum temperatures from a central station and 12 autonomous temperature sensors with data loggers. Statistical analysis covered winter 2023–2024, with 2025 validation showing exceptional predictive capability—R2 values of 0.97–0.99 and RMSE of 0.34–0.58 °C. Spatial interpolation employed the Radial Basis Function with thin plate splines, effective for agricultural microclimatic interpolation. This methodology provides an operational frost prediction tool, enabling targeted interventions, reducing production losses and enhancing agricultural resilience. Full article
Show Figures

Figure 1

18 pages, 4016 KB  
Article
Evaluating Station–City Integration Performance in High-Speed Rail Station Areas: An NPI Model and Case Study in the Yangtze River Delta, China
by Yunli Zhai, Degen Wang, Meifeng Zhao and Leran Liangtang
Land 2025, 14(10), 1959; https://doi.org/10.3390/land14101959 - 28 Sep 2025
Viewed by 378
Abstract
Effective station–city integration is crucial for sustainable development around high-speed rail stations. However, research assessing public preferences regarding the aspects of this integration remains limited. We constructed a performance evaluation model for station–city integration in high-speed rail station areas. By considering the high-speed [...] Read more.
Effective station–city integration is crucial for sustainable development around high-speed rail stations. However, research assessing public preferences regarding the aspects of this integration remains limited. We constructed a performance evaluation model for station–city integration in high-speed rail station areas. By considering the high-speed rail station area in the Yangtze River Delta region as a research object, which is located in the metropolitan cities centered on Shanghai, China, we dissected the five dimensions of population, industry, land use, function, and environment into 15 indicators that flow into the three value objectives of attraction–retention–integration (NPI). Subsequently, we systematically analyzed the performance differentiation characteristics of station–city integration in the Yangtze River Delta region’s high-speed rail station areas by employing a multiple regression model to delve into the influence mechanisms affecting the performance differentiation patterns of station–city integration. Our findings indicate the following. (1) Regarding station–city integration performance grade differentiation, a few high-speed rail station areas in the Yangtze River Delta region exhibit a high-efficiency integration level, whereas more areas fall within the higher and general integration levels. (2) Spatially, the station–city integration performance in high-speed rail station areas within the Yangtze River Delta region exhibits a distinct distribution characterized by “high-grade point-block dependence and low-grade concentrated contiguous patches.” (3) The spatial distribution of the five dimensions of station–city integration performance exhibits significant disparities. (4) Regarding the development types of station–city integration performance advantages, efficient integration of stations and cities represents a multidimensional advantageous development type and higher integration falls into the same category. (5) Station–city integration performance results from the comprehensive effects of four factors: government policy inducement, station energy level attraction, station–city relationship adhesion, and urban energy level promotion. This study advances a systematic framework—encompassing performance measurement, mechanistic inquiry, and strategy formulation—for examining station–city integration in HSR station areas. By integrating the perspective of cyclical cumulative development into the node–place model from urban planning and geographical viewpoints, we articulate a new performance model that clarifies critical influencing factors and mechanisms, thus broadening the theoretical scope of HSR station area research. We believe that the NPI evaluation model can provide valuable insights for guiding the integrated development of high-speed rail station areas and enhancing the quality of urban development. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

18 pages, 8627 KB  
Article
Habitat Suitability and Relative Abundance of the European Wildcat (Felis silvestris) in the Southeastern Part of Its Range
by Despina Migli, Christos Astaras, Nikolaos Kiamos, Stefanos Kyriakidis, Yorgos Mertzanis, George Boutsis, Nikolaos Oikonomakis, Yiannis Tsaknakis and Dionisios Youlatos
Animals 2025, 15(19), 2816; https://doi.org/10.3390/ani15192816 - 26 Sep 2025
Viewed by 230
Abstract
The European wildcat exhibits considerable plasticity in its habitat requirements across its distribution, with differences increasing along a continental-scale latitudinal gradient. While wildcats often favor deciduous and mixed forests with dense cover and prey, studies show these preferences vary across their expansion. Range-wide [...] Read more.
The European wildcat exhibits considerable plasticity in its habitat requirements across its distribution, with differences increasing along a continental-scale latitudinal gradient. While wildcats often favor deciduous and mixed forests with dense cover and prey, studies show these preferences vary across their expansion. Range-wide conservation efforts will benefit from incorporating knowledge generated by robust regional ecological models. We used data from a large camera trap grid (n = 292 stations), spanning across eight wildcat-associated habitats, within its range in northern Greece, to understand the regional ecological parameters affecting the species’ habitat selection. We analyzed the data using single-season density-induced detection heterogeneity occupancy models (Royle–Nichols), considering 12 environmental and anthropogenic parameters. The global model’s GoF was high (p = 0.9). Elevation and percent forest cover were both significantly negatively related to wildcat occupancy (as derived from the modeled “relative abundance index” N). Likewise, there was a negative, but moderate, relation between distance to freshwater bodies and human settlements with wildcat occupancy. We used the model-average coefficients to generate a predictive map of wildcat relative abundance across northern Greece, which identified 47,930 km2 of potential wildcat habitat. Assuming a range of densities between 0.05 and 0.3 ind/km2 in areas with predicted low, medium, and high relative abundance, we speculate the putative wildcat population in northern Greece to be between 3535 and 7070 individuals. The findings, which vary from ecological models of the species in northern Europe, show the need for regional models and the importance of Greece, and the Balkan peninsula, for the species. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

23 pages, 2229 KB  
Article
Optimization of Electric Vehicle Charging Station Location Distribution Based on Activity–Travel Patterns
by Qian Zhang, Guiwu Si and Hongyi Li
ISPRS Int. J. Geo-Inf. 2025, 14(10), 373; https://doi.org/10.3390/ijgi14100373 - 25 Sep 2025
Viewed by 621
Abstract
With the rapid expansion of the electric vehicle (EV) market, optimizing the distribution of charging stations has attracted increasing attention. Unlike internal combustion engine vehicles, EVs are typically charged at the end of a trip rather than during transit. Therefore, analyzing EV users’ [...] Read more.
With the rapid expansion of the electric vehicle (EV) market, optimizing the distribution of charging stations has attracted increasing attention. Unlike internal combustion engine vehicles, EVs are typically charged at the end of a trip rather than during transit. Therefore, analyzing EV users’ charging preferences based on their activity–travel patterns is essential. This study seeks to improve the operational efficiency and accessibility of EV charging stations in Lanzhou City by optimizing their spatial distribution. To achieve this, a novel multi-objective optimization model integrating NSGA-III and TOPSIS is proposed. The methodology consists of two key steps. First, the NSGA-III algorithm is applied to optimize three objective functions: minimizing construction costs, maximizing user satisfaction, and maximizing user convenience, thereby identifying charging station locations that address diverse needs. Second, the TOPSIS method is employed to rank and evaluate various location solutions, ultimately determining the final sitting strategy. The results show that the 232 locations obtained by the optimization model are reasonably distributed, with good operational efficiency and convenience. Most of them are distributed in urban centers and commercial areas, which is consistent with the usage scenarios of EV users. In addition, this study demonstrates the superiority in determining the distribution of charging station locations of the proposed method. In summary, this study determined the optimal distribution of 232 EV charging stations in Lanzhou City using multi-objective optimization and ranking methods. The results are of great significance for improving the operational efficiency and convenience of charging station location optimization and offer valuable insights for other cities in northwestern China in planning their charging infrastructure. Full article
Show Figures

Figure 1

30 pages, 9380 KB  
Article
Optimal Planning of EVCS Considering Renewable Energy Uncertainty via Improved Thermal Exchange Optimizer: A Practical Case Study in China
by Haocheng Liu, Yongli Ruan, Yunmei He, Shuting Yang and Bo Yang
Processes 2025, 13(10), 3041; https://doi.org/10.3390/pr13103041 - 23 Sep 2025
Viewed by 254
Abstract
With the rapid development of distributed energy and electric vehicles (EVs), the limited hosting capacity of distribution networks has severely impacted their economic dispatch and safe operation. To address these challenges, in this work, an optimal planning model considering the uncertainty of wind [...] Read more.
With the rapid development of distributed energy and electric vehicles (EVs), the limited hosting capacity of distribution networks has severely impacted their economic dispatch and safe operation. To address these challenges, in this work, an optimal planning model considering the uncertainty of wind and solar power output is proposed, aiming to determine the location and capacity of electric vehicle charging stations (EVCSs). The model seeks to minimize the total costs, voltage fluctuations, and network losses, subject to constraints such as EV user satisfaction and grid company satisfaction. A multi-objective heat exchange optimization algorithm under Gaussian mutation (MOTEO-GM) is employed to validate the model on an extended IEEE-33 bus system and a real-world case in the University Town area of Chenggong District, Kunming City. Simulation results indicate that, in the test system, voltage fluctuations and system power losses are decreased by 43.05% and 37.47%, respectively, significantly enhancing the economic operation of the distribution grid. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

15 pages, 2276 KB  
Article
Study of Aircraft Icing Forecasting Methods and Their Application Scenarios over Eastern China
by Sha Lu, Chen Yang and Weixuan Shi
Forecasting 2025, 7(3), 53; https://doi.org/10.3390/forecast7030053 - 22 Sep 2025
Viewed by 388
Abstract
In this study, an aircraft icing diagnosis and forecasting method is constructed and hindcast for 25 collected spring icing cases over Eastern China based on two commonly used aircraft icing diagnostic methods (hereinafter referred to as the IC index method and the TF [...] Read more.
In this study, an aircraft icing diagnosis and forecasting method is constructed and hindcast for 25 collected spring icing cases over Eastern China based on two commonly used aircraft icing diagnostic methods (hereinafter referred to as the IC index method and the TF empirical method, respectively) and ERA5 reanalysis data as the atmospheric environmental field for icing occurrence. The spatial and temporal distribution characteristics of aircraft icing accumulation occurrence over typical cities at different latitudes in China are calculated separately, and the spatial and temporal distribution of icing accumulation areas over Xinchang, Zhejiang Province in China during one case of cold air activity is simulated. Accordingly, several application scenarios for the application of methods to forecast aircraft icing accumulation are proposed. The results indicate that among the selected icing cases, the diagnosis accuracy of the IC index method and the TF empirical method is 80% and 92%, respectively. The TF empirical method takes into account the effects of aircraft flight speed and dynamic warming, and shows better correlation with ice water particle concentration and cloud cover in medium and low clouds. However, the predicted icing accumulation intensity predicted by the TF empirical method is not accurate enough without the real flight speed of the aircraft, and there are more empty forecasts above 400 hPa. In practical applications, both the IC index method and the TF empirical method can effectively identify the icing-prone pressure levels and time periods and forecast the distribution of icing accumulation intensity at high pressure levels for a given station. Full article
Show Figures

Figure 1

18 pages, 3001 KB  
Article
Patterns and Synergistic Effects of Carbon Emissions Reduction from Shared Bicycles in the Central Urban District of Nanjing
by Ge Shi, Jiahang Liu, Jiaming Na, Chuang Chen, Hongyang Ma, Ziying Feng and Lin Sun
Systems 2025, 13(9), 828; https://doi.org/10.3390/systems13090828 - 21 Sep 2025
Viewed by 359
Abstract
With accelerated urbanization and the pursuit of the “dual carbon” goals, shared bicycles have re-emerged as a green travel option. This study focuses on the central urban area of Nanjing and develops a carbon emissions reduction (CER) estimation model for shared bicycles. By [...] Read more.
With accelerated urbanization and the pursuit of the “dual carbon” goals, shared bicycles have re-emerged as a green travel option. This study focuses on the central urban area of Nanjing and develops a carbon emissions reduction (CER) estimation model for shared bicycles. By analyzing spatio-temporal dimensions, it systematically assesses carbon reduction benefits and highlights the synergy with metro-connected travel. Key findings are as follows: (1) shared bicycles primarily support short-distance commuting, with a daily cycling pattern exhibiting a bi-modal distribution and a pronounced peak period demand; (2) cycling trips concentrate in densely populated and commercially vibrant zones, with a spatial pattern of central aggregation and multi-point diffusion; (3) each kilometer cycled by a shared bicycle reduces carbon emissions by about 96.19 g, with daily reductions of around 42.72 t and annual reductions up to 15,591.04 t; (4) the CER benefits of bicycle–metro integration are especially pronounced, contributing nearly 45.00% during peak periods; and (5) factors such as travel mode shifts, metro station layouts, and the development of electric vehicles continue to influence the CER benefits of shared bicycles. This work provides scientific evidence to inform urban green travel policies and transportation infrastructure optimization in cities. Full article
(This article belongs to the Special Issue Sustainable Urban Transport Systems)
Show Figures

Figure 1

Back to TopTop