Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,034)

Search Parameters:
Keywords = displacement pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 46021 KB  
Article
Cross-Scale Modeling of CFRP Stacking Sequence in Filament-Wound Composite Pressure Vessels: In-Plane and Inter-Layer Homogenization Analysis
by Ziqi Wang, Ji Shi, Xiaodong Zhao, Hui Li, Huiming Shen, Jianguo Liang and Jun Feng
Materials 2025, 18(19), 4612; https://doi.org/10.3390/ma18194612 - 5 Oct 2025
Abstract
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization [...] Read more.
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization method to achieve cross-scale modeling of carbon fiber-reinforced plastic (CFRP) layers, accounting for both lay-up sequence and in-plane FW diamond-shaped form. The stacking sequence in an FW Type IV composite pressure vessel is numerically investigated through ply modeling and cross-scale homogenization. The composite tank structure, featuring a polyamide PA66 liner, is designed for a working pressure of 70 MPa and comprises 12 helical winding layers and 17 hoop winding layers. An FW cross-undulation representative volume element (RVE) is developed based on actual in-plane mesostructures, suggesting an equivalent laminate RVE effective elastic modulus. Furthermore, six different lay-up sequences are numerically compared using ply models and fully and partially homogenized models. The structural displacements in both radial and axial directions are validated across all modeling approaches. The partial homogenization method successfully captures the detailed fiber-direction stress distribution in the innermost two hoop or helical layers. By applying the Hashin tensile failure criterion, the burst pressure of the composite tank is evaluated, revealing 7.56% deviation between the partial homogenization model and the ply model. Fatigue life analysis of the Type IV composite pressure vessel is conducted using ABAQUS® coupled with FE-SAFE, incorporating an S-N curve for polyamide PA66. The results indicate that the fatigue cycles of the liner exhibit only 0.28% variation across different stacking sequences, demonstrating that homogenization has a negligible impact on liner lifecycle predictions. The proposed cross-scale modeling framework offers an effective approach for multiscale simulation of FW composite pressure vessels, balancing computational efficiency with accuracy. Full article
10 pages, 689 KB  
Article
Sex Differences in Foot Arch Structure Affect Postural Control and Energy Flow During Dynamic Tasks
by Xuan Liu, Shu Zhou, Yan Pan, Lei Li and Ye Liu
Life 2025, 15(10), 1550; https://doi.org/10.3390/life15101550 - 3 Oct 2025
Abstract
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 [...] Read more.
Background: This study investigated sex differences in foot arch structure and function, and their impact on postural control and energy flow during dynamic tasks. Findings aim to inform sex-specific training, movement assessment, and injury prevention strategies. Methods: A total of 108 participants (53 males and 55 females) underwent foot arch morphological assessments and performed a sit-to-stand (STS). Motion data were collected using an infrared motion capture system, three-dimensional force plates, and wireless surface electromyography. A rigid body model was constructed in Visual3D, and joint forces, segmental angular and linear velocities, center of pressure (COP), and center of mass (COM) were calculated using MATLAB. Segmental net energy was integrated to determine energy flow across different phases of the STS. Results: Arch stiffness was significantly higher in males. In terms of postural control, males exhibited significantly lower mediolateral COP frequency and anteroposterior COM peak velocity during the pre-seat-off phase, and lower COM displacement, peak velocity, and sample entropy during the post-seat-off phase compared to females. Conversely, males showed higher anteroposterior COM velocity before seat-off, and greater anteroposterior and vertical momentum after seat-off (p < 0.05). Regarding energy flow, males exhibited higher thigh muscle power, segmental net power during both phases, and greater shank joint power before seat-off. In contrast, females showed higher thigh joint power before seat-off and greater shank joint power after seat-off (p < 0.05). Conclusions: Significant sex differences in foot arch function influence postural control and energy transfer during STS. Compared to males, females rely on more frequent postural adjustments to compensate for lower arch stiffness, which may increase mechanical loading on the knee and ankle and elevate injury risk. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

21 pages, 2866 KB  
Article
Evaluation of the Adaptive Behavior of a Shell-Type Elastic Element of a Drilling Shock Absorber with Increasing External Load Amplitude
by Andrii Velychkovych, Vasyl Mykhailiuk and Andriy Andrusyak
Vibration 2025, 8(4), 60; https://doi.org/10.3390/vibration8040060 - 2 Oct 2025
Abstract
Vibration loads during deep drilling are one of the main causes of reduced service life of drilling tools and emergency failure of downhole motors. This work investigates the adaptive operation of an original elastic element based on an open cylindrical shell used as [...] Read more.
Vibration loads during deep drilling are one of the main causes of reduced service life of drilling tools and emergency failure of downhole motors. This work investigates the adaptive operation of an original elastic element based on an open cylindrical shell used as part of a drilling shock absorber. The vibration protection device contains an adjustable radial clearance between the load-bearing shell and the rigid housing, which provides the effect of structural nonlinearity. This allows effective combination of two operating modes of the drilling shock absorber: normal mode, when the clearance does not close and the elastic element operates with increased compliance; and emergency mode, when the clearance closes and gradual load redistribution and increase in device stiffness occur. A nonconservative problem concerning the contact interaction of an elastic filler with a coaxially installed shaft and an open shell is formulated, and as the load increases, contact between the shell and the housing, installed with a radial clearance, is taken into account. Numerical finite element modeling is performed considering dry friction in contact pairs. The distributions of radial displacements, contact stresses, and equivalent stresses are examined, and deformation diagrams are presented for two loading modes. The influence of different cycle asymmetry coefficients on the formation of hysteresis loops and energy dissipation is analyzed. It is shown that with increasing load, clearance closure begins from local sectors and gradually covers almost the entire outer surface of the shell. This results in deconcentration of contact pressure between the shell and housing and reduction of peak concentrations of equivalent stresses in the open shell. The results confirm the effectiveness of the adaptive approach to designing shell shock absorbers capable of reliably withstanding emergency overloads, which is important for deep drilling where the exact range of external impacts is difficult to predict. Full article
(This article belongs to the Special Issue Vibration Damping)
Show Figures

Figure 1

23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

24 pages, 6313 KB  
Article
Research on the Internal Force Solution for Statically Indeterminate Structures Under a Local Trapezoidal Load
by Pengyun Wei, Shunjun Hong, Lin Li, Junhong Hu and Haizhong Man
Computation 2025, 13(10), 229; https://doi.org/10.3390/computation13100229 - 1 Oct 2025
Abstract
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces [...] Read more.
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces of statically indeterminate structures under such loads by using the displacement method. The key to displacement-based analysis lies in deriving the fixed-end moment formulas for local trapezoidal loads. Traditional methods, such as the force method, virtual beam method, or integral method, often involve complex computations. Therefore, this study aims to derive a general formula for fixed-end moments in statically indeterminate beams subjected to local trapezoidal loads by using the integral method, providing a more efficient and clear theoretical tool for engineering practice while addressing the limitations of existing educational and applied methodologies. The integral method is employed to derive fixed-end moment expressions for three types of statically indeterminate beams: (1) a beam fixed at both ends, (2) an an-end-fixed another-end-simple-support beam, and (3) a beam fixed at one end and sliding at the other. This approach eliminates the redundant equations of the traditional force method or the indirect transformations of the virtual beam method, directly linking boundary conditions through integral operations on load distributions, thereby significantly simplifying the solving process. Three representative numerical examples validate the correctness and universality of the derived formulas. The results demonstrate that the solutions obtained via the integral method align with software-calculated results, yet the proposed method yields analytical expressions for structural internal forces. Comparative analysis shows that the integral method surpasses traditional approaches (e.g., force method, virtual beam method) in terms of conceptual clarity and computational efficiency, making it particularly suitable for instructional demonstrations and rapid engineering calculations. The proposed integral method provides a systematic analytical framework for the internal force analysis of statically indeterminate structures under local trapezoidal loads, combining mathematical rigor with engineering practicality. The derived formulas can be directly applied to real-world designs, substantially reducing computational complexity. Moreover, this method offers a more intuitive theoretical case for structural mechanics education, enhancing students’ understanding of the mathematical–mechanical relationship between loads and internal forces. The research outcomes hold both theoretical significance and practical engineering value, establishing a solving paradigm for the displacement-based analysis of statically indeterminate structures under complex local trapezoidal loading conditions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

12 pages, 1340 KB  
Article
Research on Well Depth Tracking Calculation Method Based on Branching Parallel Neural Networks
by Weikai Liu, Baoquan Ma and Xiaolei Yu
Processes 2025, 13(10), 3147; https://doi.org/10.3390/pr13103147 - 30 Sep 2025
Abstract
Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field [...] Read more.
Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field example. After analyzing and correcting the quality of the logging data collected on site by using DBSCAN (a density clustering algorithm), five parameters of WOB, rotating speed, displacement, pump pressure, and torque are selected to predict and calculate the downhole mechanical ROP. Adjust the structure of a traditional artificial BP neural network and design a multi-branch parallel neural network, change the basic architecture of the original hierarchical operation, make full use of the operation efficiency of a computer to realize parallel operation, and adopt the method of point-to-point depth comparison when evaluating the well depth tracking effect. The results indicate that the MAE and mechanical drilling rate evaluation values obtained were 1.18 and 0.873, respectively. The multi-branch parallel neural network achieved a 66.55% improvement in MAE compared to the original BP neural network, while the R2 evaluation method showed a 61.82% increase. The average point-by-point comparison error in the example calculation was 0.012 m, with a maximum error of 0.268 m. This result can serve as a fundamental basis for judging changes in well depth during the drilling process. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

27 pages, 10626 KB  
Article
Meshless Time–Frequency Stochastic Dynamic Analysis for Sandwich Trapezoidal Plate–Shell Coupled Systems in Supersonic Airflow
by Ningze Sun, Guohua Gao, Dong Shao and Weige Liang
Aerospace 2025, 12(10), 880; https://doi.org/10.3390/aerospace12100880 - 29 Sep 2025
Abstract
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a [...] Read more.
In this paper, a full-domain stochastic response analysis is performed based on the meshless method to reveal the time–frequency dynamic characteristics, including the power spectral density (PSD) responses in the frequency domain and the evolving PSD distribution in the time domain for a sandwich trapezoidal plate–shell coupled system. The general governing equations are derived based on the first-order shear deformation theory (FSDT), linear piston theory and Hamilton’s principle, and the stochastic excitation is integrated into the meshless framework based on the pseudo-excitation method (PEM). By constructing the meshless shape function covering the entire structural domain from Chebyshev polynomials and discretizing the continuous domain into a series of nodes within a square definition domain, the points are assembled according to the sequence number and the equilibrium relationship on the coupling edge to obtain the overall vibration equations. The validity is demonstrated by matching the mode shapes, PSD responses, time history displacement and critical flutter boundaries with FEM simulation and reported data. Finally, the time–frequency characteristics of each substructure under global and single stochastic excitation, and the effect of aerodynamic pressure on full-domain stochastic vibration, are revealed. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 3082 KB  
Article
Horizontal Wellbore Stability in the Production of Offshore Natural Gas Hydrates via Depressurization
by Zhengfeng Shan, Zhiyuan Wang, Shipeng Wei, Peng Liu, En Li, Jianbo Zhang and Baojiang Sun
Sustainability 2025, 17(19), 8738; https://doi.org/10.3390/su17198738 - 29 Sep 2025
Abstract
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research [...] Read more.
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research on the stability of screen pipes during horizontal-well hydrate production is currently limited, its importance in sustainable energy extraction is growing. This study therefore considers the effects of hydrate phase change, gas–water seepage, energy and mass exchange, reservoir deformation, and screen pipe influence and develops a coupled thermal–fluid–solid–chemical field model for horizontal-well natural gas hydrate production. The model results were validated using experimental data and standard test cases from the literature. The results obtained by applying this model in COMSOL Multiphysics 6.1 showed that the errors in all simulations were less than 2%, with errors of 12% and 6% observed at effective stresses of 0.5 MPa and 3 MPa, respectively. The simulation results indicate that the presence of the screen pipe in the hydrate reservoir exerts little effect on the decomposition of gas hydrates, but it effectively mitigates stress concentration in the near-wellbore region, redistributing the effective stress and significantly reducing the instability risk of the hydrate reservoir. Furthermore, the distribution of mechanical parameters around the screen pipe is uneven, with maximum values of equivalent Mises stress, volumetric strain, and displacement generally occurring on the inner side of the screen pipe in the horizontal crustal stress direction, making plastic instability most likely to occur in this area. With other basic parameters held constant, the maximum equivalent Mises stress and the instability area within the screen increase with the rise in the production pressure drop and wellbore size, and the decrease in screen pipe thickness. The results of this study lay the foundation for wellbore instability control in the production of offshore natural gas hydrates via depressurization. The study provides new insights into sustainable energy extraction, as improving wellbore stability during the extraction process can enhance resource utilization, reduce environmental impact, and promote sustainable development in energy exploitation. Full article
Show Figures

Figure 1

22 pages, 3551 KB  
Article
Research on the Dynamic Response Characteristics of Soft Coal Under Impact Disturbance Based on Hamilton
by Feng Li, Tianyi Zhang, Chenchen Wang and Binchan Tian
Appl. Sci. 2025, 15(19), 10443; https://doi.org/10.3390/app151910443 - 26 Sep 2025
Abstract
To address the limitations of traditional elasticity theory in analyzing the dynamic response of soft coal under external impact, this study establishes a vibration control equation with an analytical solution based on Hamiltonian mechanics. Key control parameters within the equation were solved to [...] Read more.
To address the limitations of traditional elasticity theory in analyzing the dynamic response of soft coal under external impact, this study establishes a vibration control equation with an analytical solution based on Hamiltonian mechanics. Key control parameters within the equation were solved to determine the theoretical dominant vibration modes and natural frequencies of the weakest coal layer. Triangular and rectangular waves were transformed via FFT to analyze their harmonic components, and the superposition of the first four harmonics was selected as the input impact signal. The modal and natural frequency changes during the fragmentation of the central weak zone under external impact were simulated, and the dynamic displacement response was analyzed. The results indicate a strong response frequency range of 4.4–5.2 Hz, with the rectangular wave identified as the most effective response waveform. A similarity simulation platform was constructed, and experimental data showed that the velocity and displacement response trend of the coal mass aligned closely with theoretical predictions. Therefore, in actual underground operations, emphasis should be placed on monitoring low-frequency vibrations in mines, minimizing rectangular wave disturbances in the low-frequency range, and implementing pressure relief measures in high-risk zones to reduce the likelihood of coal and gas outbursts. By separately modeling high-risk zones and analyzing their dynamic response under external impact, this study explains the outburst mechanism of the weakest layer in soft coal from a dynamic perspective. Combining theoretical and experimental approaches, it provides a new theoretical basis for understanding and preventing coal and gas outbursts. Full article
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Influence of Bedding Angle on Mechanical Behavior and Grouting Reinforcement in Argillaceous Slate: Insights from Laboratory Tests and Field Experiments
by Xinfa Zeng, Chao Deng, Quan Yin, Yi Chen, Junying Rao, Yi Zhou and Wenqin Yan
Appl. Sci. 2025, 15(19), 10415; https://doi.org/10.3390/app151910415 - 25 Sep 2025
Abstract
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering [...] Read more.
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering field. In this study, with bedding dip angle as the key variable, mechanical tests such as uniaxial compression, triaxial compression, direct shear, and Brazilian splitting tests were conducted on AS. Additionally, field anchoring grouting diffusion tests on AS slopes were carried out. The aim is to investigate the basic mechanical properties of AS and the grout diffusion law under different bedding dip angles. The research results indicate that the bedding dip angle has a remarkable influence on the failure mode, stress–strain curve, and mechanical indices such as compressive strength and elastic modulus of AS specimens. The stress–strain curves in uniaxial and triaxial tests, as well as the stress-displacement curve in the Brazilian splitting test, all undergo four stages: crack closure, elastic deformation, crack propagation, and post-peak failure. As the bedding dip angle increases, the uniaxial and triaxial compressive strengths and elastic modulus first decrease and then increase, while the splitting tensile strength continuously decreases. The consistency of the bedding in AS causes the grout to diffuse in a near-circular pattern on the bedding plane centered around the borehole. Among the factors affecting the diffusion range of the grout, the bedding dip angle and grouting angle have a relatively minor impact, while the grouting pressure has a significant impact. A correct understanding and grasp of the anisotropic characteristics of AS and the anchoring grouting diffusion law are of great significance for slope stability assessment and anchoring design in AS areas. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

21 pages, 1708 KB  
Article
Response of a Cantilever Beam Equipped with a Particle Damper Subjected to Impact Load
by Mehrdad Karimipetanlar and Usama El Shamy
Buildings 2025, 15(19), 3463; https://doi.org/10.3390/buildings15193463 - 25 Sep 2025
Abstract
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with [...] Read more.
The behavior of a cantilever beam equipped with a particle damper, subjected to impact loads at various locations, was investigated using the discrete element method (DEM). The flexible cantilever steel beam and the particle damper attached to the beam’s tip were modeled with bonded particles through DEM. Computational simulations were conducted to explore the influence of different particle damper porosities and positions along the beam’s length. It was observed that reducing the particle damper’s porosity decreases the beam’s displacement. The impact force was significantly influenced by the porosity, where having lower porosities resulted in higher impact forces. In addition, the time intervals between sub-impacts were also affected by the damper’s porosity, showing a reduction as the porosity of the damper decreases. The unique type of particle damper used in this study contained sand grains as fillers and was capable of pressurizing the sand within its housing. This feature was utilized to investigate the effect of different initial pressures on the beam’s response. It was revealed that an increase in initial pressure reduces the beam’s displacement. Based on the results obtained, the optimal location for the particle damper was determined to be at the point where displacement reduction is required. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

20 pages, 4027 KB  
Article
Experimental and Numerical Study of Damage Evolution and Fracture Characteristics of Three-Layer Composite Rocks Under Dynamic Loading
by Huajun Xue, Yanbing Wang, Weihong Yang, Pengda Zhang, Hui Xiao, Yaoyao Zhang and Yuanjian Zhang
Appl. Sci. 2025, 15(19), 10369; https://doi.org/10.3390/app151910369 - 24 Sep 2025
Viewed by 52
Abstract
In order to study the damage evolution and fracture characteristics of rock with different composite modes in three layers under dynamic loading, rock specimens with different composite modes were made by using three materials: sandstone, marble and granite. The dynamic fracture impact test [...] Read more.
In order to study the damage evolution and fracture characteristics of rock with different composite modes in three layers under dynamic loading, rock specimens with different composite modes were made by using three materials: sandstone, marble and granite. The dynamic fracture impact test was carried out by using the Hopkinson pressure bar impact loading system, the voltage signal on the Hopkinson pressure bar was calculated and processed, and the crack propagation mode of the specimen was captured by using a high-speed camera, and the stress wave characteristics, stress time–history relationship and energy change characteristics of rocks with different composite modes were studied. At the same time, combined with Distinct Lattice Spring Model numerical simulation, the fracture process of the specimen was inverted, and the changes in stress intensity factor, stress change and load–displacement change in monitoring point were analyzed to compare the dynamic fracture behavior differences between different composite rocks. The results show that the dynamic fracture process captured by the high-speed camera has a good fit with the crack propagation process simulated by numerical simulation. When marble is used as the upper material, the energy transmittance is larger, and the transmission energy ratio between sandstone and granite is basically the same due to the large difference in hardness. When the comprehensive hardness of the specimen is the same, the smaller the hardness of the material at the cracking position, the faster the cracking will be, and the smaller the hardness of the second layer of the specimen at the cracking position, the faster the cracking speed of the specimen. In terms of dynamic fracture toughness, for specimens with little difference in hardness, when the impact end material is sandstone, the dynamic fracture extreme value of the specimen is lower, and when the sandstone material is used as the impact end material, it is more likely to crack. When the first layer of material is the same, the dynamic fracture toughness of the specimen with less hardness of the second layer of material is smaller, and the easier the crack development is. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

17 pages, 6318 KB  
Article
Genetic Diversity of Potato Leafroll Virus (Polerovirus PLRV) Is Shaped by Variant Displacements and Selective Pressures Imposed by Aphid and Tuber Transmission Routes
by Graham H. Cowan, Catherine Thomson, Emma Back, Lesley Torrance, Christophe Lacomme and Eugene V. Ryabov
Viruses 2025, 17(10), 1294; https://doi.org/10.3390/v17101294 - 24 Sep 2025
Viewed by 61
Abstract
Potato leafroll virus (PLRV, species Polerovirus PLRV) is a major pathogen affecting potatoes worldwide. Since 2018, PLRV incidence has increased in Scottish potato crops. Deep sequencing of PLRV in Scottish potato plants revealed the prevalence of a novel PLRV type which became [...] Read more.
Potato leafroll virus (PLRV, species Polerovirus PLRV) is a major pathogen affecting potatoes worldwide. Since 2018, PLRV incidence has increased in Scottish potato crops. Deep sequencing of PLRV in Scottish potato plants revealed the prevalence of a novel PLRV type which became predominant in 2023, displacing the phylogenetically distinct variants that have been present in the region since at least 1989. Analysis of the infection dynamics of the cDNA clone-derived PLRV isolates in potato plants indicated that the novel PLRV may accumulate to higher levels compared to the historic one. Analysis of the genetic diversity of PLRV in early and late field generations (FGs) of seed potatoes showed a significantly reduced genetic diversity of the PLRV structural genes in the early FGs compared to the late FGs, while divergency of the non-structural genes remained similar across all FGs. Considering that late FGs are more likely to be infected with PLRV via tuber transmission, and early FGs via aphid transmission, these findings suggest that aphid transmission imposes a genetic bottleneck on the structural genes of PLRV, but not on its non-structural genes. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

11 pages, 2157 KB  
Article
Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy
by Xiaoxia Yan, Nichola Wilson, Chengyan Sun and Yanxin Zhang
Sensors 2025, 25(18), 5911; https://doi.org/10.3390/s25185911 - 21 Sep 2025
Viewed by 196
Abstract
Children with cerebral palsy (CP) have impaired standing balance ability, caused by increased muscle tone, muscle weakness, and joint deformity. It is necessary to investigate standing balance for children with CP. Compared with postural stability assessment using force plates, OpenCap has the potential [...] Read more.
Children with cerebral palsy (CP) have impaired standing balance ability, caused by increased muscle tone, muscle weakness, and joint deformity. It is necessary to investigate standing balance for children with CP. Compared with postural stability assessment using force plates, OpenCap has the potential to be used utilized as a cost-effective standing balance assessment tool, providing details about the center of mass (CoM) and joint angles. This study aims to evaluate the feasibility of using OpenCap for standing balance assessment in children with CP by (i) examining the validity of OpenCap-based CoM parameters against force plate center of pressure (CoP) measures and (ii) exploring associations between joint angles and CoM displacement. Twenty-two children with CP completed standing balance trials on a force plate-based balance tester while two smartphones recorded synchronized videos for OpenCap processing. For the correlation between CoM parameters and CoP parameters, Pearson’s R values were from 0.39 to 0.94 between the two systems. After correcting the CoM parameters, the R2 values ranged from 0.98 to 1.00. Regarding the relationship between the joint angles and CoM, maximum and minimum sagittal angles in the ankle were corrected with CoM displacement along the x-axis. These findings suggest that OpenCap may be a potential, cost-effective tool for standing balance assessment in children with CP. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop