Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = disk diffusion susceptibility test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 (registering DOI) - 1 Aug 2025
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

17 pages, 1331 KiB  
Article
Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa
by Bongi Beatrice Mankonkwana, Evelyn Madoroba, Kudakwashe Magwedere and Patrick Butaye
Microorganisms 2025, 13(8), 1786; https://doi.org/10.3390/microorganisms13081786 - 31 Jul 2025
Viewed by 53
Abstract
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. [...] Read more.
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. Samples were collected from 500 chicken carcass rinsates at various processing stages in three abattoirs. Salmonella detection and identification was conducted in accordance with the ISO 6579 methodology. NTS serotyping was performed with serotype-specific PCRs. The Kirby–Bauer disk diffusion method was used to determine antimicrobial resistance in Salmonella. PCR was used to analyze thirteen antimicrobial genes and four virulence genes. Salmonella spp. was detected in 11.8% (59/500; CI: 9.5–15) of the samples tested. The predominant serovars were Salmonella Enteritidis (n = 21/59; 35.59%) and Salmonella Typhimurium (n = 35; 59.32%). Almost all Salmonella isolates were susceptible to all tested antimicrobials except three. Despite the low resistance to tetracyclines at the phenotypic level, approximately half of the strains carried tetA genes, which may be due to “silent” antimicrobial resistance genes. Diverse virulence genes were detected among the confirmed NTS serotypes. We found a predominance of S. Enteritidis and S. Typhimurium from chicken carcasses with diverse virulence and resistance genes. As we detected differences between the slaughterhouses, an in-depth study should be performed on the risk of Salmonella in low- and high-throughput abattoirs. The integrated monitoring and surveillance of NTS in poultry is warranted in South Africa to aid in the design of mitigation strategies. Full article
(This article belongs to the Special Issue Salmonella and Food Safety)
Show Figures

Figure 1

23 pages, 1310 KiB  
Review
Evaluating Antimicrobial Susceptibility Testing Methods for Cefiderocol: A Review and Expert Opinion on Current Practices and Future Directions
by Stefania Stefani, Fabio Arena, Luigi Principe, Stefano Stracquadanio, Chiara Vismara and Gian Maria Rossolini
Antibiotics 2025, 14(8), 760; https://doi.org/10.3390/antibiotics14080760 - 28 Jul 2025
Viewed by 654
Abstract
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial [...] Read more.
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial systems. Variability in interpretive criteria and areas of technical uncertainty (ATUs) further complicate assessments. Methods: This review and expert opinion presents: (1) an overview of non-susceptibility to FDC and then delves into the performance of current FDC AST methods for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex; (2) a practical decision framework to guide clinical microbiologists in making informed choices. Results and Conclusions: For Enterobacterales, including carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa, we propose disk diffusion (DD) as a preliminary screening tool to classify isolates as susceptible (S) or resistant (R). Confirmatory testing using the UMIC® FDC system or the ID-CAMHB BMD method is recommended for R isolates. In cases of discrepancy, repeating the test with ID-CAMHB BMD is advised. Additionally, isolates falling within the ATU during DD testing should be retested using the UMIC® system or ID-CAMHB BMD. For A. baumannii complex, since EUCAST breakpoints have not been defined yet, we propose a stepwise framework based on the first DD result: isolates with inhibition zones < 17 mm are considered non-susceptible and should be confirmed with standard BMD. Those between 17 and 22 mm require retesting with a commercial BMD method, with further confirmation recommended if S isolates with zones ≥ 23 mm may be considered S without additional testing. Full article
Show Figures

Figure 1

14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 205
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

18 pages, 1178 KiB  
Article
Prevalence and Antimicrobial Resistance of Gram-Negative ESKAPE Pathogens Isolated from Tertiary Care Hospital in Eastern India
by Paramjyoti Rana, Sweta Padma Routray, Surajit De Mandal, Rajashree Panigrahy, Anjan Kumar Sahoo and Enketeswara Subudhi
Appl. Sci. 2025, 15(15), 8171; https://doi.org/10.3390/app15158171 - 23 Jul 2025
Viewed by 245
Abstract
Gram-negative ESKAPE pathogens pose major challenges to global public health due to their multidrug resistance and virulence. The present study aimed to study the prevalence and resistance of Gram-negative ESKAPE pathogens at a tertiary care hospital in Eastern India. A retrospective analysis was [...] Read more.
Gram-negative ESKAPE pathogens pose major challenges to global public health due to their multidrug resistance and virulence. The present study aimed to study the prevalence and resistance of Gram-negative ESKAPE pathogens at a tertiary care hospital in Eastern India. A retrospective analysis was conducted on 7343 non-duplicate isolates collected between January 2023 and December 2024. The bacterial isolates and their antibiotic susceptibility testing were identified using Kirby–Bauer disk diffusion techniques and the VITEK 2 Compact system, adhering to CLSI 2025 and EUCAST 2024 guidelines. Our findings indicate that Klebsiella pneumoniae was the most common isolate, followed by Pseudomonas aeruginosa, Acinetobacter baumannii complex, and Enterobacter cloacae complex, predominantly affecting male patients aged 18–64 years. Importantly, most of these isolates exhibit increased multidrug resistance (MDR) to several key antibiotics, including β-lactams and carbapenems, which further complicates the treatment process. The analysis of seasonal dynamics revealed an increased abundance of infections in monsoon and post-monsoon periods. These findings will be useful in understanding AMR in hospital environments and in developing strategies to prevent the occurrence and spread of antimicrobial resistance among pathogens. Full article
Show Figures

Figure 1

15 pages, 311 KiB  
Article
Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa
by Vanessa Danielle de Freitas, Edison Lorran Jerdlicka Coelho, Janaina Marcela Assunção Rosa Moreira, Valéria Dutra, Valéria Régia Franco Sousa and Arleana do Bom Parto Ferreira de Almeida
Pathogens 2025, 14(7), 709; https://doi.org/10.3390/pathogens14070709 - 17 Jul 2025
Viewed by 424
Abstract
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove [...] Read more.
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove essential oil (Syzygium aromaticum) on both oxacillin-resistant and susceptible S. pseudintermedius. Thirty-five isolates from dogs with otitis externa were analyzed. The bacteria were identified by phenotypic tests and tested for susceptibility to 22 antibiotics using disk diffusion. Resistance genes (mecA and blaZ) were detected using conventional PCR. Among the isolates, 34.28% (12/35) were positive for mecA, and 97.14% (34/35) for blaZ. The essential oil’s efficacy was assessed using broth microdilution to determine its minimum inhibitory concentration (MIC). Clove oil showed an average MIC and minimum bactericidal concentration (MBC) of 6.4 mg/mL, inhibiting both resistant and susceptible isolates. In conclusion, clove essential oil demonstrated in vitro antimicrobial activity against S. pseudintermedius. Full article
25 pages, 3082 KiB  
Article
Characteristics of Staphylococcus saprophyticus Isolated from Humans and Animals
by Paulina Prorok, Karolina Bierowiec, Milena Skrok, Magdalena Karwańska, Magdalena Siedlecka, Marta Miszczak, Marta Książczyk, Katarzyna Kapczyńska and Krzysztof Rypuła
Int. J. Mol. Sci. 2025, 26(14), 6885; https://doi.org/10.3390/ijms26146885 - 17 Jul 2025
Viewed by 406
Abstract
Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic coagulase-negative staphylococcus (CoNS) known to cause urinary tract infections in humans and is increasingly recognized in veterinary medicine. The aim of this study was to provide an epidemiological characterization of S. saprophyticus [...] Read more.
Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic coagulase-negative staphylococcus (CoNS) known to cause urinary tract infections in humans and is increasingly recognized in veterinary medicine. The aim of this study was to provide an epidemiological characterization of S. saprophyticus strains and to identify potential virulence factors that may contribute to interspecies transmission. This research is particularly important, as companion animals represent an understudied reservoir of this microorganism, and their role in the spread of resistant pathogens remains insufficiently understood. A total of 61 S. saprophyticus strains isolated from humans, dogs, and cats were analyzed. Identification was performed using MALDI-TOF MS and confirmed by PCR targeting the hrcA gene. Antimicrobial susceptibility was assessed using the disk diffusion and broth microdilution methods, while resistance genes were detected by PCR. The blaZ and mecA genes were present in all strains; additionally, the majority harbored the resistance genes ermA, ermB, tetM, and tetK. Multidrug resistance (MDR) was identified in 21/61 strains (34.4%). Biofilm-forming capacity was temperature-dependent, with the strongest biofilm production observed at 37 °C (70.5%). At 38 °C and 39 °C, the proportion of strong biofilm producers decreased to 50.8% and 52.5%, respectively. All tested strains demonstrated pathogenic potential in the Galleria mellonella larvae infection model, with the highest mortality recorded for selected feline and canine strains. These findings indicate that S. saprophyticus strains from both humans and companion animals possess notable virulence and multidrug resistance. The detection of genotypically and phenotypically resistant strains in animals highlights their potential role as reservoir for zoonotic transmission. Full article
(This article belongs to the Special Issue Molecular Research on Bacteria)
Show Figures

Figure 1

12 pages, 1380 KiB  
Article
Halicin: A New Approach to Antibacterial Therapy, a Promising Avenue for the Post-Antibiotic Era
by Imane El Belghiti, Omayma Hammani, Fatima Moustaoui, Mohamed Aghrouch, Zohra Lemkhente, Fatima Boubrik and Ahmed Belmouden
Antibiotics 2025, 14(7), 698; https://doi.org/10.3390/antibiotics14070698 - 11 Jul 2025
Viewed by 657
Abstract
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an [...] Read more.
Background: The global spread of antibiotic-resistant bacteria presents a major public health challenge and necessitates the development of innovative antimicrobial agents. Artificial intelligence (AI)-driven drug discovery has recently enabled the repurposing of existing compounds with novel therapeutic potential. Halicin, originally developed as an anti-diabetic molecule, has been identified through AI screening as a promising antibiotic candidate due to its broad-spectrum activity, including efficacy against multidrug-resistant pathogens. Methods: In this study, the antibacterial activity of halicin was evaluated against a range of clinically relevant multidrug-resistant bacterial strains. Bacterial isolates were first characterized using the agar disk diffusion method with a panel of 22 conventional antibiotics to confirm resistance profiles. The minimum inhibitory concentration (MIC) of halicin was then determined for selected isolates, including Escherichia coli ATCC® 25922™ and Staphylococcus aureus ATCC® 29213™, using broth microdilution according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Results: Halicin demonstrated notable antibacterial activity, with MIC values of 16 μg/mL and 32 μg/mL against E. coli ATCC® 25922™ and S. aureus ATCC® 29213™, respectively. A dose-dependent inhibition of bacterial growth was observed for the majority of tested isolates, except for Pseudomonas aeruginosa, which exhibited intrinsic resistance. This lack of susceptibility is likely related to reduced outer membrane permeability, limiting the intracellular accumulation of halicin. Conclusions: Our findings support the potential of halicin as a novel antimicrobial agent for the treatment of infections caused by antibiotic-resistant bacteria. However, further investigations, including pharmacokinetic, pharmacodynamic, and toxicity studies, are essential to assess its clinical safety and therapeutic applicability. Full article
Show Figures

Figure 1

9 pages, 457 KiB  
Communication
Antimicrobial Susceptibility Testing of the Combination of Aztreonam and Avibactam in NDM-Producing Enterobacterales: A Comparative Evaluation Using the CLSI and EUCAST Methods
by Linda Mei-Wah Chan, Doris Yui Ling Lok, River Chun Wai Wong, Alfred Lok-Hang Lee, Ingrid Yu-Ying Cheung, Christopher Koon-Chi Lai and Viola C. Y. Chow
Antibiotics 2025, 14(7), 675; https://doi.org/10.3390/antibiotics14070675 - 3 Jul 2025
Viewed by 466
Abstract
Background: The combination of aztreonam (ATM) and avibactam (AVI) presents an important therapeutic option for carbapenem-resistant Enterobacterales, particularly the NDM-producing Enterobacterales. In 2024, both the CLSI and EUCAST published their methods in antimicrobial susceptibility testing for this combination of agents. [...] Read more.
Background: The combination of aztreonam (ATM) and avibactam (AVI) presents an important therapeutic option for carbapenem-resistant Enterobacterales, particularly the NDM-producing Enterobacterales. In 2024, both the CLSI and EUCAST published their methods in antimicrobial susceptibility testing for this combination of agents. Materials and Methods: Forty carbapenem-resistant Enterobacterales isolates, including Escherichia coli (n = 35), Enterobacter cloacae complex (n = 2), Klebsiella pneumoniae complex (n = 2), and Citrobacter freundii complex (n = 1) were included in this study. All isolates harbored the NDM carbapenemase except one, which had no known detected carbapenemases. Four antimicrobial susceptibility testing methods of the combination of ATM and AVI were evaluated on these isolates, including the CLSI broth disk elution (BDE) method, the disk diffusion (DD) method of aztreonam–avibactam (AZA) following the EUCAST breakpoints, the MIC test strip (MTS) method of AZA following the EUCAST breakpoints, and the gradient strip stacking (SS) method. BDE was used as the standard of comparison. Results: Using BDE as the standard of comparison, the AZA DD, AZA MTS, and SS methods had 100% categorical agreement (CA), 0% very major error (VME), and 0% major error (ME). The essential agreement (EA) between the AZA MTS and SS method was 57.5%. Conclusions: The AZA DD, AZA MTS, and the SS methods showed complete concordance with the BDE method. However, the MICs obtained from the AZA MTS and SS were not comparable. Full article
Show Figures

Figure 1

12 pages, 1312 KiB  
Article
Antimicrobial Resistance in the Aconcagua River, Chile: Prevalence and Characterization of Resistant Bacteria in a Watershed Under High Anthropogenic Contamination Pressure
by Nicolás González-Rojas, Diego Lira-Velásquez, Richard Covarrubia-López, Johan Plaza-Sepúlveda, José M. Munita, Mauricio J. Carter and Jorge Olivares-Pacheco
Antibiotics 2025, 14(7), 669; https://doi.org/10.3390/antibiotics14070669 - 2 Jul 2025
Viewed by 441
Abstract
Background: Antimicrobial resistance (AMR) is a growing global health concern, driven in part by the environmental release of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Aquatic systems, particularly those exposed to urban, agricultural, and industrial activity, are recognized as hotspots for [...] Read more.
Background: Antimicrobial resistance (AMR) is a growing global health concern, driven in part by the environmental release of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Aquatic systems, particularly those exposed to urban, agricultural, and industrial activity, are recognized as hotspots for AMR evolution and transmission. In Chile, the Aconcagua River—subject to multiple anthropogenic pressures—offers a representative model for studying the environmental dimensions of AMR. Methods: Thirteen surface water samples were collected along the Aconcagua River basin in a single-day campaign to avoid temporal bias. Samples were filtered through 0.22 μm membranes and cultured on MacConkey agar, either unsupplemented or supplemented with ceftazidime (CAZ) or ciprofloxacin (CIP). Isolates were purified and identified using MALDI-TOF mass spectrometry. Antibiotic susceptibility was evaluated using the Kirby–Bauer disk diffusion method in accordance with CLSI guidelines. Carbapenemase activity was assessed using the Blue-Carba test, and PCR was employed for the detection of the blaVIM, blaKPC, blaNDM, and blaIMP genes. Results: A total of 104 bacterial morphotypes were isolated; 80 were identified at the species level, 5 were identified at the genus level, and 19 could not be taxonomically assigned using MALDI-TOF. Pseudomonas (40 isolates) and Aeromonas (25) were the predominant genera. No growth was observed on CIP plates, while 24 isolates were recovered from CAZ-supplemented media, 87.5% of which were resistant to aztreonam. Five isolates exhibited resistance to carbapenems; two tested positive for carbapenemase activity and carried the blaVIM gene. Conclusions: Our results confirm the presence of clinically significant resistance mechanisms, including blaVIM, in environmental Pseudomonas spp. from the Aconcagua River. These findings highlight the need for environmental AMR surveillance and reinforce the importance of adopting a One Health approach to antimicrobial stewardship and wastewater regulation. Full article
Show Figures

Figure 1

14 pages, 849 KiB  
Article
Historical Overview of the Evolution of Multidrug-Resistant Gram-Negative Infections in Tunisia from 1999 to 2019
by Lamia Kanzari, Sana Ferjani, Basma Mnif, Faouzia Mahjoubi, Mariem Zribi, Khaoula Meftah, Asma Ferjani, Emna Mhiri, Yomna Ben Lamine, Yosr Kadri, Habiba Naija, Manel Hamdoun, Yosra Chebbi, Sarra Dhraief, Naglaa Mohamed, Hela Zaghden, Lamia Thabet, Wafa Achour, Olfa Bahri, Farouk Barguellil, Maha Mastouri, Sophia Besbes, Leila Slim, Hanen Smaoui, Adnene Hammami and Ilhem Boutiba-Ben Boubakeradd Show full author list remove Hide full author list
Antibiotics 2025, 14(7), 657; https://doi.org/10.3390/antibiotics14070657 - 29 Jun 2025
Viewed by 465
Abstract
Background/Objectives: As antimicrobial resistance patterns of Gram-negative bacteria change over time, this study aimed to analyze the antimicrobial susceptibility trends of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates in Tunisia. Methods: From 1999 to 2019, [...] Read more.
Background/Objectives: As antimicrobial resistance patterns of Gram-negative bacteria change over time, this study aimed to analyze the antimicrobial susceptibility trends of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates in Tunisia. Methods: From 1999 to 2019, non-duplicate isolates of Gram-negative bacteria were collected from 11 Tunisian hospitals as part of an antimicrobial resistance surveillance program. Antimicrobial susceptibility testing was performed using the disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing guidelines. Results: Out of 213,434 isolates collected during the study period, 58.8% were E. coli, 22% were K. pneumoniae, 14.4% were A. baumannii, and 4.8% were P. aeruginosa, with 67% of the isolates sourced from urine samples. E. coli showed a significant increase in resistance to third-generation cephalosporins (3GC), from 5.4% in 2004 to 16.5% in 2019, but K. pneumoniae displayed a rising trend of resistance to imipenem, from 1% in 2005 to 18.6% in 2019; meanwhile, amikacin remained effective against K. pneumoniae isolates. P. aeruginosa did not exhibit a significant change in resistance to imipenem. A. baumannii had a high resistance rate to imipenem that increased from 34.5% in 2008 to 84.2% in 2019 and had low susceptibility rates to all other antibiotics tested. Conclusions: This study reveals high carbapenem resistance among K. pneumoniae and A. baumannii in Tunisia. A. baumannii shows alarming multidrug resistance that requires urgent control measures. Full article
(This article belongs to the Special Issue Antibiotics Resistance in Gram-Negative Bacteria, 2nd Edition)
Show Figures

Figure 1

14 pages, 516 KiB  
Systematic Review
Global Prevalence of Antibiotic-Resistant Burkholderia pseudomallei in Melioidosis Patients: A Systematic Review and Meta-Analysis
by Jongkonnee Thanasai, Sa-Ngob Laklaeng, Supphachoke Khemla, Khonesavanh Ratanavong, Moragot Chatatikun, Jitbanjong Tangpong and Wiyada Kwanhian Klangbud
Antibiotics 2025, 14(7), 647; https://doi.org/10.3390/antibiotics14070647 - 25 Jun 2025
Viewed by 644
Abstract
Background: Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to multiple antibiotics, posing substantial challenges for treatment. Reports of acquired resistance are increasing, underscoring the need for global surveillance. Objective: This systematic review and meta-analysis aimed to determine [...] Read more.
Background: Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to multiple antibiotics, posing substantial challenges for treatment. Reports of acquired resistance are increasing, underscoring the need for global surveillance. Objective: This systematic review and meta-analysis aimed to determine the global prevalence of antibiotic-resistant B. pseudomallei isolated from human clinical cases, with a focus on regional differences and variations in antimicrobial susceptibility testing methods. Methods: We systematically searched PubMed, Scopus, and Embase for studies reporting resistance in clinical B. pseudomallei isolates, following PRISMA guidelines. Pooled resistance rates to 11 antibiotics were calculated using a random-effect model. Subgroup analyses were performed based on geographical region and testing methodology (MIC vs. disk diffusion). Results: Twelve studies comprising 10,391 isolates were included. Resistance rates varied across antibiotics, with the highest pooled resistance observed for tigecycline (46.3%) and ciprofloxacin (38.3%). Ceftazidime (CAZ) and trimethoprim–sulfamethoxazole (SXT), commonly used first-line agents, showed resistance rates of 5.3% and 4.2%, respectively. Subgroup analyses of CAZ and SXT revealed significantly higher resistance in studies from Asia compared to Australia and America (p value < 0.0001). Disk diffusion methods tended to overestimate resistance compared to MIC-based approaches, which revealed non-significant differences for CAZ (p value = 0.5343) but significant differences for SXT (p value < 0.0001). Conclusions: Antibiotic resistance in B. pseudomallei exhibits regional variation and is influenced by the susceptibility testing method used. Surveillance programs and standardized antimicrobial susceptibility testing protocols are essential to guide effective treatment strategies and ensure accurate resistance reporting. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

11 pages, 422 KiB  
Communication
Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa
by Dineo Attela Mohapi, Tsepo Ramatla, Oriel Thekisoe, Zenzile Peter Khetsha and Jane Nkhebenyane
Foods 2025, 14(12), 2139; https://doi.org/10.3390/foods14122139 - 19 Jun 2025
Viewed by 516
Abstract
The important role of antibiotics cannot be overestimated, as human health relies heavily on them for the treatment of infectious diseases. In this study, the antimicrobial susceptibility profiles of pathogens isolated from spinach (Spinacia oleracea) and cabbage (Brassica oleracea) [...] Read more.
The important role of antibiotics cannot be overestimated, as human health relies heavily on them for the treatment of infectious diseases. In this study, the antimicrobial susceptibility profiles of pathogens isolated from spinach (Spinacia oleracea) and cabbage (Brassica oleracea) collected from Free State Province were investigated. A total of 38 isolates representing 10 species, Enterobacter cloacae (5.3%), Staphylococcus aureus (13.2%), Micrococcus luteus (5.3%), Staphylococcus sciuri (5.3%), Acinetobacter haemolyticus (5.3%), Burkholderia cepacia (15.8%), Pseudomonas luteola (15.8%), Escherichia coli (18.4%), Citrobacter freundii (5.3%), and Serratia marcescens (10.5%), were confirmed by the Analytical Profile Index (API). We evaluated antibiotic resistance patterns of 38 unduplicated isolates using the disk diffusion method. As a result, E. coli (18.4%), B. cepacia (15.8%), P. luteola (15.8%), S. aureus (13.2%), and S. marcescens (10.5%), as well as 5.3% each for E. cloacae, M. luteus, S. sciuri, A. haemolyticus, and C. freundii, showed resistance to tested antibiotics. The majority (84%) of the isolates showed resistance to tetracycline, and penicillin had a value of 71%. A total of 79% of the antibiotic-resistant isolates demonstrated multidrug resistance (MDR) to several classes such as β-lactams, chloramphenicol, tetracycline, aminoglycosides, and macrolides. The results highlight the importance of monitoring the microbiological quality of leafy greens as they contain antibiotic-resistant bacteria that could affect human health when consumed. Full article
Show Figures

Figure 1

13 pages, 776 KiB  
Article
In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli
by Ali Atoom, Bayan Alzubi, Dana Barakat, Rana Abu-Gheyab, Dalia Ismail-Agha, Awatef Al-Kaabneh and Nawfal Numan
Antibiotics 2025, 14(6), 603; https://doi.org/10.3390/antibiotics14060603 - 13 Jun 2025
Viewed by 873
Abstract
Background: Urinary tract infections (UTIs) caused by the multidrug resistance (MDR) phenotype termed extended-spectrum beta lactamase (ESBL)-producing E. coli is a significant and growing global health concern. In response to the rising prevalence, the novel Beta Lactam-Beta Lactamase inhibitor (BL/BLI) combinations have been [...] Read more.
Background: Urinary tract infections (UTIs) caused by the multidrug resistance (MDR) phenotype termed extended-spectrum beta lactamase (ESBL)-producing E. coli is a significant and growing global health concern. In response to the rising prevalence, the novel Beta Lactam-Beta Lactamase inhibitor (BL/BLI) combinations have been introduced in recent years. While these agents have shown efficacy, their clinical utility is constrained by high cost, limited availability, and emerging resistance mechanisms. The rational of this study was to test the in vitro activity of a cost-effective alternative to currently available BL–BLI combinations against ESBL-producing E. coli isolated from urinary tract infections (UTIs). Objective: This study investigates the in vitro antimicrobial activity of cefaclor (CFC), both as monotherapy and in combination with the β-lactamase inhibitors clavulanic acid (CA) and sulbactam (SUL), against 52 ESBL-producing E. coli isolates derived from urine cultures of patients diagnosed with UTIs. Methods: The susceptibility ranges were measured by disk diffusion and minimal inhibitory concentration (MIC) methods. In addition, the Time kill assay and disk approximation method were performed to measure the synergistic and bactericidal activity of the approached combination. Results: The MIC50 and MIC90 for CFC were improved from more than 128 µg/mL to 8/4 µg/mL when CFC was combined with either CA or SUL. The triple combination format of CFC/CA/SUL showed MIC50 and MIC90 values at 8/4/4 µg/mL and 64/32/32 µg/mL, respectively. The recovered susceptibility percentages were 54%, 54%, and 58% for CFC/CA, CFC/SUL, and CFC/CA/SUL combinations, respectively. Disk approximation and time–kill assay results revealed synergy and bactericidal effects when CFC combined with CA or SUL for isolates that showed susceptibility restorations of CFC when coupled with CA or SUL by the disk diffusion and MIC method. Conclusions: This study proposes a cost-effective combination that could mitigate resistance development and offer a sparing option to last resort treatment choices including carbapenems. However, testing efficacy in a clinical setting is crucial. Full article
Show Figures

Figure 1

23 pages, 2775 KiB  
Article
Development of 3D-Printed Hydrogel Disks as Standardized Platform for Evaluating Excipient Impact on Metronidazole’s Antimicrobial Activity
by Tomasz Gnatowski, Joanna Kwiecińska-Piróg and Tomasz Bogiel
Pharmaceutics 2025, 17(6), 749; https://doi.org/10.3390/pharmaceutics17060749 - 6 Jun 2025
Viewed by 504
Abstract
Background/Objectives: Effective drug delivery systems require precise formulation and understanding of excipient impact on active pharmaceutical ingredient (API) stability and efficacy, as uncontrolled interactions can compromise outcomes. This study developed and validated a semi-solid extrusion (SSE) 3D printing method for polyvinyl alcohol [...] Read more.
Background/Objectives: Effective drug delivery systems require precise formulation and understanding of excipient impact on active pharmaceutical ingredient (API) stability and efficacy, as uncontrolled interactions can compromise outcomes. This study developed and validated a semi-solid extrusion (SSE) 3D printing method for polyvinyl alcohol (PVA)-based hydrogel disks with metronidazole (MET). These disks served as a standardized platform to assess excipient influence on MET’s antimicrobial activity, focusing on plasticizers (polyethylene glycol 400, glycerol, propylene glycol, and diethylene glycol monoethyl ether)—excipients that modify hydrogel properties for their application in printing dressing matrices—with the platform’s capabilities demonstrated using in vitro antimicrobial susceptibility testing against Bacteroides fragilis. Methods: Hydrogel inks based on PVA with added plasticizers and MET were prepared. These inks were used to 3D-print standardized disks. The MET content in the disks was precisely determined. The antimicrobial activity of all formulation variants was evaluated using the disk diffusion method against B. fragilis. Results: The incorporated plasticizers did not negatively affect the antimicrobial efficacy of MET against B. fragilis. All printed hydrogel matrices exhibited clear antimicrobial activity. The 3D-printed disks showed high repeatability and precision regarding MET content. Conclusions: SSE 3D printing is viable for manufacturing precise, reproducible MET-loaded PVA hydrogel disks. It provides a standardized platform to evaluate diverse excipient impacts, like plasticizers, on API antimicrobial performance. The tested plasticizers were compatible with MET. This platform aids rational formulation design and screening for optimal excipients in designed formulations and for various pharmaceutical applications. Full article
Show Figures

Figure 1

Back to TopTop