Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Microbiological Techniques and Analysis
2.3. Identification of the Isolates Using API
2.4. Antibiotic Susceptibility Pattern of the Isolates
3. Results
3.1. Identification of Isolates
3.2. Antibiotic Susceptibility for All Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic surveillance for antimicrobial resistance—A One Health perspective. Nat. Rev. Genet. 2024, 25, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Joji, R.M.; Shahid, M. Evolution, and implementation of one health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Front. Cell. Infect Microbiol. 2023, 12, 1065796. [Google Scholar] [CrossRef] [PubMed]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Bashir, S.; Mohan, A.; Kumar, D.; Kaur, N. Occurrence and Fate of Antibiotics in Manure. In Manure Technology and Sustainable Development; Springer: Singapore, 2023; pp. 321–339. [Google Scholar] [CrossRef]
- Swinkels, A.F.; Berendsen, B.J.; Fischer, E.A.; Zomer, A.L.; Wagenaar, J.A. Extended period of selection for antimicrobial resistance due to recirculation of persistent antimicrobials in broilers. J. Antimicrob. Chemother. 2024, 79, 2186–2193. [Google Scholar] [CrossRef]
- Lopez-Velasco, G.; Welbaum, G.E.; Boyer, R.R.; Mane, S.P.; Ponder, M.A. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J. Appl. Microbiol. 2011, 110, 1203–1214. [Google Scholar] [CrossRef]
- Joy, S.R.; Bartelt-Hunt, S.L.; Snow, D.D.; Gilley, J.E.; Woodbury, B.L.; Parker, D.B.; Marx, D.B.; Li, X. Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry. Environ. Sci. Technol. 2013, 47, 12081–12088. [Google Scholar] [CrossRef]
- Sandberg, K.D.; LaPara, T.M. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils. FEMS Microbiol. Ecol. 2016, 92, fiw001. [Google Scholar] [CrossRef]
- Cornejo-Juárez, P.; Vilar-Compte, D.; Pérez-Jiménez, C.; Namendys-Silva, S.A.; Sandoval-Hernández, S.; Volkow-Fernández, P. The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int. J. Infect. Dis. 2015, 31, 31–34. [Google Scholar] [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef]
- Salam, M.T.; Bari, K.B.; Rahman, M.M.; Gafur, D.M.M.; Faruk, M.O.; Akter, K.; Irin, F.; Ashakin, M.R.; Shaikat, T.A.; Das, A.C.; et al. Emergence of antibiotic-resistant infections in ICU patients. J. Angiother. 2024, 8, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. Int. J. Environ. Res. Public Health 2021, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Kläui, A.; Bütikofer, U.; Naskova, J.; Wagner, E.; Marti, E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. Sci. Total Environ. 2024, 907, 167671. [Google Scholar] [CrossRef]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.P.; Mahillon, J.; Bragard, C. On the use of antibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef] [PubMed]
- Endale, H.; Mathewos, M.; Abdeta, D. Potential causes of spread of antimicrobial resistance and preventive measures in One Health perspective—A review. Infect. Drug Resist. 2023, 16, 7515–7545. [Google Scholar] [CrossRef]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef]
- Gudda, F.; Odinga, E.S.; Tang, L.; Waigi, M.G.; Wang, J.; Abdalmegeed, D.; Gao, Y. Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks. Environ. Pollut. 2023, 338, 122696. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP). 2019. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/index.html (accessed on 26 March 2025).
- Colomb-Cotinat, M.; Lacoste, J.; Brun-Buisson, C.; Jarlier, V.; Coignard, B.; Vaux, S. Estimating the morbidity and mortality associated with infections due to multidrug-resistant bacteria (MDRB), France. Antimicrob. Resist. Infect. Control 2016, 5, 56. [Google Scholar] [CrossRef]
- Elton, L.; Thomason, M.J.; Tembo, J.; Velavan, T.P.; Pallerla, S.R.; Arruda, L.B.; Vairo, F.; Montaldo, C.; Ntoumi, F.; Hamid, M.M.A.; et al. Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrob. Resist. Infect. Control 2020, 9, 145. [Google Scholar] [CrossRef]
- Phares, C.A.; Danquah, A.; Atiah, K.; Agyei, F.K.; Michael, O.T. Antibiotics utilization and farmers’ knowledge of its effects on soil ecosystem in the coastal drylands of Ghana. PLoS ONE 2020, 15, e0228777. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; González, I.J.; Dittrich, S. Antimicrobial resistance in Africa: A systematic review. BMC Infect. Dis. 2017, 17, 616. [Google Scholar] [CrossRef] [PubMed]
- Msimango, T.; Duvenage, S.; Du Plessis, E.M.; Korsten, L. Microbiological quality assessment of fresh produce: Potential health risk to children and urgent need for improved food safety in school feeding schemes. Food Sci. Nutr. 2023, 11, 5501–5511. [Google Scholar] [CrossRef]
- Njage, P.M.; Buys, E.M. Pathogenic and commensal Escherichia coli from irrigation water show potential in transmission of extended spectrum and AmpC β-lactamases determinants to isolates from lettuce. Microb. Biotechnol. 2015, 8, 462–473. [Google Scholar] [CrossRef]
- Ratshilingano, M.T.; du Plessis, E.M.; Duvenage, S.; Korsten, L. Characterization of multidrug-resistant Escherichia coli isolated from two commercial lettuce and spinach supply chains. J. Food Prot. 2022, 85, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, identification, and antimicrobial resistance profiles of extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae from fresh vegetables retailed in Gauteng Province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef]
- Mohapi, D.; Nkhebenyane, S.; Khetsha, Z.; Thekisoe, O. Phyllo-epiphytic and endophytic pathogens on Brassica oleracea Var. capitata L. and Spinacia oleracea L. as affected by small-scale farm production systems. Appl. Ecol. Environ. Res. 2024, 22, 3. [Google Scholar] [CrossRef]
- Ramatla, T.; Tutubala, M.; Motlhaping, T.; de Wet, L.; Mokgokong, P.; Thekisoe, O.; Lekota, K. Molecular detection of Shiga toxin and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from sheep and goats. Mol. Biol. Rep. 2024, 51, 57. [Google Scholar] [CrossRef]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed.; CLSI: Pittsburgh, PA, USA, 2023. [Google Scholar]
- Datta, S.; Ishikawa, M.; Chudhakorn, S.; Charaslertrangsi, T. Prevalence and antimicrobial characteristics of Escherichia coli in selected vegetables and herbs in Bangkok, Thailand. J. Food Prot. 2024, 87, 100229. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.; Eppinger, M.; Ahmed, S.; Shah, A.A.; Hameed, A.; Hasan, F. Multidrug-resistant diarrheagenic E. coli pathotypes are associated with ready-to-eat salad and vegetables in Pakistan. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 267–273. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Cho, G.S.; Franz, C.M. Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS ONE 2023, 18, e0282835. [Google Scholar] [CrossRef]
- Seo, Y.H.; Jang, J.H.; Moon, K.D. Occurrence and characterization of enterotoxigenic Staphylococcus aureus isolated from minimally processed vegetables and sprouts in Korea. Food Sci. Biotechnology 2010, 19, 313–319. [Google Scholar] [CrossRef]
- Jia, K.; Qin, X.; Bu, X.; Zhu, H.; Liu, Y.; Wang, X.; Li, Z.; Dong, Q. Prevalence, antibiotic resistance and molecular characterization of Staphylococcus aureus in ready-to-eat fruits and vegetables in Shanghai, China. Curr. Res. Food Sci. 2023, 8, 100669. [Google Scholar] [CrossRef] [PubMed]
- Karumathil, D.P.; Yin, H.B.; Kollanoor-Johny, A.; Venkitanarayanan, K. Prevalence of multidrug-resistant bacteria on fresh vegetables collected from farmers’ markets in Connecticut. J. Food Prot. 2016, 79, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.A.; Ramos, C.G.; Leitao, J.H. Burkholderia cepacia complex: Emerging multi-host pathogens equipped with a wide range of virulence factors and determinants. Int. J. Microbiol. 2011, 2011, 607575. [Google Scholar] [CrossRef]
- Snyder, E.; Credille, B.; Berghaus, R.; Giguère, S. Prevalence of multi drug antimicrobial resistance in Mannheimia haemolytica isolated from high-risk stocker cattle at arrival and two weeks after processing. J. Anim. Sci. 2017, 95, 1124–1131. [Google Scholar] [CrossRef]
- Zivkovic Zaric, R.; Zaric, M.; Sekulic, M.; Zornic, N.; Nesic, J.; Rosic, V.; Vulovic, T.; Spasic, M.; Vuleta, M.; Jovanovic, J.; et al. Antimicrobial treatment of Serratia marcescens invasive infections: Systematic review. Antibiotics 2023, 12, 367. [Google Scholar] [CrossRef]
- Cosimato, I.; Santella, B.; Rufolo, S.; Sabatini, P.; Galdiero, M.; Capunzo, M.; Boccia, G.; Folliero, V.; Franci, G. Current Epidemiological Status and Antibiotic Resistance Profile of Serratia marcescens. Antibiotics 2024, 13, 323. [Google Scholar] [CrossRef]
- Ahmad, S.; Alzahrani, A.J.; Alsaeed, M. Uncommon association: Pseudomonas luteola bacteremia in an immunocompetent individual with acute tonsillitis—A case report. IDCases 2023, 34, e01891. [Google Scholar] [CrossRef]
- Yousefi, F.; Shoja, S.; Honarvar, N. Empyema caused by Pseudomonas luteola: A case report. Jundishapur J. Microbiol. 2014, 7, e10923. [Google Scholar] [CrossRef]
- Yang, T.Y.; Hung, W.W.; Lin, L.; Hung, W.C.; Tseng, S.P. mecA-related structure in methicillin-resistant coagulase-negative staphylococci from street food in Taiwan. Sci. Rep. 2017, 7, 42205. [Google Scholar] [CrossRef]
- Makky, S.; Abdelsattar, A.S.; Habashy, M.; Dawoud, A.; Nofal, R.; Hassan, A.; Connerton, I.F.; El-Shibiny, A. Phage ZCSS1 from isolation to application against Staphylococcus sciuri and biofilm: A prospect of utilizing temperate phage and its products. Gene Rep. 2023, 32, 101792. [Google Scholar] [CrossRef]
- Couto, I.; Sanches, I.S.; Sá-Leão, R.; de Lencastre, H. Molecular characterization of Staphylococcus sciuri strains isolated from humans. J. Clin. Microbiol. 2000, 38, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Regmi, R.S.; Sapkota, S.; Khadka, S.; Patel, N.; Gurung, S.; Thapa, D.; Bhattarai, P.; Sapkota, P.; Devkota, R.; et al. Multidrug resistance, biofilm formation and detection of blaCTX-M and blaVIM genes in E. coli and Salmonella isolates from chutney served at the street-food stalls of Bharatpur, Nepal. Heliyon 2023, 9, e15739. [Google Scholar] [CrossRef] [PubMed]
- Richter, L.; Plessis, E.D.; Duvenage, S.; Korsten, L. High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. J. Food Sci. 2021, 86, 161–168. [Google Scholar] [CrossRef]
- Nipa, M.N.; Mazumdar, R.M.; Hasan, M.M.; Fakruddin, M.D.; Islam, S.; Bhuiyan, H.R.; Iqbal, A. Prevalence of multi drug resistant bacteria on raw salad vegetables sold in major markets of Chittagong city, Bangladesh. Middle-East J. Sci. Res. 2011, 10, 70–77. [Google Scholar]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Monier, J.M.; Demanèche, S.; Delmont, T.O.; Mathieu, A.; Vogel, T.M.; Simonet, P. Metagenomic exploration of antibiotic resistance in soil. Curr. Opin. Microbiol. 2011, 14, 229–235. [Google Scholar] [CrossRef]
- Nkhebenyane, S.J.; Khasapane, N.G.; Lekota, K.E.; Thekisoe, O.; Ramatla, T. Insight into the prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in vegetables: A Systematic review and meta-analysis. Foods 2024, 13, 3961. [Google Scholar] [CrossRef]
Retail | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spinach | Cabbage | |||||||||||||||||||
EC1 | SA | ML | SS | AH | BC | PL | EC2 | CF | SM | EC1 | SA | ML | SS | AH | BC | PL | EC2 | CF | SM | |
R1 | - | - | - | - | 1 | - | 1 | - | - | - | - | - | - | - | 1 | - | 1 | - | - | - |
R2 | 1 | - | - | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
R3 | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | 1 | - | 1 | - | - |
R4 | - | - | - | - | - | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
R5 | - | - | - | - | - | 1 | 1 | 1 | - | - | - | - | - | - | - | 1 | - | - | - | - |
Farms | ||||||||||||||||||||
F1 | - | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | 1 |
F2 | - | 1 | 1 | - | - | 1 | 1 | 1 | 1 | 1 | - | - | 1 | - | - | - | - | 1 | - | - |
F3 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - | - |
F4 | - | 1 | - | 1 | - | - | - | 1 | 1 | - | - | 1 | - | - | - | 1 | - | - | - | 1 |
F5 | - | - | - | - | - | - | - | - | - | 1 | - | 1 | - | - | - | - | - | 1 | - | - |
Retails | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spinach | Cabbage | |||||||||||||||||||
Ant | EC1 | SA | ML | SS | AH | BC | PL | EC2 | CF | SM | EC1 | SA | ML | SS | AH | BC | PL | EC2 | CF | SM |
C | 1 | - | - | - | - | 1 | 1 | 2 | - | - | - | - | - | - | - | - | 1 | 1 | - | - |
TE | 1 | - | - | - | 1 | 1 | 2 | 2 | - | - | 1 | - | - | - | 1 | 1 | 1 | 1 | - | - |
CN | - | - | - | - | - | 1 | - | 2 | - | - | - | - | - | - | - | 1 | - | 1 | - | - |
AMP | 1 | - | - | - | 1 | 1 | 2 | 1 | - | - | 1 | - | - | - | 1 | - | 1 | 1 | - | - |
CIP | - | - | - | - | 1 | 2 | - | - | - | - | - | - | - | - | 1 | 1 | - | - | - | - |
E | - | - | - | - | 1 | 1 | - | 2 | - | - | - | - | - | - | 1 | - | - | 1 | - | - |
CAZ | 1 | - | - | - | - | - | - | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - |
VA | - | - | - | - | 1 | - | - | - | - | - | - | - | - | - | 1 | - | - | - | - | - |
P | - | - | - | - | 1 | 1 | 3 | 1 | - | - | - | - | - | - | 1 | - | 1 | 1 | - | - |
Farms | ||||||||||||||||||||
Spinach | Cabbage | |||||||||||||||||||
C | - | - | 1 | - | - | 1 | 1 | 2 | - | 2 | - | - | 1 | - | - | 1 | 1 | 2 | - | 2 |
TE | - | 3 | - | - | - | 1 | 1 | 2 | 2 | 2 | - | 2 | - | - | - | 1 | 1 | 2 | - | 2 |
CN | - | 3 | 1 | 1 | - | 2 | - | 2 | 2 | - | - | 2 | 1 | - | - | 1 | - | 2 | - | - |
AMP | - | 3 | 1 | - | - | 1 | 3 | 2 | 2 | - | - | 2 | 1 | - | - | - | 1 | 1 | - | - |
CIP | - | 2 | - | - | - | 1 | - | - | 2 | 2 | - | 1 | - | - | - | - | - | - | - | 2 |
E | - | 2 | - | 1 | - | 1 | - | 2 | - | 2 | - | 2 | - | - | - | - | - | 2 | - | 2 |
CAZ | - | - | 1 | - | - | - | 1 | 2 | 1 | - | - | - | 1 | - | - | - | - | 1 | - | - |
VA | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
P | - | 3 | 1 | 1 | - | - | 1 | 2 | - | 2 | - | 2 | 1 | 1 | - | - | 1 | 1 | - | 2 |
Species | No. of Isolates | C | TE | CN | AMP | CIP | E | CAZ | VA | P |
---|---|---|---|---|---|---|---|---|---|---|
E. cloacae | 2 | 1 (50%) | 2 (100%) | - | 2 (100%) | - | - | 1 (50%) | - | - |
S. aureus | 5 | - | 5 (100%) | 5 (100%) | 5 (100%) | 3 (60%) | 4 (80%) | - | - | 5 (100%) |
M. luteus | 2 | 2 (100%) | - | 2 (100%) | 2 (100%) | - | - | 2 (100%) | - | 2 (100%) |
S. sciuri | 2 | - | - | 1 (50%) | - | - | 1 (50%) | - | - | 2 (100%) |
A. haemolyticus | 2 | - | 2 (100%) | - | 2 (100%) | 2 (100%) | 2 (100%) | - | 2 (100%) | 2 (100%) |
B. cepacia | 6 | 2 (33%) | 4 (67%) | 5 (83%) | 2 (33%) | 3 (50%) | 2 (33%) | - | - | 1 (17%) |
P. luteola | 6 | 4 (67%) | 6 (100%) | - | 5 (83%) | - | - | 1 (17%) | - | 6 (100%) |
E. coli | 7 | 7 (100%) | 7 (100%) | 7 (100%) | 6 (86%) | - | 7 (100%) | 6 (86%) | - | 5 (71%) |
C. freundii | 2 | - | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | - | 1 (50%) | - | - |
S. marcescens | 4 | 4 (100%) | 4 (100%) | - | - | 4 (100%) | 4 (100%) | - | - | 4 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapi, D.A.; Ramatla, T.; Thekisoe, O.; Khetsha, Z.P.; Nkhebenyane, J. Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa. Foods 2025, 14, 2139. https://doi.org/10.3390/foods14122139
Mohapi DA, Ramatla T, Thekisoe O, Khetsha ZP, Nkhebenyane J. Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa. Foods. 2025; 14(12):2139. https://doi.org/10.3390/foods14122139
Chicago/Turabian StyleMohapi, Dineo Attela, Tsepo Ramatla, Oriel Thekisoe, Zenzile Peter Khetsha, and Jane Nkhebenyane. 2025. "Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa" Foods 14, no. 12: 2139. https://doi.org/10.3390/foods14122139
APA StyleMohapi, D. A., Ramatla, T., Thekisoe, O., Khetsha, Z. P., & Nkhebenyane, J. (2025). Antimicrobial Resistance Profiles of Bacteria Isolated from Fresh Vegetables in Free State Province, South Africa. Foods, 14(12), 2139. https://doi.org/10.3390/foods14122139