Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = directional polymethylmethacrylate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3419 KiB  
Article
Graphene Oxide-Enriched Polymer: Impact on Dental Pulp Cell Viability and Differentiation
by Magdalena Vega-Quiroz, Agustin Reyes-Maciel, Christian Andrea Lopez-Ayuso, Carlos A. Jurado, Hector Guzman-Juarez, Carlos Andres Alvarez-Gayosso, Benjamin Aranda-Herrera, Abdulrahman Alshabib and Rene Garcia-Contreras
Polymers 2025, 17(13), 1768; https://doi.org/10.3390/polym17131768 - 26 Jun 2025
Viewed by 461
Abstract
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell [...] Read more.
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell proliferation, and differentiation of human dental pulp stem cells (hDPSC) in response to a conventional PMMA (PMMA) and polymer enriched with GO (PMMA+GO). Methods: Experiments were carried out with primary hDPSC subcultures. The PMMA and PMMA+GO were tested in direct and indirect contact. Cytotoxicity (1 day) and proliferation (3, 7, and 14 days) were evaluated with an MTT bioassay. The osteogenic, adipogenic, and chondrogenic aspects were determinate with alizarin red, oil red, and safranine. Mean values, standard deviation, and percentages were calculated; data were analyzed with Shapiro–Wilks normality and Student’s t-test. Results: The cell viability of PMMA and PMMA+GO in direct contact correspond to 90.8 ± 6.2, 149.6 ± 14.5 (1 day); 99.9 ± 7.0, 95.7 ± 6.1 (3 days); 120.2 ± 14.6, 172.9 ± 16.2 (7 days); and 102.9 ± 17.3, 95.4 ± 22.8 (14 days). For indirect contact, 77.2 ± 8.4, 99 ± 21.4 (1 day); 64.8 ± 21.6, 67.0 ± 9.6 (3 days); 91.4 ± 16.5, 142 ± 18.7 (7 days); and 63 ± 15.8, 79.1 ± 3.1 (14 days). PMMA+GO samples showed enhanced adipogenic, chondrogenic, and osteogenic aspects. Conclusions: The integration of GO into PMMA biopolymers stimulates cell proliferation and differentiation, holding great promise for future applications in the field of biomedicine. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Polymer Materials in Dentistry)
Show Figures

Figure 1

22 pages, 7688 KiB  
Article
Numerical Study on Coupled Combustion of PMMA Counter-Directional Flame Spread at Variable Slope
by Qiong Liu, Kehong Li, Chao Yuan, Ning Bian, Zhi Li, Weilin Xu and Jinrong Chen
Fire 2025, 8(6), 219; https://doi.org/10.3390/fire8060219 - 29 May 2025
Cited by 1 | Viewed by 918
Abstract
This paper investigates the dual effects of slope variation and flame interaction on counter-directional flame propagation through numerical simulations of polymethylmethacrylate (PMMA) plates. Critical flame propagation parameters, including flame morphology, flame spread speed, mass loss rate, and radiative heat flux density, were analyzed [...] Read more.
This paper investigates the dual effects of slope variation and flame interaction on counter-directional flame propagation through numerical simulations of polymethylmethacrylate (PMMA) plates. Critical flame propagation parameters, including flame morphology, flame spread speed, mass loss rate, and radiative heat flux density, were analyzed using the Fire Dynamics Simulator (FDS v6.7.5) software. By comparing counter-directional flames and unilateral flames under varying slope conditions, we evaluated how flame interactions influence flame spread speed and mass loss rate, as well as the role of the view factor in radiative heat flux distribution. Numerical results revealed that the counter-directional fire propagation process on slopes could be divided into four distinct stages based on variations in flame spread rate and mass loss rate. Moreover, we propose a novel method to quantify flame interaction intensity on slopes using flame spread time. These findings enhance the mechanistic understanding of slope-dependent counter-directional flame propagation. Full article
Show Figures

Figure 1

24 pages, 1663 KiB  
Review
The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review
by Saharat Jongrungsomran, Dakrong Pissuwan, Apichai Yavirach, Chaiy Rungsiyakull and Pimduen Rungsiyakull
J. Funct. Biomater. 2024, 15(10), 291; https://doi.org/10.3390/jfb15100291 - 30 Sep 2024
Cited by 5 | Viewed by 3941
Abstract
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, [...] Read more.
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed. Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
Show Figures

Graphical abstract

15 pages, 3155 KiB  
Article
Comparative Analysis of the Structural Weights of Fixed Prostheses of Zirconium Dioxide, Metal Ceramic, PMMA and 3DPP Printing Resin—Mechanical Implications
by Cristian Abad-Coronel, David Vélez Chimbo, Billy Lupú, Miguel Pacurucu, Marco V. Fárez and Jorge I. Fajardo
Dent. J. 2023, 11(11), 249; https://doi.org/10.3390/dj11110249 - 26 Oct 2023
Cited by 8 | Viewed by 3646
Abstract
The aim of this study was to determine the mechanical implications of four-unit fixed dental prostheses (FDPs) made of (1) monolithic zirconium dioxide (ZR O2), (2) polymethylmethacrylate (PMMA), (3) metal ceramic (PFM) and (4) impression resin (3DPP). Methods: Four groups were [...] Read more.
The aim of this study was to determine the mechanical implications of four-unit fixed dental prostheses (FDPs) made of (1) monolithic zirconium dioxide (ZR O2), (2) polymethylmethacrylate (PMMA), (3) metal ceramic (PFM) and (4) impression resin (3DPP). Methods: Four groups were studied with eight samples for each material (n: 32). Each structure was weighed, subjected to compressive tests and analyzed using 3D FEA. Results: PMMA presented the lowest structural weight (1.33 g), followed by 3DPP (1.98 g), ZR O2 (6.34 g) and PFM (6.44 g). In fracture tests, PMMA presented a compressive strength of 2104.73 N and a tension of 351.752 MPa; followed by PFM, with a strength of 1361.48 N and a tension of 227.521 MPa; ZR O2, with a strength of 1107.63 N and a tension of 185.098 MPa; and 3DPP, with a strength of 1000.88 N and a tension of 143.916 MPa. According to 3D FEA, 3DPP presented the lowest degree of deformation (0.001 mm), followed by PFM (0.011 mm), ZR O2 (0.168 mm) and PMMA (1.035 mm). Conclusions: The weights of the materials did not have a direct influence on the mean values obtained for strength, stress or strain. Since the performance was related to the tension and forces supported by the structures in critical zones, the importance of considering design factors is clear. In vitro and 3D FEA assays allowed us to simulate different scenarios for the mechanical properties of certain materials before evaluating them clinically. Thus, they can generate predictions that would allow for the design of a better research methodology in future clinical trials. Full article
Show Figures

Graphical abstract

13 pages, 3851 KiB  
Article
Time-Lapse Observation of Crevice Corrosion in Grade 2205 Duplex Stainless Steel
by So Aoki and Dirk L. Engelberg
Materials 2023, 16(15), 5300; https://doi.org/10.3390/ma16155300 - 27 Jul 2023
Cited by 6 | Viewed by 2111
Abstract
The objective of this study was to investigate and visualize the initiation and propagation of crevice corrosion in grade 2205 duplex stainless steel by means of time-lapse imaging. Transparent Poly-Methyl-Meth-Acrylate washer and disk were coupled with duplex stainless steel to create an artificial [...] Read more.
The objective of this study was to investigate and visualize the initiation and propagation of crevice corrosion in grade 2205 duplex stainless steel by means of time-lapse imaging. Transparent Poly-Methyl-Meth-Acrylate washer and disk were coupled with duplex stainless steel to create an artificial crevice, with electrochemical monitoring applied to obtain information about the nucleation and propagation characteristics. All nucleation sites and corroding areas inside crevices were recorded in situ using a digital microscope set-up. Localized corrosion initiated close to the edge of the washer, where the crevice gap was very tight, with active corrosion sites then propagating underneath the disk into areas with wider gaps, towards the crevice mouth. The growth was associated with a rise in anodic current interlaced with sudden current drops, with parallel hydrogen gas evolution also observed within the crevice. The current drops were associated with a sudden change in growth direction, and once corrosion reached the crevice mouth, the propagation continued circumferentially and in depth. This allowed different corrosion regions to develop, showing selective dissolution of austenite, a region with dissolution of both phases, followed by a region where only ferrite dissolved. The effect of applied electrochemical potential, combined with time-lapse imaging, provides a powerful tool for in situ corrosion studies. Full article
Show Figures

Figure 1

14 pages, 1420 KiB  
Article
Voriconazole Admixed with PMMA—Impact on Mechanical Properties and Efficacy
by Barbara Krampitz, Julia Steiner, Andrej Trampuz and Klaus-Dieter Kühn
Antibiotics 2023, 12(5), 848; https://doi.org/10.3390/antibiotics12050848 - 4 May 2023
Cited by 11 | Viewed by 2338
Abstract
Background: There are currently no recommendations to direct the optimal diagnosis and treatment of fungal osteoarticular infections, including prosthetic joint infections and osteomyelitis. Active agents (fluconazole; amphotericin B) are regularly applied per os or intravenously. Other drugs such as voriconazole are used less [...] Read more.
Background: There are currently no recommendations to direct the optimal diagnosis and treatment of fungal osteoarticular infections, including prosthetic joint infections and osteomyelitis. Active agents (fluconazole; amphotericin B) are regularly applied per os or intravenously. Other drugs such as voriconazole are used less frequently, especially locally. Voriconazole is less toxic and has promising results. Local antifungal medication during primary surgical treatment has been investigated by implanting an impregnated PMMA cement spacer using intra-articular powder or by daily intra-articular lavage. The admixed dosages are rarely based on characteristic values and microbiological and mechanical data. The purpose of this in vitro study is to investigate the mechanical stability and efficacy of antifungal-admixed PMMA with admixed voriconazole at low and high concentrations. Methods: Mechanical properties (ISO 5833 and DIN 53435) as well as efficacy with inhibition zone tests with two Candida spp. were investigated. We tested three separate cement bodies at each measuring time (n = 3) Results: Mixing high dosages of voriconazole causes white specks on inhomogeneous cement surfaces. ISO compression, ISO bending, and DIN impact were significantly reduced, and ISO bending modulus increased. There was a high efficacy against C. albicans with low and high voriconazole concentrations. Against C. glabrata, a high concentration of voriconazole was significantly more efficient than a dose at a low concentration. Conclusions: Mixing voriconazole powder with PMMA (Polymethylmethacrylate) powder homogeneously is not easy because of the high amount of dry voriconazole in the powder formulation. Adding voriconazole (a powder for infusion solutions) has a high impact on its mechanical properties. Efficacy is already good at low concentrations. Full article
(This article belongs to the Special Issue Effect of Antimicrobials on Fungal Biofilms)
Show Figures

Figure 1

13 pages, 16700 KiB  
Article
Dispersion and Homogeneity of MgO and Ag Nanoparticles Mixed with Polymethylmethacrylate
by Awder Nuree Arf, Fadil Abdullah Kareem and Sarhang Sarwat Gul
Polymers 2023, 15(6), 1479; https://doi.org/10.3390/polym15061479 - 16 Mar 2023
Cited by 4 | Viewed by 2664
Abstract
This study aims to examine the impact of the direct and indirect mixing techniques on the dispersion and homogeneity of magnesium oxide (MgO) and silver (Ag) nanoparticles (NPs) mixed with polymethylmethacrylate (PMMA). NPs were mixed with PMMA powder directly (non-ethanol-assisted) and indirectly (ethanol-assisted) [...] Read more.
This study aims to examine the impact of the direct and indirect mixing techniques on the dispersion and homogeneity of magnesium oxide (MgO) and silver (Ag) nanoparticles (NPs) mixed with polymethylmethacrylate (PMMA). NPs were mixed with PMMA powder directly (non-ethanol-assisted) and indirectly (ethanol-assisted) with the aid of ethanol as solvent. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscope (SEM) were used to evaluate the dispersion and homogeneity of MgO and Ag NPs within the PMMA-NPs nanocomposite matrix. Prepared discs of PMMA-MgO and PMMA-Ag nanocomposite were analyzed for dispersion and agglomeration by Stereo microscope. XRD showed that the average crystallite size of NPs within PMMA-NP nanocomposite powder was smaller in the case of ethanol-assisted mixing compared to non-ethanol-assisted mixing. Furthermore, EDX and SEM revealed good dispersion and homogeneity of both NPs on PMMA particles with ethanol-assisted mixing compared to the non-ethanol-assisted one. Again, the PMMA-MgO and PMMA-Ag nanocomposite discs were found to have better dispersion and no agglomeration with ethanol-assisted mixing when compared to the non-ethanol-assisted mixing technique. Ethanol-assisted mixing of MgO and Ag NPs with PMMA powder obtained better dispersion, better homogeneity, and no agglomeration of NPs within the PMMA-NP matrix. Full article
(This article belongs to the Special Issue Nanoparticles and Polymers: Preparations and Applications)
Show Figures

Graphical abstract

15 pages, 6804 KiB  
Article
Laser Direct Joining of Steel to Polymethylmethacrylate: The Influence of Process Parameters and Surface Mechanical Pre-Treatment on the Joint Strength and Quality
by Fábio A. O. Fernandes, José P. Pinto, Bruno Vilarinho and António B. Pereira
Materials 2022, 15(14), 5081; https://doi.org/10.3390/ma15145081 - 21 Jul 2022
Cited by 5 | Viewed by 2325
Abstract
The search for lightweight structures increases the demand for non-metallic materials, such as polymers, composites, and hybrid structures. This work presents the dissimilar joining through direct laser joining between polymethylmethacrylate (PMMA) and S235 galvanised steel using a pulsed Nd:YAG laser. The main goal [...] Read more.
The search for lightweight structures increases the demand for non-metallic materials, such as polymers, composites, and hybrid structures. This work presents the dissimilar joining through direct laser joining between polymethylmethacrylate (PMMA) and S235 galvanised steel using a pulsed Nd:YAG laser. The main goal is to determine the influence of processing parameters on joint strength and quality. In addition, the impact of surface conditions on the joint quality was also analysed. Overall, the optimum ranges of process parameters were found, and some are worth highlighting, such as the laser beam diameter and pulse duration, which significantly influenced the joint strength. Failure of the welded samples occurred in PMMA component, demonstrating good joint efficiency. Additionally, a maximum increase of 5.1% of the tensile shear strength was achieved thanks to the mechanical pre-treatment. It is possible to conclude that the joining between PMMA and the S235 galvanised steel can be performed by optimising the process parameters. Additionally, it can be enhanced through surface pre-treatments by exploring the mechanical interlock between both materials. Full article
(This article belongs to the Special Issue Laser Machining Technology in Materials Science)
Show Figures

Figure 1

19 pages, 9764 KiB  
Article
Direct Laser Patterning of CdTe QDs and Their Optical Properties Control through Laser Parameters
by Francesco Antolini, Francesca Limosani and Rocco Carcione
Nanomaterials 2022, 12(9), 1551; https://doi.org/10.3390/nano12091551 - 4 May 2022
Cited by 4 | Viewed by 2283
Abstract
Direct laser patterning is a potential and powerful technique to localize nanomaterials within a host matrix. The main goal of this study is to demonstrate that by tuning some parameters of a laser source, like power and laser pulse frequency, it is possible [...] Read more.
Direct laser patterning is a potential and powerful technique to localize nanomaterials within a host matrix. The main goal of this study is to demonstrate that by tuning some parameters of a laser source, like power and laser pulse frequency, it is possible to modify and tune the optical properties of the generated quantum dots (QDs) within a host matrix of a specific chemical composition. The study is realized by using cadmium telluride (CdTe) QD precursors, embedded in polymethylmethacrylate (PMMA) host matrix, as starting materials. The patterning of the CdTe QDs is carried out by using a UV nanosecond laser source at 355. Fluorescence microscopy and photoluminescence spectroscopy, associated with transmission electron microscopy, indicate that it is possible to obtain desired patterns of QDs emitting from green to red of the visible spectrum, due to the formed CdTe QDs. Preliminary highlights of the CdTe QDs’ formation mechanism are given in terms of laser power and laser pulse frequency (repetition rate). Full article
(This article belongs to the Special Issue Nanoscience for Photonics and Spectroscopy)
Show Figures

Figure 1

10 pages, 4002 KiB  
Communication
Deep Penetration of UV Radiation into PMMA and Electron Acceleration in Long Plasma Channels Produced by 100 ns KrF Laser Pulses
by Vladimir D. Zvorykin, Sergei V. Arlantsev, Alexey V. Shutov, Nikolay N. Ustinovskii and Polad V. Veliev
Symmetry 2021, 13(10), 1883; https://doi.org/10.3390/sym13101883 - 6 Oct 2021
Cited by 3 | Viewed by 1810
Abstract
Long (~1 mm), narrow (30−40 μm in diameter) corrugated capillary-like channels were produced in the axially symmetric 2D interaction regime of 100 ns KrF laser pulses with polymethylmethacrylate (PMMA) at intensities of up to 5 × 1012 W/cm2. The channels [...] Read more.
Long (~1 mm), narrow (30−40 μm in diameter) corrugated capillary-like channels were produced in the axially symmetric 2D interaction regime of 100 ns KrF laser pulses with polymethylmethacrylate (PMMA) at intensities of up to 5 × 1012 W/cm2. The channels extended from the top of a deep (~1 mm) conical ablative crater and terminated in a 0.5 mm size crown-like pattern. The modeling experiments with preliminary drilled capillaries in PMMA targets and Monte Carlo simulations evidenced that the crown origin might be caused by high-energy (0.1–0.25 MeV) electrons, which are much higher than the electron temperature of the plasma corona ~100 eV. This indicates the presence of an unusual direct electron acceleration regime. Firstly, fast electrons are generated due to laser plasma instabilities favored by a long-length interaction of a narrow-band radiation with plasma in the crater. Then, the electrons are accelerated by an axial component of the electrical field in a plasma-filled corrugated capillary waveguide enhanced by radiation self-focusing and specular reflection at the radial plasma gradient, while channel ripples serve the slowing down of the electromagnetic wave in the phase with electrons. Full article
Show Figures

Figure 1

11 pages, 29261 KiB  
Article
The Effect of Material Type and Location of an Orthodontic Retainer in Resisting Axial or Buccal Forces
by Jaana Ohtonen, Lippo Lassila, Eija Säilynoja and Pekka K. Vallittu
Materials 2021, 14(9), 2319; https://doi.org/10.3390/ma14092319 - 29 Apr 2021
Cited by 8 | Viewed by 2478
Abstract
The purpose of this study was to investigate the effect of retainer material and retainer position on a tooth to resist movement of the tooth in a simulation model. Bidirectional continuous glass fiber-reinforced composite (FRC) retainers and control retainers of steel wires were [...] Read more.
The purpose of this study was to investigate the effect of retainer material and retainer position on a tooth to resist movement of the tooth in a simulation model. Bidirectional continuous glass fiber-reinforced composite (FRC) retainers and control retainers of steel wires were tested. The FRC retainers had a polymer matrix of bisphenol-A-glycidyldimethacrylate (bis-GMA) and poly(methylmethacrylate) (PMMA), and it was cured with a photoinitiator system. The retainers were adhered to a lower jaw Frasaco model in two different positions. Resistance against the movement of one tooth was measured from two directions. The average load values within the FRC retainer groups were higher than within the metal retainer groups. The load values for the groups loaded from the axial direction were higher than those loaded from the buccal direction. FRC retainers, which were located 1–2 mm from the incisal edge, showed higher load values than those located 4–5 mm from the incisal edge. There was a significant difference in load values between FRC retainers and metal retainers (p < 0.01). The wire position and the direction of force also had significant effects (p < 0.01). There were no significant differences between metal retainer groups. The results of this study suggest that metal retainers are more flexible, allowing for tooth movements of larger magnitude than with FRC retainers. Full article
Show Figures

Graphical abstract

12 pages, 7938 KiB  
Article
Resist-Free Directed Self-Assembly Chemo-Epitaxy Approach for Line/Space Patterning
by Tommaso Jacopo Giammaria, Ahmed Gharbi, Anne Paquet, Paul Nealey and Raluca Tiron
Nanomaterials 2020, 10(12), 2443; https://doi.org/10.3390/nano10122443 - 7 Dec 2020
Cited by 3 | Viewed by 3582
Abstract
This work reports a novel, simple, and resist-free chemo-epitaxy process permitting the directed self-assembly (DSA) of lamella polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) on a 300 mm wafer. 193i lithography is used to manufacture topographical guiding silicon oxide line/space patterns. The critical [...] Read more.
This work reports a novel, simple, and resist-free chemo-epitaxy process permitting the directed self-assembly (DSA) of lamella polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) on a 300 mm wafer. 193i lithography is used to manufacture topographical guiding silicon oxide line/space patterns. The critical dimension (CD) of the silicon oxide line obtained can be easily trimmed by means of wet or dry etching: it allows a good control of the CD that permits finely tuning the guideline and the background dimensions. The chemical pattern that permits the DSA of the BCP is formed by a polystyrene (PS) guide and brush layers obtained with the grafting of the neutral layer polystyrene-random-polymethylmethacrylate (PS-r-PMMA). Moreover, data regarding the line edge roughness (LER) and line width roughness (LWR) are discussed with reference to the literature and to the stringent requirements of semiconductor technology. Full article
(This article belongs to the Special Issue Nanoscale Self-Assembly: Nanopatterning and Metrology)
Show Figures

Graphical abstract

5 pages, 581 KiB  
Proceeding Paper
Three Lobes Plastic Optical Fiber Bending and Rotation Sensor
by Demetrio Sartiano, Salvador Sales and Elena Torres Roca
Proceedings 2019, 15(1), 15; https://doi.org/10.3390/proceedings2019015015 - 9 Jul 2019
Cited by 1 | Viewed by 1487
Abstract
In this work a multiparameter plastic optical fiber (POF) sensor is presented. A three lobes POF consisting of polymethylmethacrylate (PMMA) core and a fluorinated polymer (FP) for the cladding was fabricated. The aim is to use a plastic fiber with non-circular shape to [...] Read more.
In this work a multiparameter plastic optical fiber (POF) sensor is presented. A three lobes POF consisting of polymethylmethacrylate (PMMA) core and a fluorinated polymer (FP) for the cladding was fabricated. The aim is to use a plastic fiber with non-circular shape to implement a bending direction and rotation sensor. The mode confinement in the plastic filament obtained with the extrusion process was simulated, and the effect of bending evaluated. The POF sensor is interrogated in transmission using an LED as light source and a charge-coupled device (CCD) to capture the light intensity distribution inside the core, and then analyze the changes when a bending or a rotation is applied. Full article
(This article belongs to the Proceedings of 7th International Symposium on Sensor Science)
Show Figures

Figure 1

18 pages, 11754 KiB  
Article
The Influence of Clamping Pressure on Joint Formation and Mechanical Performance of Ti6Al4V/CF-PEEK Friction-Riveted Joints
by Natascha Z. Borba, Jorge F. dos Santos and Sergio T. Amancio-Filho
Materials 2019, 12(5), 745; https://doi.org/10.3390/ma12050745 - 4 Mar 2019
Cited by 6 | Viewed by 5027
Abstract
This work aims at investigating the influence of pre-set clamping pressure on the joint formation and mechanical strength of overlapping direct-friction-riveted joints. A pneumatic fixture device was developed for this work, with clamping pressure varying from 0.2 MPa to 0.6 MPa. A case [...] Read more.
This work aims at investigating the influence of pre-set clamping pressure on the joint formation and mechanical strength of overlapping direct-friction-riveted joints. A pneumatic fixture device was developed for this work, with clamping pressure varying from 0.2 MPa to 0.6 MPa. A case study on overlapping joints using Ti6Al4V rivets and woven carbon fiber-reinforced polyether-ether-ketone (CF-PEEK) parts were produced. Digital image correlation and microscopy revealed the expected compressive behavior of the clamping system and the continuous pressure release upon the joining process owing to the rivet plastic deformation and the polymer squeezing flow. Two preferential paths of material flow were identified through the alternate replacement of the upper and lower composite parts by a poly-methyl-methacrylate (PMMA) plate—the composite upward and squeezing flow between the parts which induced their separation. The ultimate lap shear forces up to 6580 ± 383 N were achieved for the direct-friction-riveted CF-PEEK overlap joints. The formation of a gap to accommodate squeezed polymer between the composite parts during the process had no influence on the joint mechanical performance. The increase in the clamping pressure for joints produced with a low friction force did not affect the joint-anchoring efficiency and consequently the joint strength. On the other hand, the combined effect of a high-friction force and clamping pressure induced the inverted bell shape of the plastically deformed rivet tip, a lower anchoring efficiency, and the delamination of the composite, all of which decrease the mechanical strength by 31%. Therefore, the higher the friction force and clamping pressure, the more defects would be generated in the composite parts and the more changes in the shape of the plastically deformed rivet tip, leading to a lower level of quasi-static mechanical performance. All the joints failed by initial bearing of the composite and final rivet pull-out. The findings of this work can contribute to further improvement of the clamping design for industrial application. Full article
Show Figures

Figure 1

14 pages, 9086 KiB  
Article
Near-Zero Thermal Expansion in Freeze-Cast Composite Materials
by Sarah N. Ellis, Carl P. Romao and Mary Anne White
Ceramics 2019, 2(1), 112-125; https://doi.org/10.3390/ceramics2010011 - 13 Feb 2019
Cited by 9 | Viewed by 5352
Abstract
Most materials expand when heated, which can lead to thermal stress and even failure. Whereas thermomiotic materials exhibit negative thermal expansion, the creation of materials with near-zero thermal expansion presents an ongoing challenge due to the need to optimize thermal and mechanical properties [...] Read more.
Most materials expand when heated, which can lead to thermal stress and even failure. Whereas thermomiotic materials exhibit negative thermal expansion, the creation of materials with near-zero thermal expansion presents an ongoing challenge due to the need to optimize thermal and mechanical properties simultaneously. The present work describes the preparation and properties of polymer–ceramic composites with low thermal expansion. Ceramic scaffolds, prepared by freeze-casting of low-thermal-expansion Al2W3O12, were impregnated with poly(methylmethacrylate) (PMMA). The resulting composites can have a coefficient of thermal expansion as low as 2 × 10−6 K−1, and hardness values of 4.0 ± 0.3 HV/5 (39 ± 3 MPa) and 16 ± 3 HV/5 (160 ± 30 MPa) parallel and perpendicular to the ice growth, respectively. The higher hardness perpendicular to the ice growth direction indicates that the PMMA is acting to improve the mechanical properties of the composite. Full article
(This article belongs to the Special Issue Ice-Templated and Freeze-Cast Ceramics)
Show Figures

Graphical abstract

Back to TopTop