Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = displacement front

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5104 KB  
Article
Analysis of the Effectiveness Mechanism and Research on Key Influencing Factors of High-Pressure Water Injection in Low-Permeability Reservoirs
by Yang Li, Hualei Xu, Shanshan Fu, Hongtao Zhao, Ziqi Chen, Xuejing Bai, Jianyu Li, Chunhong Xiu, Lianshe Zhang and Jie Wang
Processes 2025, 13(8), 2664; https://doi.org/10.3390/pr13082664 - 21 Aug 2025
Viewed by 230
Abstract
Low-permeability oil reservoirs, due to their weak seepage capacity and high start-up pressure, have limited yield-increasing effects through conventional water injection development methods. High-pressure water injection can significantly change the seepage environment around the well and within the reservoir, expand the effective swept [...] Read more.
Low-permeability oil reservoirs, due to their weak seepage capacity and high start-up pressure, have limited yield-increasing effects through conventional water injection development methods. High-pressure water injection can significantly change the seepage environment around the well and within the reservoir, expand the effective swept volume of injected water, and thereby greatly enhance the oil recovery rate of water flooding. However, there is still a relative lack of research on the mechanism of high-pressure water injection stimulation and its influencing factors. This paper systematically analyzes the effectiveness mechanism of high-pressure water injection technology in the exploitation of low-permeability reservoirs. The internal mechanism of high-pressure water injection for effective fluid drive and production increase is explained from the aspects of low-permeability reservoir seepage characteristics, capacity expansion and permeability enhancement by high-pressure water injection, and the dynamic induction of micro-fractures. Based on geological and engineering factors, the main factors affecting the efficiency enhancement of high-pressure water injection are studied, including formation deficit, reservoir heterogeneity, dominant channel development and fracturing stimulation measures, injection displacement and micro-fractures, etc. The results of numerical simulation showed the following: (1) formation depletion, reservoir heterogeneity, and the formation of dominant channels significantly affected the effect of water flooding development and (2) engineering factors such as the fracture direction of hydraulic fracturing, water injection rate, and the development of micro-fractures under high-pressure water injection directly determined the propagation path of reservoir pressure, the breakthrough speed of the water drive front, and the ultimate recovery factor. Therefore, during the actual development process, the construction design parameters of high-pressure water injection should be reasonably determined based on the geological reservoir conditions to maximize the oil production increase effect of high-pressure water injection. This study can successfully provide theoretical guidance and practical support for the development of low-permeability oil reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

38 pages, 9897 KB  
Article
Experimental Investigation of Synergistic Enhanced Oil Recovery by Infill Well Pattern and Chemical Flooding After Polymer Flooding
by Xianmin Zhang, Junzhi Yu, Lijie Liu, Xilei Liu, Xuan Lu and Qihong Feng
Gels 2025, 11(8), 660; https://doi.org/10.3390/gels11080660 - 19 Aug 2025
Viewed by 226
Abstract
Well pattern infill adjustment combined with chemical flooding is an important technical approach for significantly improving oil recovery in high-water-cut reservoirs after polymer flooding. Current research predominantly focuses on the evaluation of oil displacement potential through either well pattern infilling or chemical flooding [...] Read more.
Well pattern infill adjustment combined with chemical flooding is an important technical approach for significantly improving oil recovery in high-water-cut reservoirs after polymer flooding. Current research predominantly focuses on the evaluation of oil displacement potential through either well pattern infilling or chemical flooding alone, while systematic experimental investigations and mechanism studies on the synergistic effect of well pattern infilling and chemical flooding remain insufficient. To overcome the limitations of single adjustment measures, this study proposes a synergistic improved oil recovery (IOR) strategy integrating branched preformed particle gel (B-PPG) heterogeneous phase composite flooding (HPCF) with well pattern infill adjustment. Two-dimensional visual physical simulation experiments are conducted to evaluate the synergistic oil displacement effects of different displacement systems and well pattern adjustment strategies after polymer flooding and to elucidate the synergistic IOR mechanisms under the coupling of dense well patterns and chemical flooding. The experimental results demonstrate that, under well pattern infill conditions, the HPCF system exhibits significant water control and oil enhancement effects during the chemical flooding stage, achieving a 29.95% increase in stage recovery compared to the water flooding stage. The system effectively blocks high-permeability channels while enhancing displacement in low-permeability zones through a coupling effect, thereby significantly expanding the displacement sweep volume, improving displacement uniformity, and efficiently mobilizing the remaining oil in low-permeability and residual oil-rich areas. Meanwhile, well pattern infill adjustment optimizes the injection–production well pattern layout, shortens the inter-well spacing, and effectively increases the displacement pressure differential between injection and production wells. This induces disturbances and reconfiguration of the streamline field, disrupts the original high-permeability channel-dominated flow regime, further expands the sweep range of the remaining oil, and substantially improves overall oil recovery. The findings of this study enrich and advance the theoretical framework of water control and potential tapping, as well as synergistic IOR mechanisms, in high-water-cut and strongly heterogeneous reservoirs, providing a reliable theoretical and technical basis for the efficient development and remaining oil recovery in such reservoirs during the late production stage. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

13 pages, 324 KB  
Article
Investigation of the Durability Issue in the Bending of a Thin-Walled Rod with Multimodular Properties
by Mehman Hasanov, Subhan Namazov, Khagani Abdullayev and Sahib Piriev
J. Compos. Sci. 2025, 9(8), 437; https://doi.org/10.3390/jcs9080437 - 14 Aug 2025
Viewed by 270
Abstract
This article investigates the problem of bending failure in a rectilinear thin-walled rod consisting of a multimodular material exhibiting different elastic properties in tension and compression, with applications to the structural design of space satellites, unmanned aerial vehicles, aeronautical systems, and nano- and [...] Read more.
This article investigates the problem of bending failure in a rectilinear thin-walled rod consisting of a multimodular material exhibiting different elastic properties in tension and compression, with applications to the structural design of space satellites, unmanned aerial vehicles, aeronautical systems, and nano- and micro-class satellites. Nonlinear differential equations have been formulated to describe the propagation of the failure front under transverse loading. Formulas for determining the incubation period of the failure process have been derived, and the problem has been solved. Based on the developed model, new analytical expressions have been obtained for the displacement of the neutral axis, the stiffness of the rod, the distribution of maximum stresses, and the motion of the failure front. The influence of key parameters—such as the singularity coefficient of the damage nucleus and the ratio of the elastic moduli—on the service life and failure dynamics of the rod has been analyzed. Using the obtained results, the effect of the multimodular properties on the long-term strength of thin-walled rods under pure bending has been thoroughly studied. The analysis of the constructed curves shows that an increase in the “fading of memory” (memory-loss) parameter, which characterizes the material’s ability to quickly “forget” previous loadings and return to equilibrium, can, in certain cases, lead to a longer service life. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

17 pages, 2488 KB  
Article
Multi-Objective Optimization of 12-Pole Radial Active Magnetic Bearings with Preference-Based MOEA/D Algorithm
by Xueqing Li, Xiaoyuan Wang and Haoyu Shen
Energies 2025, 18(16), 4299; https://doi.org/10.3390/en18164299 - 12 Aug 2025
Viewed by 266
Abstract
In this paper, the multi-objective optimization of the 12-pole radial active magnetic bearing (RAMB) is investigated. In the optimization of the RAMB, the decision-maker is more interested in the Pareto-optimal solutions in a certain region. This paper proposes a decomposition-based and preference-based multi-objective [...] Read more.
In this paper, the multi-objective optimization of the 12-pole radial active magnetic bearing (RAMB) is investigated. In the optimization of the RAMB, the decision-maker is more interested in the Pareto-optimal solutions in a certain region. This paper proposes a decomposition-based and preference-based multi-objective evolutionary algorithm (MOEA/D-Pref). The proposed MOEA/D-Pref not only allows the number of Pareto-optimal solutions to be more concentrated in the region of interest but also preserves solutions in other regions. These preserved solutions enable decision-makers to observe a more complete Pareto front, thus gaining more comprehensive insights. In this paper, a mathematical model of the 12-pole RAMB is established, and, with the help of this model and the proposed algorithm, the optimal design of the 12-pole RAMB is completed. The difference between the current stiffness coefficients of the optimized RAMB, calculated by the proposed algorithm and by the finite element method, is 2.3%. The difference between the displacement stiffness coefficient of the optimized RAMB as calculated by the proposed algorithm and by the finite element method is 3.9%. These differences, being less than 4%, are relatively low and verify the reliability of the mathematical model established. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

12 pages, 1987 KB  
Article
Study on the Microscopic Mechanism of Supercritical CO2 and Active Water Alternating Flooding in a Tight Oil Reservoir
by Bin Wang, Jingfeng Dong, Peiyao Zhou and Kaixin Liu
Processes 2025, 13(8), 2535; https://doi.org/10.3390/pr13082535 - 12 Aug 2025
Viewed by 333
Abstract
Tight oil reservoirs are characterized by low porosity, low permeability, and low saturation, making it difficult to achieve economic development through conventional water injection. This study experimentally evaluated different injection media and oil displacement methods and used nuclear magnetic resonance methods to explain [...] Read more.
Tight oil reservoirs are characterized by low porosity, low permeability, and low saturation, making it difficult to achieve economic development through conventional water injection. This study experimentally evaluated different injection media and oil displacement methods and used nuclear magnetic resonance methods to explain the micro mechanisms of oil displacement during different oil displacement processes. The experiments showed that supercritical CO2 flooding and supercritical CO2 and active water alternating flooding were much more useful for low-permeability reservoirs compared with conventional water flooding. This technology can increase the recovery rate by more than 12.0%, which is 33.24% higher than the rate achieved with conventional water injection. In addition, it can effectively improve the rapid increase in water content caused by the rapid advance in the water front during the water injection process. The NMR results indicated good consistency for the recovery efficiency of pores under different oil displacement conditions. When the aperture varied between 0.1 µm and 1 µm (type III), the utilization rate was highest, followed by type IV (1–10 µm), type II (0.01–0.1 µm), and type I (0.001–0.01 µm). By comparison, conventional water and CO2 alternating flooding was more effective for type III pores, increasing oil recovery by 12.58%, while active water + CO2 alternating flooding can further drive oil, increasing oil recovery by 33.24% and greatly displacing oil in micro-pores and macro-pores. Full article
Show Figures

Figure 1

20 pages, 4410 KB  
Article
Experimental Investigation on the Hydraulic Characteristics of Self-Rotating Flood Barrier
by Jooyeon Lee, Byoungjoon Na and Sang-Ho Oh
J. Mar. Sci. Eng. 2025, 13(8), 1542; https://doi.org/10.3390/jmse13081542 - 11 Aug 2025
Viewed by 309
Abstract
This study investigated the hydraulic characteristics of a self-rotating flood barrier (SRFB) by performing laboratory experiments. The SRFB is proposed as a secure solution to withstand both waves and sudden water level rise, thereby protecting the coastal area behind it. The SRFB is [...] Read more.
This study investigated the hydraulic characteristics of a self-rotating flood barrier (SRFB) by performing laboratory experiments. The SRFB is proposed as a secure solution to withstand both waves and sudden water level rise, thereby protecting the coastal area behind it. The SRFB is designed to rotate and rise automatically by buoyancy when the water level exceeds a certain threshold or waves start to overtop the crest level of the caisson, where the barrier is enclosed. The barrier begins to rise when the chamber is filled with enough water for the buoyancy force to exceed its own weight. The performance of the structure was tested under various regular wave conditions at different water depths. Pressure transducers were placed along the front face of the barrier to measure the wave pressures acting on it. The barrier’s angular displacement was also identified using synchronized video footage during the measurements. The results showed that the overall magnitude of the measured pressures increased with water depth due to the larger volume of water inflow from overtopping waves. During the rise in the barrier, the pressure profiles dynamically varied with the rotation angle as the pattern of water flow into the chamber changed depending on the test cases. Analysis results showed how the pressures are distributed along the barrier at the moment of peak wave force. These findings would provide fundamental information for estimating design wave forces on the structure. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

19 pages, 6386 KB  
Article
Process–Structure Co-Optimization of Glass Fiber-Reinforced Polymer Automotive Front-End Module
by Ziming Chen, Pengcheng Guo, Longjian Tan, Tuo Ye and Luoxing Li
Materials 2025, 18(13), 3121; https://doi.org/10.3390/ma18133121 - 1 Jul 2025
Viewed by 421
Abstract
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a [...] Read more.
For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a process–structure co-optimization approach for GFRP components. In this paper, the performance of a front-end module is evaluated through topological structure design, injection molding process optimization, and simulation with mapped injection molding history, followed by experimental validation and analysis. Under ±1000 N loading, the initial design shows excessive displacement at the latch mounting points (2.254 mm vs. <2.0 mm limit), which is reduced to 1.609 mm after topology optimization. By employing a sequential valve control system, the controls of the melt line and fiber orientation are is superior to thatose of conventional gating systems. The optimal process parameter combination is determined through orthogonal experiments, reducing the warpage to 1.498 mm with a 41.5% reduction compared to the average warpage of the orthogonal tests. The simulation results incorporating injection molding data mapping (fiber orientation, residual stress–strain) show closer agreement with experimental measurements. When the measured displacement exceeded 0.65 mm, the average relative error Er, range R, and variance s2 between the experimental results and mapped simulations were 11.78%, 14%, and 0.002462, respectively, validating the engineering applicability of this method. The methodology and workflow can provide methodological support for the design and performance assessment of GFRP automotive body structures, which enhances structural rigidity, improves control over injection molding process defects, and elevates the reliability of performance evaluation. Full article
Show Figures

Figure 1

23 pages, 12735 KB  
Article
Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary
by Qiyao Zhao, Qibin Lao, Chao Wang, Sihai Liu and Fajin Chen
Remote Sens. 2025, 17(13), 2165; https://doi.org/10.3390/rs17132165 - 24 Jun 2025
Viewed by 437
Abstract
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This [...] Read more.
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This study captured two distinct types of typhoons, namely Merbok (2017) and Nuri (2020), which landed from the right and left sides of the Pearl River Estuary (PRE), respectively, utilizing satellite remote sensing data to study their impacts on frontal dynamics and marine productivity. We found that after both typhoons, the southwest monsoon amplified geostrophic currents significantly (increased ~14% after Nuri (2020) and 48% after Merbok (2020)). These stronger currents transported warmer offshore seawater from the South China Sea to the PRE and intensified the frontal activities in nearshore PRE (increased ~47% after Nuri (2020) and ~2.5 times after Merbok (2020)). The ocean fronts limited the transport of high-chlorophyll and eutrophic water from the PRE to the offshore waters due to the barrier effect of the front. This resulted in a sharp drop in chlorophyll concentrations in the offshore-adjacent waters of PER after Typhoon Nuri (2020) (~37%). By contrast, despite the intensified geostrophic current induced by the summer monsoon following Typhoon Merbok (2020), its stronger offshore force, driven by the intense offshore wind stress (characteristic of the left-side typhoon), caused the nearshore front to move offshore. The displacement of fronts lifted the restriction of the front barrier and led more high-chlorophyll (increased ~4 times) and eutrophic water to be transported offshore, thereby stimulating offshore algal blooms. Our findings elucidate the mechanisms by which different track typhoons influence chlorophyll distribution through changes in frontal dynamics, offering new perspectives on the coastal ecological impacts of typhoons and further studies for typhoon impact modeling or longshore management. Full article
Show Figures

Figure 1

23 pages, 11085 KB  
Article
Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country
by Yonghong Xiao, Lu Wei and Xianghong Liu
Sustainability 2025, 17(12), 5639; https://doi.org/10.3390/su17125639 - 19 Jun 2025
Viewed by 392
Abstract
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country [...] Read more.
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country was taken as a case study. Based on the field geological investigation, combined with physical and mechanical experiments in laboratory as well as numerical simulation, the failure mechanism induced by rainfall infiltration was studied, and the movement process after landslide failure was inverted. The results show that the pore-water pressure within 2 m of the landslide body increases significantly and the factory of safety (Fs) has a good corresponding relationship with rainfall, which decreased to 0.978 after the heavy rainstorm on July 5 and July 6 in 2020. The maximum shear strain and displacement are concentrated at the foot and front edge of the landslide, which indicates a “traction type” failure mode of the Baishizu No. 15 landslide. In addition, the maximum displacement during landslide instability is about 0.5 m. The residual strength of soils collected from the soil–rock interface shows significant rate-strengthening, which ensures that the Baishizu No. 15 landslide will not exhibit high-speed and long runout movement. The rate-dependent friction coefficient of sliding surface was considered to simulate the movement process of the Baishizu No. 15 landslide by using PFC2D. The simulation results show that the movement velocity exhibited obvious oscillatory characteristics. After the movement stopped, the landslide formed a slip cliff at the rear edge and deposited as far as the platform at the front of the slope foot but did not block the road ahead. The final deposition state is basically consistent with the on-site investigation. The research results of this paper can provide valuable references for the disaster prevention, mitigation, and risk assessment of shallow landslides on residual soil slopes in the Dabie mountainous region. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

14 pages, 3831 KB  
Article
Research on Online Non-Contact Test Device and Test Method for Bearing Stiffness of Electric Spindle
by Chuanhai Chen, Liang Zhang, Chunlei Hua, Zhifeng Liu, Qingyu Meng and Junze Shi
Machines 2025, 13(6), 516; https://doi.org/10.3390/machines13060516 - 13 Jun 2025
Viewed by 467
Abstract
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and [...] Read more.
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and displacement detection components, which can collect the load loading and displacement data of electric spindle bearings under machine state in real time. The radial and axial loads can be applied at the same time, and the displacement detection component adopts a high-precision displacement sensor, which can measure the displacement data generated by the electric spindle bearing under the action of the excitation component in real time. A magnetic loading method was proposed for testing the supporting stiffness of the front and rear bearings in electric spindles along the three orthogonal directions of radial X/Y and axial Z. According to the designed device and test method, the dynamic support stiffness of an electric spindle bearing in a vertical machining center is tested, and the variation trend of the bearing support stiffness under the combined action of axial load, radial load and rotational speed is analyzed. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 7600 KB  
Article
Experimental Study on a Laterally Loaded Pile Under Scour Condition Using Particle Image Velocimetry Technology
by Feng Yu, Xiaofeng Yang, Zhaoming Yao and Yaoyao Meng
J. Mar. Sci. Eng. 2025, 13(6), 1125; https://doi.org/10.3390/jmse13061125 - 4 Jun 2025
Viewed by 456
Abstract
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity [...] Read more.
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity and impacting the normal operation of offshore wind turbines. A series of 1 g model tests is conducted to investigate the lateral load response and scouring response of the monopile in sand. Based on the experimental results, the characteristics of the pile’s load-displacement curves, bending moments, and p-y curves under the effects of scour were analyzed. Particle Image Velocimetry technology was adopted to analyze the deformation development rules of soil particles around the pile. It is found that under the same lateral load, the maximum bending moment of the pile increases and the bearing capacity is reduced as the scour depth increases, the scour width increases, or the scour slope decreases. The effects of scour depth, slope, and width on pile bearing stability decrease successively. Soil displacements and strains in the passive zone in front of the pile develop gradually in both radial and vertical directions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

11 pages, 1939 KB  
Case Report
Delayed Management of Concurrent Coronal Extrusions and Root Fractures in Two Traumatized Maxillary Immature Permanent Central Incisors: A Case Study
by Thi Thuy Tien Vo and Thi Ngoc Anh Do
J. Clin. Med. 2025, 14(10), 3605; https://doi.org/10.3390/jcm14103605 - 21 May 2025
Viewed by 745
Abstract
Background: The combination of two or more different types of traumatic dental injuries occurring concurrently to the same tooth presents a significant clinical challenge. By focusing on a rare combination of injuries, this case study explores the issues of delayed management of root [...] Read more.
Background: The combination of two or more different types of traumatic dental injuries occurring concurrently to the same tooth presents a significant clinical challenge. By focusing on a rare combination of injuries, this case study explores the issues of delayed management of root fractures accompanied by coronal extrusions in immature maxillary permanent central incisors, underscoring the necessity for tailored approaches when guidelines for intervention were unmet. Methods: The case involves an eight-year-old boy who delayed seeking care for approximately a year after suffering trauma to his upper front teeth in a fall accident at school. The clinical examination revealed partial displacement of two maxillary central incisors in an incisal direction, resulting in increased mobility. Radiographs further showed horizontal root fractures in the apical third of both extruded incisors. Encouragingly, the injured teeth exhibited a normal response to electric pulp testing without signs or symptoms of pulpal pathology, suggesting pulp vitality and eliminating the need for root canal treatment. The extruded coronal fragments were repositioned orthodontically using a utility arch. Results: At the 14-month follow-up, the affected incisors were clinically asymptomatic, functionally satisfactory, and esthetically pleasing. Conclusions: Conservative orthodontic management of extrusive luxation concomitant with root fracture in immature permanent teeth may prove effective in select cases, particularly when long-term follow-up and proper oral care are maintained. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

24 pages, 7008 KB  
Article
Comparison Between AICV, ICD, and Liner Completions in the Displacement Front and Production Efficiency in Heavy Oil Horizontal Wells
by Andres Pinilla, Miguel Asuaje and Nicolas Ratkovich
Processes 2025, 13(5), 1576; https://doi.org/10.3390/pr13051576 - 19 May 2025
Viewed by 641
Abstract
Autonomous inflow control devices (AICDs) offer a promising means of delaying early water breakthrough in heavy oil horizontal wells; yet, current design practices remain largely empirical. A three-dimensional, field-calibrated computational fluid dynamics (CFD) model was developed to establish a mechanistic basis that solves [...] Read more.
Autonomous inflow control devices (AICDs) offer a promising means of delaying early water breakthrough in heavy oil horizontal wells; yet, current design practices remain largely empirical. A three-dimensional, field-calibrated computational fluid dynamics (CFD) model was developed to establish a mechanistic basis that solves the transient Navier–Stokes equations for turbulent two-phase flow via a volume-of-fluid formulation. Pressure-controlled inflow boundaries were tuned to build up data from four Colombian heavy oil producers, enabling a quantitative comparison with production logs. Model predictions deviate by no more than ±14% for oil rate and ±10% for water rate over a 500-day horizon, providing confidence in subsequent scenario analysis. Replacing a slotted liner completion with optimally sized AICDs lowers cumulative water-cut by up to 93%, reduces annular friction losses by 18%, and cuts estimated life cycle CO2 emissions per stock-tank barrel by 82%. Sensitivity analysis identifies nozzle diameter as the dominant design variable, with a nonlinear interaction between local drawdown pressure and the oil–water viscosity ratio. These findings demonstrate that CFD-guided AICD design can materially extend wells’ economic life while delivering substantial environmental benefits. The validated workflow establishes a low-risk, physics-based path for tailoring AICDs to reservoir conditions before field deployment. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

17 pages, 3398 KB  
Article
Multilayer Gas-Bearing System and Productivity Characteristics in Carboniferous–Permian Tight Sandstones: Taking the Daning–Jixian Block, Eastern Ordos Basin, as an Example
by Ming Chen, Bo Wang, Haonian Tian, Junyi Sun, Lei Liu, Xing Liang, Benliang Chen, Baoshi Yu and Zhuo Zhang
Energies 2025, 18(9), 2398; https://doi.org/10.3390/en18092398 - 7 May 2025
Viewed by 445
Abstract
The Carboniferous–Permian strata in the Daning–Jixian Block, located on the eastern edge of the Ordos Basin, host multiple sets of tight gas reservoirs. However, systematic research on the characteristics and gas production differences of multilayer tight sandstone gas-bearing systems remains limited. Based on [...] Read more.
The Carboniferous–Permian strata in the Daning–Jixian Block, located on the eastern edge of the Ordos Basin, host multiple sets of tight gas reservoirs. However, systematic research on the characteristics and gas production differences of multilayer tight sandstone gas-bearing systems remains limited. Based on geochemical signatures, reservoir pressure coefficients, and sequence stratigraphy, the tight sandstone gas systems are subdivided into upper and lower systems, separated by regionally extensive Taiyuan Formation limestone. The upper system is further partitioned into four subsystems. Depositional variability from the Benxi Formation to the He 8 Member has generated diverse litho-mineralogical characteristics. The Shan 1 and He 8 Members, deposited in low-energy delta-front subaqueous distributary channels with gentle topography, exhibit lower quartz content (predominantly feldspar lithic sandstone and lithic quartz sand-stone) and elevated lithic fragments, matrix, and clay minerals (particularly chlorite). These factors increase displacement and median pressures, resulting in inferior reservoir quality. By comparing and evaluating the gas production effects under different extraction methods, targeted optimization recommendations are provided to offer both theoretical support and practical guidance for the efficient development of this block. Full article
Show Figures

Figure 1

17 pages, 6381 KB  
Article
Stability Analysis of the Longitudinal Slope Linear Shield Tunnel Excavation Face
by Mengxi Zhang and Shengwei Gu
Appl. Sci. 2025, 15(8), 4083; https://doi.org/10.3390/app15084083 - 8 Apr 2025
Cited by 1 | Viewed by 464
Abstract
In shield tunnel engineering, longitudinal slopes and other complex alignments are commonly encountered. Given the uneven stress distribution in the soil ahead of the tunnel face during excavation, studying and understanding the instability mechanisms of the excavation face is particularly crucial. In this [...] Read more.
In shield tunnel engineering, longitudinal slopes and other complex alignments are commonly encountered. Given the uneven stress distribution in the soil ahead of the tunnel face during excavation, studying and understanding the instability mechanisms of the excavation face is particularly crucial. In this study, a visualized transparent soil test was designed to investigate shield tunneling along a longitudinal slope. The displacement patterns of the soil in front of the excavation face were analyzed in detail. Furthermore, FLAC3D numerical simulations were employed to examine the variations in the ultimate support ratio and vertical stress of the soil under different slope conditions. The reliability of the results was also validated. The research findings reveal the stability characteristics of the excavation face and its influencing factors during shield tunneling at different slope angles. These findings provide a scientific basis for the design of shield tunnels with longitudinal slopes. The results of the study indicate that (1) the maximum destabilization width of the soil with slope i = 15% is increased by 18.2% and 36.8% compared to that with slope i = 0% and −15%, respectively; (2) the ultimate support force, as well as the horizontal and vertical displacements of the excavation face, increase significantly under an upward slope condition (i > 0) compared to those in a horizontal tunnel (i = 0) and a downward slope (i < 0); and (3) the longitudinal slope gradient i is negatively correlated with the inflection point depth, meaning that steeper slopes result in shallower loosening zone depths. Full article
Show Figures

Figure 1

Back to TopTop