Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = direct drive wave energy converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4026 KiB  
Article
Grain Refinement Caused by Dynamic Recrystallization Under Pulsed-Wave Laser Multi-Layer Cyclic Thermal Load
by Manping Cheng, Xi Zou, Yuan Zhu, Tengfei Chang, Qi Cao, Houlai Ju, Jiawei Ning, Yang Ding and Lijun Qiang
Coatings 2025, 15(7), 788; https://doi.org/10.3390/coatings15070788 - 3 Jul 2025
Viewed by 336
Abstract
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact [...] Read more.
In the Direct Energy Deposition (DED) process, the deposited material experiences intricate thermo-mechanical processes. Subsequent thermal cycling can trigger Dynamic Recrystallization (DRX) under suitable conditions, with specific strain and temperature parameters facilitating grain refinement and homogenization. While prior research has examined the impact of thermal cycling in continuous wave (CW) lasers on DRX in 316 L stainless steel deposits, this study delves into the effects of pulsed wave (PW) laser thermal cycling on DRX. Here, the thermo-mechanical response to PW cyclic thermal loading is empirically assessed, and the evolution of microstructure, grain morphology, geometric dislocation density (GND), and misorientation map during PW DED of 316 L stainless steel is scrutinized. Findings reveal that DRX is activated between the 8th and 44th thermal cycles, with temperatures fluctuating in the range of 680 K–750 K–640 K and grains evolving within a 5.6%–6.2%–5.2% strain range. After 90 thermal cycles, the grain microstructure undergoes significant alteration. Throughout the thermal cycling, dynamic recovery (DRV) occurs, marked by sub-grain formation and low-angle grain boundaries (LAGBs). Continuous dynamic recrystallization (CDRX) accompanies discontinuous dynamic recrystallization (DDRX), with LAGBs progressively converting into high-angle grain boundaries (HAGBs). Elevated temperatures and accumulated strain drive dislocation movement and entanglement, augmenting GND. The study also probes the influence of frequency and duty cycle on grain microstructure, finding that low pulse frequency spurs CDRX, high pulse frequency favors DRV, and the duty cycle has minimal impact on grain microstructure under PW cyclic thermal load. Full article
Show Figures

Figure 1

24 pages, 9412 KiB  
Article
Research on Decoupling Duty Cycle Optimization Control Method of a Multiport Converter for Dual-Port Direct Drive Wave Power Generation System
by Lei Huang, Shixiang Wang, Baoyi Pan, Haitao Liu, Jiyu Zhang and Shiquan Wu
J. Mar. Sci. Eng. 2024, 12(10), 1811; https://doi.org/10.3390/jmse12101811 - 11 Oct 2024
Viewed by 1293
Abstract
Dual-port direct drive wave energy power generation systems (DP-DDWEPGS) have received widespread attention due to their smooth and zero-free output power, compared to single-port direct drive wave energy power generation systems (SP-DDWEPGS) which have the disadvantage of large out-put power fluctuations. To further [...] Read more.
Dual-port direct drive wave energy power generation systems (DP-DDWEPGS) have received widespread attention due to their smooth and zero-free output power, compared to single-port direct drive wave energy power generation systems (SP-DDWEPGS) which have the disadvantage of large out-put power fluctuations. To further enhance the performance of the DP-DDWEPGS, optimal power capture control is proposed to achieve maximum power point tracking. Meanwhile, a multiport converter is applied to the DP-DDWEPGS to solve the problem caused by an excessive number of switching devices in the overall system converter. The multiport converter fulfills all the functional requirements of the DP-DDWEPGS while reducing the number of switching devices. However, switch multiplexing of the multiport converter also introduces coupling relationships between each port and the wave force exhibits time-varying characteristics, necessitating advanced control methods with superior fast-tracking capability. Therefore, in this paper, a decoupling duty cycle optimization model predictive control for DP-DDWEPGS is proposed. Based on the characteristics of switching multiplexing, NSC finite control set model predictive control (FCS-MPC) decouples the current prediction and the cost function, reduces the number of candidate voltage vectors in each operation, and shortens the operation time by 70%. To address the issues of high ripple value and increased error due to decoupling in FCS-MPC, duty cycle optimization control is added, greatly reducing the fluctuations in electromagnetic force and power of the permanent magnet linear generator (PMLG). Based on the established simulation model, the feasibility and superiority of the multiport converter and decoupling duty cycle optimization model predictive current control method are verified. Full article
(This article belongs to the Special Issue Advances in Offshore Wind and Wave Energies—2nd Edition)
Show Figures

Figure 1

20 pages, 18404 KiB  
Article
Impact of Wave Energy Converters and Port Layout on Coastal Dynamics: Case Study of Astara Port
by Mehrdad Moradi and Adrian Ilinca
Energies 2024, 17(11), 2485; https://doi.org/10.3390/en17112485 - 22 May 2024
Cited by 1 | Viewed by 1605
Abstract
In the face of depleting fossil energy and the imperative of sustainable development, there is a compelling drive towards advancing renewable energies. In this context, sustainable and predictable alternatives, like marine energy, gain prominence. Marine energy presents a cleaner option devoid of the [...] Read more.
In the face of depleting fossil energy and the imperative of sustainable development, there is a compelling drive towards advancing renewable energies. In this context, sustainable and predictable alternatives, like marine energy, gain prominence. Marine energy presents a cleaner option devoid of the adverse effects associated with fossil fuels, playing a crucial role in environmental sustainability by safeguarding coastlines against erosion. This study focuses on Astara Port in the Caspian Sea, exploring the utilization of wave energy converters (WECs). The originality of this study’s research lies in exploring WECs’ dual role in energy generation and coastal protection. Using MIKE21 software simulations, the impact of number, location, arrangement, and orientation of WECs across various scenarios was investigated, including two WEC number scenarios (11 and 13), three structural placement scenarios (north, front, and south of the port), two structural arrangement scenarios (linear and staggered), two port layout scenarios (original layout and modified layout), and two orientation scenarios for the structures (facing north-east, which is the dominant wave direction, and facing southeast). The results show a remarkable decrease in the significant wave height behind WECs, notably with 13 staggered devices facing dominant waves (from northeast), reducing the significant wave height Hs by 23–25%. This setup also shows the highest wave height reduction, notably 36.26% during a storm event. However, linear WEC setup offers more extensive coastline protection, covering 47.88% of the model boundary during storms. Furthermore, the 11 staggered WECs facing southeast (SE) arrangement had the lowest sediment accumulation at 0.0358 m over one year, showing effective sedimentation mitigation potential. Conversely, the 13 linear WECs facing northeast (NE) had the highest accumulation at 0.1231 m. Finally, the proposed port design redirects high-velocity flow away from the port entrance and removes rotatory flow, reducing sediment accumulation near the harbor entrance. Full article
(This article belongs to the Special Issue Wave Energy: Theory, Methods, and Applications)
Show Figures

Figure 1

46 pages, 7204 KiB  
Review
Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review
by Marcin Jankowski, Anna Pałac, Krzysztof Sornek, Wojciech Goryl, Maciej Żołądek, Maksymilian Homa and Mariusz Filipowicz
Energies 2024, 17(9), 2064; https://doi.org/10.3390/en17092064 - 26 Apr 2024
Cited by 22 | Viewed by 5703
Abstract
The potential energy of compressed air represents a multi-application source of power. Historically employed to drive certain manufacturing or transportation systems, it became a source of vehicle propulsion in the late 19th century. During the second half of the 20th century, significant efforts [...] Read more.
The potential energy of compressed air represents a multi-application source of power. Historically employed to drive certain manufacturing or transportation systems, it became a source of vehicle propulsion in the late 19th century. During the second half of the 20th century, significant efforts were directed towards harnessing pressurized air for the storage of electrical energy. Today’s systems, which are based on storing the air at a high pressure, are usually recognized as compressed air energy storage (CAES) installations. This paper aims to provide an overview of different technologies that take advantage of the energy accumulated in the compressed air. Particular attention is paid to the CAES installations that are working as electrical energy storage systems (EESs). These systems, developed originally as large capacity (>100 MWe) and fuel-based installations, may soon become fully scalable, highly efficient, and fuel-free electrical energy storage systems. To present this opportunity, a thorough review encompassing previous and up-to-date advancements in their development was carried out. In particular, CAES concepts, such as diabatic (D-CAES), adiabatic (A-CAES), and isothermal (I-CAES), are described in detail. This review also provides the detailed characteristics of the crucial elements of these configurations, including compressors, expanders, air storage chambers, and thermal storage tanks. Knowledge of these components and their role allows us to understand the main challenges behind the further development of the mentioned CAES setups. Apart from the CAES systems that are designed as EES systems, this paper describes other prospective technologies that utilize the energy of pressurized air. Accordingly, compressed air cars and their key elements are explained in detail. Moreover, the technology renowned as wave-driven compressed air energy storage (W-CAES) is described as well, indicating that the utilization of pressurized air represents a viable option for converting ocean energy into electrical power. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

18 pages, 5908 KiB  
Article
Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method
by José Carlos Ugaz Peña, Christian Luis Medina Rodríguez and Gustavo O. Guarniz Avalos
Sustainability 2023, 15(13), 10447; https://doi.org/10.3390/su151310447 - 3 Jul 2023
Cited by 6 | Viewed by 3209
Abstract
Ocean waves contain the highest energy density among renewable energy sources. However, harnessing the energy from ocean waves represents a challenge because wave energy converters (WECs) must be designed to have great survivability and efficiency. The power production challenge of any WEC depends [...] Read more.
Ocean waves contain the highest energy density among renewable energy sources. However, harnessing the energy from ocean waves represents a challenge because wave energy converters (WECs) must be designed to have great survivability and efficiency. The power production challenge of any WEC depends on the power take-off (PTO) system efficiency. Maximum power point tracking (MPPT) algorithms have been widely applied in renewable energy from photovoltaic and wind sources, and have subsequently been adapted to wave energy converters (WECs). Energy extraction is optimized by applying MPPT, resulting in an increase in efficiency. This study aims to address the analysis of the influence of the perturb and observe MPPT in the electrical power performance of a WEC composed of a point absorber, a hinged arm and a direct mechanical drive PTO system. The PTO is characterized by a pulley system, a counterweight, one-way bearings, a gearbox, a flywheel and an electric generator; in the present study it is considered to be a cylindrical point absorber. The linear theory and the viscous damping effect are applied to analyze the hydrodynamic behavior of the point absorber. Regarding the two generators considered in the present study, the contribution of MPPT is greater for the low power generator; the high values of the capture width ratio (CWR) occur at low values of period and wave height, showing the maximum value in the high-power generator. Full article
Show Figures

Figure 1

18 pages, 6171 KiB  
Article
Partitioning the Extreme Wave Spectrum of Hurricane Wilma to Improve the Design of Wave Energy Converters
by Marco Ulloa, Rodolfo Silva and Ismael Mariño-Tapia
Sustainability 2023, 15(9), 7414; https://doi.org/10.3390/su15097414 - 29 Apr 2023
Cited by 2 | Viewed by 2162
Abstract
Analysis of the omnidirectional energy spectrum from storm wave measurements provides valuable parameters for understanding the specific local conditions that wave energy converters would have to withstand. Partitioning the energy spectrum also helps to identify wave groups with low directional spread propagating in [...] Read more.
Analysis of the omnidirectional energy spectrum from storm wave measurements provides valuable parameters for understanding the specific local conditions that wave energy converters would have to withstand. Partitioning the energy spectrum also helps to identify wave groups with low directional spread propagating in the direction of the dominant waves of the more energetic wave systems. This paper analyzes the partition of the Hurricane Wilma energy spectrum using single-point measurements obtained in shallow water. Hurricane Wilma generated simultaneous crossing wave systems with different significant wave heights and steepnesses. The maximum estimated significant height among the wave groups was 5.5 m. The corresponding height of the partitions and the omnidirectional energy spectrum were 11.0 m (swell) and 12 m, respectively. While linear superposition was the main mechanism responsible for driving the wave groups, at times, modulational instability produced nonlinear wave groups. This is a new finding, since modulational instability is usually considered an open-sea phenomenon. For shorelines with multidirectional wave groups, submerged and semi-submerged devices should be designed to account for changes in wave direction and wave height, although under extreme hurricane conditions, energy harvesting might have to be sacrificed for the benefit of device integrity. Full article
(This article belongs to the Special Issue Sustainability of Wave Energy Resources in the Sea)
Show Figures

Figure 1

18 pages, 4842 KiB  
Article
Design and Optimization of Linear Permanent Magnet Vernier Generator for Direct Drive Wave Energy Converter
by Mei Zhao, Zhiquan Kong, Pingpeng Tang, Zhentao Zhang, Guodong Yu, Huaqiang Zhang, Yongxiang Xu and Jibin Zou
Energies 2023, 16(7), 3164; https://doi.org/10.3390/en16073164 - 31 Mar 2023
Cited by 1 | Viewed by 2093
Abstract
A novel linear permanent magnet vernier generator (LPMVG) for small-power off-grid wave power generation systems is proposed in this paper. Firstly, in order to reduce the cogging force and the inherent edge effect of the linear generator, a staggered tooth modular structure is [...] Read more.
A novel linear permanent magnet vernier generator (LPMVG) for small-power off-grid wave power generation systems is proposed in this paper. Firstly, in order to reduce the cogging force and the inherent edge effect of the linear generator, a staggered tooth modular structure is proposed. Secondly, in order to improve the output power and efficiency of the LPMVG and reduce the fluctuation coefficient of electromagnetic force, the relationship between the parameters of the generator is studied, and a method combining multi-objective optimization and single parameter scanning based on the response surface model and particle swarm optimization algorithm is proposed to obtain the optimal structural parameters of the generator. Thirdly, the output power and efficiency of the optimized generator are calculated and analyzed based on the two-dimensional finite element method, and the effectiveness of the multi-objective optimization design method based on the response surface model and particle swarm optimization algorithm is verified. Finally, a prototype is developed, and the calculated results and the measured results are shown to be in good agreement. Full article
Show Figures

Figure 1

15 pages, 4193 KiB  
Article
A Novel Multiport Hybrid Wave Energy System for Grid-Connected and Off-Grid Applications
by Wei Yu, Ruiyang Ma, Darui Xu, Lei Huang and Shixiang Wang
Sustainability 2023, 15(3), 2175; https://doi.org/10.3390/su15032175 - 24 Jan 2023
Viewed by 2293
Abstract
Direct drive wave energy converters (DDWECs) have gradually become the mainstream of wave energy converters (WECs). In order to make better use of wave energy, energy storage devices and other renewable energy sources are often used to suppress power fluctuation in DDWECs. However, [...] Read more.
Direct drive wave energy converters (DDWECs) have gradually become the mainstream of wave energy converters (WECs). In order to make better use of wave energy, energy storage devices and other renewable energy sources are often used to suppress power fluctuation in DDWECs. However, the addition of other energy sources will increase the complexity of the converter system and the number of power switches. Considering the flexibility of nine-switch converters (NSCs), this paper proposes a novel nine-switch grid-connected/off-grid multiport hybrid wave energy system (HWES). First, the system structure and modulation principle are described. Then, a model for a generator, a grid and energy storage are built, including a control strategy of each part. Finally, a simulation for the grid-connected/off-grid application and an experiment on the off-grid HWES are carried out. The results show that the multiport wave energy system can achieve the objective of stable and reliable power transmission by reducing power devices. Full article
(This article belongs to the Special Issue Intelligence and Sustainability in Electrical Engineering)
Show Figures

Figure 1

16 pages, 7794 KiB  
Article
Detent Force Reduction in Linear Interior Permanent Magnet Generator for Direct-Drive Wave Power Conversion
by Tao Xia, Hang Li, Yongming Xia, Yangfei Zhang and Pengfei Hu
Electronics 2022, 11(23), 3896; https://doi.org/10.3390/electronics11233896 - 25 Nov 2022
Viewed by 1788
Abstract
The permanent magnet linear generator is widely applied in the direct-drive wave energy converter (DD-WEC) because of its high power density. In this paper, a novel tubular permanent magnet linear generator, which consists of multilayer and interior permanent magnets (MI-TLPMGs), is presented for [...] Read more.
The permanent magnet linear generator is widely applied in the direct-drive wave energy converter (DD-WEC) because of its high power density. In this paper, a novel tubular permanent magnet linear generator, which consists of multilayer and interior permanent magnets (MI-TLPMGs), is presented for DD-WEC, which improves the output power and back electromotive force (back EMF) through the flux concentrating effect. However, MI-TLPMGs with multilayer embedded permanent magnets have severe problems regarding force ripples and detent force, which affect the DD-WEC’s dynamics. Therefore, a DD-WEC system with MI-TLPMGs is proposed, and the effect of the detent force on the dynamic performance of the DD-WEC is analyzed theoretically. Then, the L-type auxiliary teeth and magnetic barriers, which are optimized by the Taguchi method, are introduced to minimize the detent force of the MI-TLPMGs. After optimization using the Taguchi method, the amplitude of the detent force is reduced from the initial 21.7 N to 5.2 N, which means it has weakened by nearly 76.1%. Finally, a prototype has been manufactured and measured in the wave tank to verify the optimization results. Full article
Show Figures

Figure 1

42 pages, 2328 KiB  
Review
A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems
by Raju Ahamed, Kristoffer McKee and Ian Howard
Sustainability 2022, 14(16), 9936; https://doi.org/10.3390/su14169936 - 11 Aug 2022
Cited by 25 | Viewed by 15498
Abstract
The traditional wave energy converters (WECs) use hydraulic or turbine-type power take-off (PTO) mechanisms which consist of many moving parts, creating mechanical complexity and increasing the installation and maintenance costs. Linear generator-based direct-drive WECs could be a solution to overcome this problem, but [...] Read more.
The traditional wave energy converters (WECs) use hydraulic or turbine-type power take-off (PTO) mechanisms which consist of many moving parts, creating mechanical complexity and increasing the installation and maintenance costs. Linear generator-based direct-drive WECs could be a solution to overcome this problem, but the efficiency of the single conventional linear generator is not high enough, and it cannot work satisfactorily in the low-frequency range. This article reviews the recent research developments of the linear permanent magnet (PM) generator-based WEC to harness maximum energy from ocean waves. It starts with a brief introduction and background of wave energy converters using linear generators. Following this, the working principle of the WECs with linear PM generators is briefly outlined. Subsequently, the analytical model of the linear PM generator-based WEC is studied. After that, the up-to-date developments of the linear PM generator-based PTO systems are studied. Despite some modifications resulting in complexity in the linear PM generator’s structure and a rise in manufacturing costs, the study shows the systems’ efficiencies increased by increasing magnetic flux and reducing cogging force. The key parameters and improvement issues that can increase the performances and efficiencies of the PTO systems are identified to help future researchers for further development. Moreover, the review discusses the numerical and experimental analysis tools, the typical control systems used by the researchers and the challenges of the linear generator-based wave energy conversion system. Finally, conclusions about the significant beneficial characteristics and design choice of the WEC linear generator structure are provided and related to the application conditions. Full article
Show Figures

Figure 1

17 pages, 5753 KiB  
Article
A Novel Back-Stepping Sliding Mode Control Strategy of Direct-Drive Wave Energy Converters
by Shiguang Weng and Jianyong Wang
Processes 2022, 10(7), 1385; https://doi.org/10.3390/pr10071385 - 15 Jul 2022
Cited by 4 | Viewed by 2049
Abstract
In this paper, a maximum energy extraction and tracking strategy for direct-drive wave energy converters (DDWECs) based on back-stepping and sliding mode control strategies are developed. It is well known that the existence of the chattering phenomenon degrades the control performance of conventional [...] Read more.
In this paper, a maximum energy extraction and tracking strategy for direct-drive wave energy converters (DDWECs) based on back-stepping and sliding mode control strategies are developed. It is well known that the existence of the chattering phenomenon degrades the control performance of conventional sliding mode control (SMC). To mitigate the effects of flutter and external disturbances, a back-stepping sliding model control (BSMC) scheme is proposed. The main features of the proposed methodology are as follows: (1) By using the proposed BSMC, the maximum wave energy of DDWEC can be captured. Moreover, the speed tracking of the permanent magnet linear generator (PMLG), which is a subsystem of DDWEC, tracked in real-time. (2) By virtue of the proposed BSMC, the closed-loop control system is asymptotically stable in finite time. (3) With the superior controllability of the BSMC, it can handle disturbances that the SMC cannot handle. Comprehensive and comparative studies are proved to be superior to the most advanced method Full article
(This article belongs to the Topic Marine Renewable Energy)
Show Figures

Figure 1

21 pages, 8988 KiB  
Article
Development and Wave Tank Demonstration of a Fully Controlled Permanent Magnet Drive for a Heaving Wave Energy Converter
by Nick J. Baker, Ahmed Almoraya, Mohammad A. H. Raihan, Steve McDonald and Luke McNabb
Energies 2022, 15(13), 4811; https://doi.org/10.3390/en15134811 - 30 Jun 2022
Cited by 4 | Viewed by 3214
Abstract
One option for converting the energy in sea waves into renewable electricity is the development of floating wave energy converters coupled to electrical generators. For this to work, bespoke slow-speed electrical machines coupled to bidirectional power smoothing power electronic converters are required. This [...] Read more.
One option for converting the energy in sea waves into renewable electricity is the development of floating wave energy converters coupled to electrical generators. For this to work, bespoke slow-speed electrical machines coupled to bidirectional power smoothing power electronic converters are required. This paper reports on the successful design and wave tank validation of an electric machine, power converter and fully controlled direct drive power take-off system coupled to two small scale heaving wave energy converters. The design, development and demonstration of linear generators and power converters is presented including some simulated and laboratory results. Demonstration of wave energy converters with pure electric drives, fully automated control, bidirectional power flow and active force management is almost unique and essential for future wave energy development. The results presented prove that direct-drive power take-off for wave energy devices is technically possible and can be used to implement an automated control system with bidirectional power flow in both resonant and non-resonant wave energy systems. Full article
(This article belongs to the Special Issue Permanent Magnet Machines for Wave Energy Converters)
Show Figures

Figure 1

19 pages, 9873 KiB  
Article
Research on Energy-Capture Characteristics of a Direct-Drive Wave-Energy Converter Based on Parallel Mechanism
by Tao Yao, Yulong Wang, Zhihua Wang, Tongxian Li and Zhipeng Tan
Energies 2022, 15(5), 1670; https://doi.org/10.3390/en15051670 - 23 Feb 2022
Cited by 5 | Viewed by 2119
Abstract
Aiming at the capture and conversion of multidirection wave energy, a multifreedom direct-drive wave-energy converter (WEC) based on a parallel mechanism is studied. The dynamic model of WEC was conducted based on force analysis and hydrodynamic theory, and the inverse kinematic solutions of [...] Read more.
Aiming at the capture and conversion of multidirection wave energy, a multifreedom direct-drive wave-energy converter (WEC) based on a parallel mechanism is studied. The dynamic model of WEC was conducted based on force analysis and hydrodynamic theory, and the inverse kinematic solutions of each branch chain of the mechanism were obtained following the space vector method. Furthermore, the kinetics response of the linear generator branch chain was obtained. Moreover, the influence on the capture efficiency of the device’s geometric structure scale was investigated under different sea conditions. To evaluate the performance of the WEC, a linear generator model was simulated and analyzed by COMSOL Multiphysics. A laboratory prototype was manufactured. The test results indicated that the multifreedom device can achieve better power conversion performance than traditional single degree of freedom (DOF) devices. This study provides ideas for the design and development of large multi-DOF wave-energy-conversion devices. Full article
(This article belongs to the Topic Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 8793 KiB  
Article
Resonance Control Based on Hydrodynamic Analysis for Underwater Direct Drive Wave Energy Converter
by Yang Li, Lei Huang, Peiwen Tan, Minshuo Chen and Junquan Chen
J. Mar. Sci. Eng. 2021, 9(11), 1192; https://doi.org/10.3390/jmse9111192 - 27 Oct 2021
Cited by 4 | Viewed by 2622
Abstract
Wave energy has great prospect among many forms of marine renewable energy for its high density and storage. This paper proposes an underwater direct drive wave energy converter (UDDWEC), which is composed of a submerged point absorbing buoy and a linear-rotating axial flux [...] Read more.
Wave energy has great prospect among many forms of marine renewable energy for its high density and storage. This paper proposes an underwater direct drive wave energy converter (UDDWEC), which is composed of a submerged point absorbing buoy and a linear-rotating axial flux permanent magnetic generator (LR-AFPMG). In addition, a maximum energy capture control strategy, resonance control, is derived for UDDWEC, based on small amplitude oscillation and hydrodynamic analysis. The proposed control strategy assumes the availability of sea condition such as wave height and period. This control strategy has three main characteristics. Firstly, this control strategy is derived based on hydrodynamic analysis of the submerged point absorber. Added mass, radiation damping and other hydrodynamic parameters are obtained to participate in UDDWEC dynamic model. Secondly, a LR-AFPMG is applied as power take-off device to realize energy conversion, which can improve the power density. Thirdly, small amplitude oscillation can be changed into long stroke rotary motion through the LR-AFPMG. The reliability and effectiveness of the proposed control strategy are assessed at various operation conditions for a heaving system and the validity for the UDDWEC is verified. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 13317 KiB  
Article
Performance of Linear Generator Designs for Direct Drive Wave Energy Converter under Unidirectional Long-Crested Random Waves
by Budi Azhari, Fransisco Danang Wijaya and Edwar Yazid
Energies 2021, 14(16), 5098; https://doi.org/10.3390/en14165098 - 18 Aug 2021
Cited by 9 | Viewed by 4075
Abstract
For generating electricity, direct-drive wave energy converters (WECs) with linear permanent magnet generators (LPMGs) have advantages in terms of efficiency, simplicity, and force-to-weight ratio over WEC with rotary generators. However, the converter’s work under approaching-real wave conditions should be investigated. This paper studies [...] Read more.
For generating electricity, direct-drive wave energy converters (WECs) with linear permanent magnet generators (LPMGs) have advantages in terms of efficiency, simplicity, and force-to-weight ratio over WEC with rotary generators. However, the converter’s work under approaching-real wave conditions should be investigated. This paper studies the performance of a pico-scale WEC with two different LPMGs under unidirectional long-crested random waves. Different significant wave heights (using data in the Southern Ocean of Yogyakarta, Indonesia) and peak frequencies are tested. The JONSWAP energy spectrum is used to extract the wave elevations, while the MSS toolbox in MATLAB Simulink is employed to solve the floater’s dynamic responses. Next, the translator movements are extracted and combined with the flux distribution from FEMM simulation and analytical calculation, and the output powers are obtained. An experiment is conducted to test the output under constant speed. The results show for both designs, different tested significant wave height values produce higher output powers than peak frequency variation, but there is no specific trend on them. Meanwhile, the peak frequency is inversely proportional to the output power. Elimination of the non-facing events results in increasing output power under both parameters’ variation, with higher significant wave height resulting in a bigger increase. The semi iron-cored LPMG produces lower power loss and higher efficiency. Full article
(This article belongs to the Special Issue Wave Energy Conversion 2021)
Show Figures

Figure 1

Back to TopTop