Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = disc filtration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 476 KiB  
Article
High Ocular Disease Burden and Increased Referral Needs in Patients with Chronic Kidney Disease: A Step Toward Personalized Care
by Yulia Liem, Pavitra Thyagarajan, Miao Li Chee, Cynthia Ciwei Lim, Boon Wee Teo and Charumathi Sabanayagam
J. Pers. Med. 2025, 15(5), 204; https://doi.org/10.3390/jpm15050204 - 19 May 2025
Viewed by 434
Abstract
Background/Objectives: To evaluate the prevalence of eye diseases in patients with confirmed chronic kidney disease (CKD) and their referral patterns to ophthalmologists, with the aim of informing personalized screening and referral strategies. Methods: This study involved 528 CKD patients from a tertiary hospital’s [...] Read more.
Background/Objectives: To evaluate the prevalence of eye diseases in patients with confirmed chronic kidney disease (CKD) and their referral patterns to ophthalmologists, with the aim of informing personalized screening and referral strategies. Methods: This study involved 528 CKD patients from a tertiary hospital’s outpatient renal clinics in Singapore, with CKD defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2. Retinal photographs from each dilated eye were graded for the presence of diabetic retinopathy (DR) and other eye diseases by professional graders. Patients with significant eye conditions were referred to ophthalmologists based on severity and urgency, categorized as urgent (same day or within 24 h), semi-urgent (within 1–2 weeks), fast-track (within 1–3 months), or annual referrals. Results: More than half of the CKD patients (53.7%) had some form of eye disease; 20% were diagnosed with DR, and 29% required fast-track referrals. Of the 251 patients with diabetes, 67% adhered to annual follow-ups; however, despite this regular monitoring, over half required fast-track referrals for severe eye conditions. Among the 167 non-diabetic CKD patients, nearly a third (31%) were on follow-up, with 7.8% requiring fast-track referrals. Notably, 11% of those not on follow-up also needed fast-track referrals. Seven non-diabetic and ten diabetic patients required urgent referral due to critical conditions such as pseudo-holes, impending occlusions, and disc swelling. Conclusions: These findings underscore the high prevalence and severe nature of eye diseases in CKD patients, even those who are under regular annual follow-up. Integrating systematic eye screening into CKD care supports personalized medicine by enabling early detection and tailored interventions, ultimately improving both visual and overall patient outcomes. Full article
Show Figures

Figure 1

14 pages, 4242 KiB  
Article
Study on Filter Cake Removal Fluid of EZFLOW Weak Gel Drilling Fluid
by Haohan Hu, Youlin Hu and Xuejing Weng
Gels 2025, 11(5), 347; https://doi.org/10.3390/gels11050347 - 8 May 2025
Viewed by 497
Abstract
EZFLOW weak gel drilling fluid, a drilling fluid system with distinctive internal architecture, has been extensively implemented in horizontal well drilling operations at the Western South China Sea oilfields. Its unique internal structure causes specific functional mechanisms. The rheological mechanism was investigated through [...] Read more.
EZFLOW weak gel drilling fluid, a drilling fluid system with distinctive internal architecture, has been extensively implemented in horizontal well drilling operations at the Western South China Sea oilfields. Its unique internal structure causes specific functional mechanisms. The rheological mechanism was investigated through microstructural characterization, revealing that the microstructure comprises a reversible network structure with sol particles either encapsulated within the network or embedded at nodal points. This distinctive spatial network configuration endows the system with exceptional rheological properties. The plugging mechanism was elucidated via pre- and post-PPA test characterization of sand disc surface morphology. Experimental results demonstrate that the rheology modifier EZVIS forms deformable aggregates and films through intermolecular or intramolecular association in aqueous solutions, effectively plugging micro-nano pores/throats and microfractures to inhibit drilling fluid filtrate invasion. Concurrently, the rigid plugging material EZCARB establishes physical barriers at micro-nano pores/throats through bridging mechanisms. Notably, the dense filter cake formed by EZFLOW weak gel drilling fluid exhibits poor flowback characteristics, potentially inducing reservoir damage. Based on mechanistic analyses of rheological behavior, plugging performance, and filter cake composition, a filter cake removal fluid formulation was developed through: (1) creation of retarded acid HWCP to degrade polymer EZVIS and dissolve temporary plugging agent EZCARB; (2) development of corrosion inhibitor HWCI to mitigate corrosion rates. Laboratory evaluations demonstrated effective filter cake elimination and reservoir protection capabilities. Post-treatment analysis of EZFLOW-contaminated reservoir cores showed complete filter cake removal at core end faces with permeability recovery values exceeding 95%, indicating superior filter cake dissolution capacity and reservoir protection performance that significantly reduces formation damage. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

17 pages, 3962 KiB  
Article
Preparation and Performance Evaluation of High-Temperature Polymer Nano-Plugging Agents for Water-Based Drilling Fluids Systems Applicable to Unconventional Reservoirs
by Lei Yao, Xiaohu Quan, Yongjie Zhang, Shengming Huang, Qi Feng and Xin Zhang
Polymers 2025, 17(5), 588; https://doi.org/10.3390/polym17050588 - 23 Feb 2025
Cited by 3 | Viewed by 950
Abstract
To address the challenges of micro-fracture development in shale formations, frequent wellbore instability, and the limited plugging capability of water-based drilling fluids in unconventional reservoirs, a nano-plugging agent (NPA) was synthesized using emulsion polymerization. The synthesized NPA was characterized through thermogravimetric analysis (TGA) [...] Read more.
To address the challenges of micro-fracture development in shale formations, frequent wellbore instability, and the limited plugging capability of water-based drilling fluids in unconventional reservoirs, a nano-plugging agent (NPA) was synthesized using emulsion polymerization. The synthesized NPA was characterized through thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), revealing excellent high-temperature stability and a spherical or sub-spherical morphology, with particle diameters ranging from approximately 20 to 50 nm. The rheological, filtration, and plugging properties of NPA were systematically evaluated, and its sealing mechanism was analyzed. The results demonstrate that at a test temperature of 180 °C, the optimal NPA concentration in the drilling fluid base slurry is 1.5%, achieving a 60.5% reduction in HTHP (high-temperature high-pressure) sand disc filtration loss. Additionally, the API filtration loss and HTHP filtration loss reduction rates reached 58.1% and 50.3%, respectively, highlighting the remarkable filtration loss reduction and plugging efficiency of NPA under high-temperature conditions. After NPA treatment, the specific surface area and pore volume of shale cuttings decreased to 9.348 m2/g and 0.035 cm3/g, respectively, indicating effective surface plugging. The mechanism analysis suggests that due to its nanoscale size, NPA can penetrate deep into micro-pores and fractures within the shale, achieving deep-layer plugging. Furthermore, NPA forms a physical plugging barrier on the shale surface, effectively suppressing shale hydration and swelling. This study provides valuable insights and guidance for addressing wellbore instability and the insufficient plugging performance of drilling fluids in unconventional reservoir drilling operations. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 3rd Edition)
Show Figures

Figure 1

29 pages, 6044 KiB  
Article
Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics
by Nada S. Shweqa, Noura El-Ahmady El-Naggar, Hala M. Abdelmigid, Amal A. Alyamani, Naglaa Elshafey, Hadeel El-Shall, Yasmin M. Heikal and Hoda M. Soliman
J. Funct. Biomater. 2024, 15(12), 354; https://doi.org/10.3390/jfb15120354 - 21 Nov 2024
Cited by 1 | Viewed by 1806
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, [...] Read more.
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93–19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of −4.7 and −5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation. Full article
Show Figures

Figure 1

26 pages, 6640 KiB  
Article
Packing Incubation and Addition of Rot Fungi Extracts Improve BTEX Elimination from Air in Biotrickling Filters
by Piotr Rybarczyk, Krzysztof Cichon, Karolina Kucharska, Dominik Dobrzyniewski, Bartosz Szulczyński and Jacek Gębicki
Molecules 2024, 29(18), 4431; https://doi.org/10.3390/molecules29184431 - 18 Sep 2024
Cited by 3 | Viewed by 1537
Abstract
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated [...] Read more.
The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC loading, liquid trickling patterns, and pH were studied. Positive effects of both packing incubation and enzyme addition on biotrickling filtration performance were identified. BFF A exhibited a shorter start-up period (approximately 20 days) and lower pressure drop (75 ± 6 mm H2O) than BTF B (30 days; 86 ± 5 mm H2O), indicating the superior effects of packing incubation over inoculum circulation during the biotrickling filter start-up. The novel approach of using white rot fungi extracts resulted in fast system recovery and enhanced process performance after the BTF acidification episode. Average BTEX elimination capacities of 28.8 ± 0.4 g/(m3 h) and 23.1 ± 0.4 g/(m3 h) were reached for BTF A and BTF B, respectively. This study presents new strategies for controlling and improving the abatement of BTEX in biotrickling filters. Full article
Show Figures

Figure 1

21 pages, 9294 KiB  
Article
Influence of Fractal Disc Filter Flow Channel Parameters on Filtration Performance
by Jiefeng Zeng, Peiling Yang, Weijie Liu and Xudong Xiang
Appl. Sci. 2024, 14(17), 7505; https://doi.org/10.3390/app14177505 - 25 Aug 2024
Viewed by 977
Abstract
The research and development of a new disc filter is a key link in intelligent irrigation systems, the core of efficient and water-saving irrigation development, and also an important joint effort to ensure a clean water source in micro-irrigation systems. In this paper, [...] Read more.
The research and development of a new disc filter is a key link in intelligent irrigation systems, the core of efficient and water-saving irrigation development, and also an important joint effort to ensure a clean water source in micro-irrigation systems. In this paper, the independent research and development of the fractal flow passage disc filter was taken as the research object, and the disc filter numerical simulation cell (FLUENT) and artificial intelligence technology (Back Propagation Neural Network) were combined to optimize the filter flow channel parameters, including the tilt angle, the length and height of the bottom of the internal section triangle, the taper, the position and number of buffer slots, etc. A new type of disc filter with lower head loss, larger flow capacity, higher filtration efficiency, and longer running time is proposed. It has certain reference value and promotion significance for the future development and design of high-performance disc filters and their wide use. Full article
Show Figures

Figure 1

20 pages, 10696 KiB  
Article
Filtering Efficiency and Design Properties of Medical- and Non-Medical-Grade Face Masks: A Multiscale Modeling Approach
by Manoochehr Rasekh, Francesca Pisapia, Sassan Hafizi and David Rees
Appl. Sci. 2024, 14(11), 4796; https://doi.org/10.3390/app14114796 - 1 Jun 2024
Cited by 2 | Viewed by 2196
Abstract
Approved medical face masks have been shown to prevent the spread of respiratory droplets associated with coronavirus transmission in specific settings. The primary goal of this study was to develop a new strategy to assess the filtering and transmissibility properties of medical- and [...] Read more.
Approved medical face masks have been shown to prevent the spread of respiratory droplets associated with coronavirus transmission in specific settings. The primary goal of this study was to develop a new strategy to assess the filtering and transmissibility properties of medical- and non-medical-grade face masks. In this study, we designed and assessed the filtering efficiency of particles through six different masks with a diverse set of fabrics, textures (woven and non-woven), fiber diameters, and porosity. The filtering and transmissibility properties of face mask layers individually and in combination have been assessed using mathematical analyses and new experimental data. The latter provided velocity profiles and filtration efficiencies for which the data were shown to be predictable. The filtration efficacy and pressure drop across each fabric have been tested using an aerosol particle spray and scanning electron microscopy. To assess clinical significance, the temperature and humidity of the masks were tested on a group of healthy volunteers spanning various age ranges (9–79 years old), utilizing an embedded temperature sensor disc. Also, a mask filter model was developed using fluid dynamic simulations (Solidworks Flow) to evaluate the aerodynamic dispersion of respiratory droplets. Overall, the FFP2 and FFP3 masks demonstrated the highest filtration efficiencies, each exceeding 90%, a feature of multi-layered masks that is consistent with simulations demonstrating higher filtering efficiencies for small particles (<5 µm). The velocity and temperature simulations of all six masks revealed a low air velocity (~1 m/s) inside the mask and a temperature variation of approximately 3 °C during the breathing cycle. Full article
(This article belongs to the Special Issue Multiscale Modeling of Complex Fluids and Soft Matter)
Show Figures

Figure 1

13 pages, 4761 KiB  
Article
Antipathogenic Applications of Copper Nanoparticles in Air Filtration Systems
by Subbareddy Mekapothula, Elvina Chrysanthou, James Hall, Phani Durga Nekkalapudi, Samantha McLean and Gareth W. V. Cave
Materials 2024, 17(11), 2664; https://doi.org/10.3390/ma17112664 - 1 Jun 2024
Cited by 1 | Viewed by 1653
Abstract
The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. [...] Read more.
The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. Highly uniform spherical copper oxide nanoparticles (~10 nm) were synthesized via a spinning disc reactor and subsequently functionalized with carboxylated ligands to ensure colloidal stability in aqueous solutions. The functionalized copper oxide nanoparticles were applied as antipathogenic coatings on extruded polyethylene and melt-blown polypropylene fibers to assess their efficacy in air filtration applications. Notably, Type IIR medical facemasks incorporating the copper nanoparticle-coated polyethylene fibers demonstrated a >90% reduction in influenza virus and SARS-CoV-2 within 2 h of exposure. Similarly, heating, ventilation, and air conditioning (HVAC) filtration pre- (polyester) and post (polypropylene)-filtration media were functionalised with the copper nanoparticles and exhibited a 99% reduction in various viral and bacterial strains, including SARS-CoV-2, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Escherichia coli. In both cases, this mitigates not only the immediate threat from these pathogens but also the risk of biofouling and secondary risk factors. The assessment of leaching properties confirmed that the copper nanoparticle coatings remained intact on the polymeric fiber surfaces without releasing nanoparticles into the solution or airflow. These findings highlight the potential of nanoparticle-coated materials in developing biocompatible and environmentally friendly air filtration systems for healthcare settings, crucial in combating current and future pandemic threats. Full article
(This article belongs to the Special Issue Functional Nanomaterials for a Better Life (Volume II))
Show Figures

Figure 1

14 pages, 5729 KiB  
Article
Mussel-Inspired Construction of Silica-Decorated Ceramic Membranes for Oil–Water Separation
by Qibo Zhou, Qibing Chang, Yao Lu and Jing Sun
Ceramics 2024, 7(1), 250-263; https://doi.org/10.3390/ceramics7010016 - 22 Feb 2024
Cited by 2 | Viewed by 2196
Abstract
In recent years, ceramic membranes have received widespread focus in the area of liquid separation because of their high permeability, strong hydrophilicity, and good chemical stability. However, in practical applications, the surface of ceramic membranes is prone to be contaminated, which degrades the [...] Read more.
In recent years, ceramic membranes have received widespread focus in the area of liquid separation because of their high permeability, strong hydrophilicity, and good chemical stability. However, in practical applications, the surface of ceramic membranes is prone to be contaminated, which degrades the permeation flux of ceramic membranes during the separation process. Inspired by mussels, we imitate the biomimetic mineralization process to prepare a ceramic membrane of nano–silica on the pre-modified zirconia surface by co-deposited polydopamine/polyethyleneimine. The modified ceramic membranes were utilized for the purpose of oil–water separation. Separation performance has been tested using a disc ceramic membrane dynamic filtration device. The outcomes revealed an enhanced permeability in the modified membrane, measuring as 159 L m−2 h−1 bar−1, surpassing the separation flux of the unmodified membrane, which was 104 L m−2 h−1 bar−1. The permeation performance of the modified membrane was increased to 1.5 times. Modified ceramic membranes are highly resistant to fouling. From the beginning to the end of separation process, the oil rejection rate of the modified ceramic membrane is always higher than 99%. After a 2 h oil–water separation test run, modified ceramic membrane permeate flux can be restored to 91% after cleaning. It has an enormous capacity for application in the area of oil–water separation. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 1852 KiB  
Review
A Review of Rotating Biological Contactors for Wastewater Treatment
by Sharjeel Waqas, Noorfidza Yub Harun, Nonni Soraya Sambudi, Muhammad Roil Bilad, Kunmi Joshua Abioye, Abulhassan Ali and Aymn Abdulrahman
Water 2023, 15(10), 1913; https://doi.org/10.3390/w15101913 - 18 May 2023
Cited by 36 | Viewed by 29012
Abstract
A rotating biological contactor (RBC) is a type of attached-growth biological wastewater treatment system and a widely used biological wastewater treatment technology. It employs a series of rotating discs to support microbial growth and promote the removal of pollutants from wastewater. RBC is [...] Read more.
A rotating biological contactor (RBC) is a type of attached-growth biological wastewater treatment system and a widely used biological wastewater treatment technology. It employs a series of rotating discs to support microbial growth and promote the removal of pollutants from wastewater. RBC is widely recognized for its simplicity of design, high reliability, and low energy consumption. It has been used in various applications, from small-scale decentralized systems to large municipal wastewater treatment plants. The current review provides an overview of RBC bioreactors, design parameters, and the factors that influence biological performance, such as hydraulic retention time, sludge retention time, organic loading rate, disc rotational speed, and temperature. The review also highlights the advantages and disadvantages of RBCs compared with other wastewater treatment technologies and discusses their role in sustainable environmental performance. The future prospects of RBC are also discussed, including integration with other technologies, such as membrane filtration and potential use in resource recovery. The review explores the application of RBC in decentralized wastewater treatment and the potential to provide sustainable solutions for wastewater management in rural and remote areas. Overall, RBC remains a promising option for effective and efficient wastewater treatment, particularly in situations where simplicity, reliability, and low energy consumption are desired. Full article
(This article belongs to the Special Issue Wastewater Engineering: Wastewater Treatment Methods and Technologies)
Show Figures

Figure 1

20 pages, 37156 KiB  
Article
Fabrication of a Zircon Microfiltration Membrane for Culture Medium Sterilization
by Zineb Khebli, Ferhat Bouzerara, Nourddine Brihi, Alberto Figoli, Francesca Russo, Francesco Galiano and Sadek Chahredine
Membranes 2023, 13(4), 399; https://doi.org/10.3390/membranes13040399 - 31 Mar 2023
Cited by 6 | Viewed by 2530
Abstract
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand [...] Read more.
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand and calcite (natural raw materials), using extrusion and uniaxial pressing methods, respectively. Making use of the slip casting technique, the silica sand intermediate layer and the zircon top-layer were deposited on the supports, in this order. The particle size and the sintering temperature for each layer were optimized to achieve a suitable pore size for the deposition of the next layer. Morphology, microstructures, pore characteristics, strength and permeability were also studied. Filtration tests were conducted to optimize the permeation performance of the membrane. Experimental results show that the total porosity and average pore size of the porous ceramic supports sintered at different temperatures within the range (1150–1300 °C), and lie in the ranges of 44–52% and 5–30 μm, respectively. For the ZrSiO4 top-layer, after firing at 1190 °C, a typical average pore size of about 0.3 μm and a thickness of about 70 μm were measured, while water permeability is estimated to a value of 440 lh−1m−2bar−1. Finally, the optimized membranes were tested in the sterilization of a culture medium. Filtration results show the efficiency of the zircon-deposited membranes for bacteria removal; indeed, the growth medium was found to be free of all microorganisms. Full article
Show Figures

Figure 1

15 pages, 1982 KiB  
Article
Reduction of Water Color in a Spinning Disc Reactor
by Eugenia Teodora Iacob-Tudose, Carmen Zaharia and Nicoleta Melniciuc-Puica
Appl. Sci. 2022, 12(20), 10253; https://doi.org/10.3390/app122010253 - 12 Oct 2022
Cited by 2 | Viewed by 1582
Abstract
In this study, spinning disc (SD) technology was successfully applied to a synthetic water to remove its color. The preliminary data performed in a regular mixing system using a potential adsorptive material, i.e., double-layered hydroxide of a ZnAlLDH type, did not provide a [...] Read more.
In this study, spinning disc (SD) technology was successfully applied to a synthetic water to remove its color. The preliminary data performed in a regular mixing system using a potential adsorptive material, i.e., double-layered hydroxide of a ZnAlLDH type, did not provide a significant decrease (no more than 10–15%) in the water color content. Thus, ZnAlLDH (2 g/L) was added to the synthetic water containing 50 mg/L Rosso Remazol RB dye that was subsequently fed onto the spinning disc. The SD efficiency was investigated at four different water-supplying flow rates (5.76, 6.00, 7.44 and 8.16 L/h) and four different disc rotational speeds (100, 250, 500 and 800 rpm). The best color removals of 44.39%, 41.14% and 42.70% were obtained at 6 L/h and 250 rpm, 6 L/h and 500 rpm and 5.76 L/min and 800 rpm, respectively, in only a 50 min working time period. In addition, for a relatively low color concentration in water (~30 mg/L dye) and at the lowest electric power consumption, Fenton oxidation was performed in the SD setup for a more advanced color removal of 62.54% within a 50 min time period. Furthermore, two other materials, titanium and aluminium oxides, underwent similar investigations in the SDR setup, and the obtained results were comparatively discussed. The FTIR spectra of each solid material before and after the SD technology application were used to appreciate the dye-retention performance of each material used. The obtained results indicated that the spinning disc technology correlated with the tested materials could significantly improve the water color (over 40% color reduction), this level of color reduction being higher than that obtained following a coagulation–flocculation test (20–28% color reduction), an ion exchange (25–30% color removal) or a sand filtration step (15–20%) applied to the same dye-based water sample. A further increase in color removal could be achieved by using an additional oxidative step (more than 65% color reduction). Full article
(This article belongs to the Special Issue Pollution Control Chemistry II)
Show Figures

Figure 1

13 pages, 1246 KiB  
Article
Antibiotic-Resistant Bacteria in Drinking Water from the Greater Accra Region, Ghana: A Cross-Sectional Study, December 2021–March 2022
by Hawa Ahmed, Maria Zolfo, Anita Williams, Jacklyne Ashubwe-Jalemba, Hannock Tweya, Wisdom Adeapena, Appiah-Korang Labi, Lady A. B. Adomako, Gloria N. D. Addico, Regina A. Banu, Mark O. Akrong, Gerard Quarcoo, Selorm Borbor and Mike Y. Osei-Atweneboana
Int. J. Environ. Res. Public Health 2022, 19(19), 12300; https://doi.org/10.3390/ijerph191912300 - 28 Sep 2022
Cited by 16 | Viewed by 4862
Abstract
With safely managed water accessible to only 19% of the population in Ghana, the majority of its residents are at risk of drinking contaminated water. Furthermore, this water could be a potential vehicle for the transmission of antimicrobial-resistant bacteria. This study assessed the [...] Read more.
With safely managed water accessible to only 19% of the population in Ghana, the majority of its residents are at risk of drinking contaminated water. Furthermore, this water could be a potential vehicle for the transmission of antimicrobial-resistant bacteria. This study assessed the presence of bacteria and the antibiotic resistance profile of Escherichia coli and Pseudomonas aeruginosa in drinking-water sources using membrane filtration and Kirby–Bauer disc diffusion methods. A total of 524 water samples were analyzed for total coliforms, total heterotrophic bacteria, E. coli and P. aeruginosa. Samples included sachets, bottled water, tap water, borehole and well water. Most of the sachet and bottled water samples were within the limits of Ghana’s standards for safe drinking water for the parameters tested. Over 50% of tap and borehole water was also free of E. coli and P. aeruginosa. Overall, of 115 E. coli isolates from tap and ground water samples, most were resistant to cefuroxime (88.7%), trimethoprim–sulfamethoxazole (62.6%) and amoxicillin–clavulanate (52.2%). P. aeruginosa isolates were most resistant to aztreonam (48%). Multidrug resistance was predominantly seen among E. coli isolates (58%). Evidence from this study calls for routine antimicrobial resistance surveillance in drinking water across the country and additional treatment of water sources at household levels. Full article
(This article belongs to the Special Issue Operational Research to Tackle Antimicrobial Resistance in Ghana)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Evaluation of the Antifungal Activity of Bacillus amyloliquefaciens and B. velezensis and Characterization of the Bioactive Secondary Metabolites Produced against Plant Pathogenic Fungi
by Shereen A. Soliman, Mona M. Khaleil and Rabab A. Metwally
Biology 2022, 11(10), 1390; https://doi.org/10.3390/biology11101390 - 23 Sep 2022
Cited by 48 | Viewed by 6306
Abstract
Endophytic bacteria are plant-beneficial bacteria with a broad host range. They provide numerous benefits to their hosts, helping them tolerate several biotic and abiotic stresses. An interest has recently been developed in endophytic bacteria which are producing bioactive compounds that contribute to the [...] Read more.
Endophytic bacteria are plant-beneficial bacteria with a broad host range. They provide numerous benefits to their hosts, helping them tolerate several biotic and abiotic stresses. An interest has recently been developed in endophytic bacteria which are producing bioactive compounds that contribute to the biological control of various phytopathogens. This research paper aimed to investigate the potentiality of new local strains of endophytic bacteria such as Bacillus amyloliquefaciens and B. velezensis and the production of several antimicrobial metabolites associated with the biocontrol of Alternaria sp., which cause serious diseases and affect important vegetable crops in Egypt. Twenty-five endophytic bacteria isolates were obtained from different plants cultivated in El-Sharkia Governorate, Egypt. Dual culture technique was used to evaluate the bacterial isolates’ antagonistic potentiality against Alternaria sp. and Helminthosporium sp. The most active bacterial isolates obtained were selected for further screening. The antifungal activity of the most active endophytic bacterial isolate was assessed in vivo on pepper seedlings as a biocontrol agent against Alternaria sp. A significant antifungal activity was recorded with isolates C1 and T5 against Alternaria sp. and Helminthosporium sp. The bacterial endophyte discs of C1 and T5 showed the highest inhibitory effect against Alternaria sp. at 4.7 and 3.1 cm, respectively, and Helminthosporium sp. at 3.9 and 4.0 cm, respectively. The most active endophytic isolates C1 and T5 were identified and the 16S rRNA sequence was submitted to the NCBI GenBank database with accession numbers: MZ945930 and MZ945929 for Bacillus amyloliquefaciens and Bacillus velezensis, respectively. The deformity of pathogenic fungal mycelia of Alternaria sp. and Helminthosporium sp. was studied under the biotic stress of bacteria. The culture filtrates of B. amyloliquefaciens and B. velezensis were extracted with different solvents, and the results indicated that hexane was the most efficient. Gas Chromatography-Mass Spectrometry revealed that Bis (2-ethylhexyl) phthalate, Bis (2-ethylhexyl) ester, and N,N-Dimethyldodecylamine were major constituents of the endophytic crude extracts obtained from B. amyloliquefaciens and B. velezensis. The in vivo results showed that Alternaria sp. infection caused the highest disease incidence, leading to a high reduction in plant height and in the fresh and dry weights of pepper plants. With B. amyloliquefaciens application, DI significantly diminished compared to Alternaria sp. infected pepper plants, resulting in an increase in their morphological parameters. Our findings allow for a reduction of chemical pesticide use and the control of some important plant diseases. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

16 pages, 2834 KiB  
Protocol
Mass Purification Protocol for Drosophila melanogaster Wing Imaginal Discs: An Alternative to Dissection to Obtain Large Numbers of Disc Cells
by Marion Hoareau, Juliette de Noiron, Jessie Colin and Isabelle Guénal
Biology 2022, 11(10), 1384; https://doi.org/10.3390/biology11101384 - 22 Sep 2022
Cited by 1 | Viewed by 2338
Abstract
Drosophila melanogaster imaginal discs are larval internal structures that become the external organs of the adult. They have been used to study numerous developmental processes for more than fifty years. Dissecting these imaginal discs for collection is challenging, as the size of third-instar [...] Read more.
Drosophila melanogaster imaginal discs are larval internal structures that become the external organs of the adult. They have been used to study numerous developmental processes for more than fifty years. Dissecting these imaginal discs for collection is challenging, as the size of third-instar larvae organs is typically less than 1 mm. Certain experimental applications of the organs require many cells, which requires researchers to spend several hours dissecting them. This paper proposes an alternative to dissection in the form of a mass enrichment protocol. The protocol enables the recovery of many wing imaginal discs by grinding large quantities of third-instar larvae and separating the organs using filtration and a density gradient. The wing imaginal discs collected with this protocol in less than three hours are as well preserved as those collected by dissection. The dissociation and filtration of the extract allow the isolation of a large amount of wing imaginal disc cells. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

Back to TopTop