Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = direct alcohol fuel-cell performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2792 KiB  
Article
Enhanced Electrocatalytic Performance of Nickel-Cobalt-Titanium Dioxide-Embedded Carbon Nanofibers for Direct Alcohol Fuel Cells
by Wael M. Mohammed, Mahmoud A. Mohamed, Mohamed O. Abdel-Hamed and Esam E. Abdel-Hady
J. Compos. Sci. 2025, 9(3), 125; https://doi.org/10.3390/jcs9030125 - 10 Mar 2025
Cited by 1 | Viewed by 1498
Abstract
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these [...] Read more.
This study focuses on making non-precious electrocatalysts for improving the performance of Direct Alcohol Fuel Cells (DAFCs). Specifically, it examines the oxidation of ethanol and methanol. Conventional platinum-based catalysts are expensive and suffer from problems such as degradation and poisoning. To overcome these challenges, we fabricated tri-metallic catalysts composed of nickel, cobalt, and titanium dioxide (TiO2) embedded in carbon nanofibers (CNFs). The synthesis included electrospinning and subsequent carbonization as well as optimization of parameters to achieve uniform nanofiber morphology and high surface area. Electrochemical characterization revealed that the incorporation of TiO2 significantly improved electrocatalytic activity for ethanol and methanol oxidation, with current densities increasing from 57.8 mA/cm2 to 74.2 mA/cm2 for ethanol and from 38.69 mA/cm2 to 60.39 mA/cm2 for methanol as the TiO2 content increased. The catalysts showed excellent stability, with the TiO2-enriched sample (T2) showing superior performance during longer cycling tests. Chronoamperometry and electrochemical impedance spectroscopy are used to examine the stability of the catalysts and the dynamics of the charge carriers. Impedance spectroscopy indicated reduced charge transfer resistance, confirming enhanced activities. These findings suggest that the synthesized non-precious electrocatalysts can serve as effective alternatives to platinum-based materials, offering a promising pathway for the development of cost-efficient and durable fuel cells. Research highlights non-precious metal catalysts for sustainable fuel cell technologies. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

16 pages, 4793 KiB  
Article
Simulation of Surface Segregation in Nanoparticles of Pt-Pd Alloys
by Jose Brito Correia and Ana Isabel de Sá
Crystals 2025, 15(1), 53; https://doi.org/10.3390/cryst15010053 - 7 Jan 2025
Cited by 5 | Viewed by 1110
Abstract
Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel [...] Read more.
Platinum (Pt) and palladium (Pd) are crucial in hydrogen energy technologies, especially in fuel cells, due to their high catalytic activity and chemical stability. Pt-Pd nanoparticles, produced through various methods, enhance catalytic performance based on their size, shape, and composition. These nanocatalysts excel in direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) by promoting alcohol oxidation and reducing CO poisoning. Pt-Pd catalysts are also being explored for their oxygen reduction reaction (ORR) on the cathodic side of fuel cells, showing higher activity and stability than pure platinum. Molecular dynamics (MD) simulations have been conducted to understand the structural and surface energy effects of PdPt nanoparticles, revealing phase separation and chemical ordering, which are critical for optimizing these catalysts. Pd migration to the surface layer in Pt-Pd alloys minimizes the overall potential energy through the formation of Pd surface monolayers and Pt-Pd bonds, leading to a lower surface energy for intermediate compositions compared to that of the pure elements. The potential energy, calculated from MD simulations, increases with a decreasing particle size due to surface creation, indicating higher reactivity for smaller particles. A general contraction of the average distance to the nearest neighbour atoms was determined for the top surface layers within the nanoparticles. This research highlights the significant impact of Pd segregation on the structural and surface energy properties of Pt-Pd nanoparticles. The formation of Pd monolayers and the resulting core–shell structures influence the catalytic activity and stability of these nanoparticles, with smaller particles exhibiting higher surface energy and reactivity. These findings provide insights into the design and optimization of Pt-Pd nanocatalysts for various applications. Full article
Show Figures

Figure 1

23 pages, 5014 KiB  
Article
Design and Performance of CuNi-rGO and Ag-CuNi-rGO Composite Electrodes for Use in Fuel Cells
by Mohamed Shaban, Aya Mohamed, Mohamed G. M. Kordy, Hamad AlMohamadi, M. F. Eissa and Hany Hamdy
Catalysts 2024, 14(8), 551; https://doi.org/10.3390/catal14080551 - 22 Aug 2024
Cited by 2 | Viewed by 1586
Abstract
This work developed new electrocatalysts for direct alcohol oxidation fuel cells (DAFCs) by using graphene and reduced graphene oxides (GO and rGO) as supporting nanomaterials for copper–nickel (CuNi) nanocomposites. The manufacture of CuNi, CuNi-GO, and CuNi-rGO nanocomposites was realized through the adaptation of [...] Read more.
This work developed new electrocatalysts for direct alcohol oxidation fuel cells (DAFCs) by using graphene and reduced graphene oxides (GO and rGO) as supporting nanomaterials for copper–nickel (CuNi) nanocomposites. The manufacture of CuNi, CuNi-GO, and CuNi-rGO nanocomposites was realized through the adaptation of Hummer’s method and hydrothermal techniques, with subsequent analysis using a range of analytical tools. The electrocatalytic behavior of these materials in DAFCs, with methanol and ethanol as the fuels, was scrutinized through various methods, including cyclic voltammetry, linear sweep, chronoamperometry, and electrochemical impedance spectroscopy. This investigation also assessed the stability and charge transfer dynamics. The rGO-based CuNi nanocomposite demonstrated a remarkable performance boost, showing increases of approximately 319.6% for methanol and 252.6% for ethanol oxidation compared to bare CuNi. The integration of silver nanoparticles into the Ag-CuNi-rGO electrode led to a current density surge to 679.3 mA/g, which signifies enhancements of 254.2% and 812.6% relative to the CuNi-rGO and CuNi electrodes, respectively. These enhancements are ascribed to the augmented densities of hot sites and the synergistic interactions within the nanocatalysts. The findings underscore the potential of Ag and rGO as effective supports for CuNi nanocomposites, amplifying their catalytic efficiency in DAFC applications. Full article
(This article belongs to the Section Nanostructured Catalysts)
Show Figures

Figure 1

14 pages, 5680 KiB  
Article
Self-Healing Sulfonated Poly(ether ether ketone)-Based Polymer Electrolyte Membrane for Direct Methanol Fuel Cells: Effect of Solvent Content
by Mae Hwa Tai, Hui San Thiam, Shiau Foon Tee, Yun Seng Lim, Lip Huat Saw and Soon Onn Lai
Polymers 2023, 15(24), 4641; https://doi.org/10.3390/polym15244641 - 8 Dec 2023
Cited by 6 | Viewed by 2223
Abstract
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed [...] Read more.
Proton exchange membranes (PEMs) with superior characteristics are needed to advance fuel cell technology. Nafion, the most used PEM in direct methanol fuel cells (DMFCs), has excellent proton conductivity but suffers from high methanol permeability and long-term performance degradation. Thus, this study aimed to create a healable PEM with improved durability and methanol barrier properties by combining sulfonated poly(ether ether ketone) (SPEEK) and poly-vinyl alcohol (PVA). The effect of changing the N,N-dimethylacetamide (DMAc) solvent concentration during membrane casting was investigated. Lower DMAc concentrations improved water absorption and, thus, membrane proton conductivity, but methanol permeability increased correspondingly. For the best trade-off between these two characteristics, the blend membrane with a 10 wt% DMAc solvent (SP10) exhibited the highest selectivity. SP10 also showed a remarkable self-healing capacity by regaining 88% of its pre-damage methanol-blocking efficiency. The ability to self-heal decreased with the increasing solvent concentration because of the increased crosslinking density and structure compactness, which reduced chain mobility. Optimizing the solvent concentration during membrane preparation is therefore an important factor in improving membrane performance in DMFCs. With its exceptional methanol barrier and self-healing characteristics, the pioneering SPEEK/PVA blend membrane may contribute to efficient and durable fuel cell systems. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications)
Show Figures

Figure 1

18 pages, 4191 KiB  
Article
Alginate/PVA Polymer Electrolyte Membrane Modified by Hydrophilic Montmorillonite for Structure and Selectivity Enhancement for DMFC Application
by Maryam Taufiq Musa, Norazuwana Shaari, Nor Fatina Raduwan, Siti Kartom Kamarudin and Wai Yin Wong
Polymers 2023, 15(12), 2590; https://doi.org/10.3390/polym15122590 - 6 Jun 2023
Cited by 14 | Viewed by 2952
Abstract
Nafion is a commercial membrane that is widely used in direct methanol fuel cells (DMFC) but has critical constraints such as being expensive and having high methanol crossover. Efforts to find alternative membranes are actively being carried out, including in this study, which [...] Read more.
Nafion is a commercial membrane that is widely used in direct methanol fuel cells (DMFC) but has critical constraints such as being expensive and having high methanol crossover. Efforts to find alternative membranes are actively being carried out, including in this study, which looks at producing a Sodium Alginate/Poly (Vinyl Alcohol) (SA/PVA) blended membrane with modification by montmorillonite (MMT) as an inorganic filler. The content of MMT in SA/PVA-based membranes varied in the range of 2.0–20 wt% according to the solvent casting method implemented. The presence of MMT was seen to be most optimal at a content of 10 wt%, achieving the highest proton conductivity and the lowest methanol uptake of 9.38 mScm−1 and 89.28% at ambient temperature, respectively. The good thermal stability, optimum water absorption, and low methanol uptake of the SA/PVA-MMT membrane were achieved with the presence of MMT due to the strong electrostatic attraction between H+, H3O+, and OH ions of the sodium alginate and PVA polymer matrices. The homogeneous dispersion of MMT at 10 wt% and the hydrophilic properties possessed by MMT contribute to an efficient proton transport channel in SA/PVA-MMT membranes. The increase in MMT content makes the membrane more hydrophilic. This shows that the loading of 10 wt% MMT is very helpful from the point of view of sufficient water intake to activate proton transfer. Thus, the membrane produced in this study has great potential as an alternative membrane with a much cheaper cost and competent future performance. Full article
Show Figures

Figure 1

10 pages, 2415 KiB  
Article
Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis
by Wenwen Wang, Xinyi Bai, Xiaochu Yuan, Yumin Liu, Lin Yang and Fangfang Chang
Materials 2023, 16(2), 840; https://doi.org/10.3390/ma16020840 - 15 Jan 2023
Cited by 6 | Viewed by 2343
Abstract
The compositions and surface facets of platinum (Pt)-based electrocatalysts are of great significance for the development of direct alcohol fuel cells (DAFCs). We reported an approach for preparing ultrathin PtnCo100−n nanowire (NW) catalysts with high activity. The PtnCo [...] Read more.
The compositions and surface facets of platinum (Pt)-based electrocatalysts are of great significance for the development of direct alcohol fuel cells (DAFCs). We reported an approach for preparing ultrathin PtnCo100−n nanowire (NW) catalysts with high activity. The PtnCo100−n NW alloy catalysts synthesized by single-phase surfactant-free synthesis have adjustable compositions and (111) plane and strain lattices. X-ray diffraction (XRD) results indicate that the alloy composition can adjust the lattice shrinkage or expansion of PtnCo100−n NWs. X-ray photoelectron spectroscopy (XPS) results show that the electron structure of Pt is changed by the alloying effect caused by electron modulation in the d band, and the chemical adsorption strength of Pt is decreased, thus the catalytic activity of Pt is increased. The experimental results show that the activity of PtnCo100−n for the oxidation of methanol and ethanol is related to the exposed crystal surface, strain lattice and composition of catalysts. The PtnCo100−n NWs exhibit stronger electrocatalytic performance for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The dominant (111) plane Pt53Co47 exhibits the highest electrocatalytic activity in MOR, which is supported by the results of XPS. This discovery provides a new pathway to design high activity, stability nanocatalysts to enhance direct alcohol fuel cells. Full article
(This article belongs to the Special Issue Alloys and Composites: Structural and Functional Applications)
Show Figures

Figure 1

26 pages, 2379 KiB  
Article
Development and Performance Evaluation of an IoT-Integrated Breath Analyzer
by Abd Alghani Khamis, Aida Idris, Abdallah Abdellatif, Noor Ashikin Mohd Rom, Taha Khamis, Mohd Sayuti Ab Karim, Shamini Janasekaran and Rusdi Bin Abd Rashid
Int. J. Environ. Res. Public Health 2023, 20(2), 1319; https://doi.org/10.3390/ijerph20021319 - 11 Jan 2023
Cited by 7 | Viewed by 3470
Abstract
Although alcohol consumption may produce effects that can be beneficial or harmful, alcohol consumption prevails among communities around the globe. Additionally, alcohol consumption patterns may be associated with several factors among communities and individuals. Numerous technologies and methods are implemented to enhance the [...] Read more.
Although alcohol consumption may produce effects that can be beneficial or harmful, alcohol consumption prevails among communities around the globe. Additionally, alcohol consumption patterns may be associated with several factors among communities and individuals. Numerous technologies and methods are implemented to enhance the detection and tracking of alcohol consumption, such as vehicle-integrated and wearable devices. In this paper, we present a cellular-based Internet of Things (IoT) implementation in a breath analyzer to enable data collection from multiple users via a single device. Cellular technology using hypertext transfer protocol (HTTP) was implemented as an IoT gateway. IoT integration enabled the direct retrieval of information from a database relative to the device and direct upload of data from the device onto the database. A manually developed threshold algorithm was implemented to quantify alcohol concentrations within a range from 0 to 200 mcg/100 mL breath alcohol content using electrochemical reactions in a fuel-cell sensor. Two data collections were performed: one was used for the development of the model and was split into two sets for model development and on-machine validation, and another was used as an experimental verification test. An overall accuracy of 98.16% was achieved, and relative standard deviations within the range from 1.41% to 2.69% were achieved, indicating the reliable repeatability of the results. The implication of this paper is that the developed device (an IoT-integrated breath analyzer) may provide practical assistance for healthcare representatives and researchers when conducting studies involving the detection and data collection of alcohol consumption patterns. Full article
Show Figures

Figure 1

15 pages, 4047 KiB  
Article
Pt-Based Nanostructures for Electrochemical Oxidation of CO: Unveiling the Effect of Shapes and Electrolytes
by Ahmed Abdelgawad, Belal Salah, Kamel Eid, Aboubakr M. Abdullah, Rashid S. Al-Hajri, Mohammed Al-Abri, Mohammad K. Hassan, Leena A. Al-Sulaiti, Doniyorbek Ahmadaliev and Kenneth I. Ozoemena
Int. J. Mol. Sci. 2022, 23(23), 15034; https://doi.org/10.3390/ijms232315034 - 30 Nov 2022
Cited by 10 | Viewed by 2802
Abstract
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a [...] Read more.
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterials Science)
Show Figures

Graphical abstract

19 pages, 3765 KiB  
Article
Ethanol Electro-Oxidation on Catalysts with S-ZrO2-Decorated Graphene as Support in Fuel Cell Applications
by Maryam Yaldagard, Mehrdard Shahbaz, Hyoun Woo Kim and Sang Sub Kim
Nanomaterials 2022, 12(19), 3327; https://doi.org/10.3390/nano12193327 - 24 Sep 2022
Cited by 4 | Viewed by 2381
Abstract
Direct ethanol fuel cells (DEFCs) are considered the most suitable direct alcohol fuel cell (DAFC) in terms of safety and current density. The obstacle to DEFC commercialization is the low reaction kinetics of ethanol (C2H5OH) oxidation because of the [...] Read more.
Direct ethanol fuel cells (DEFCs) are considered the most suitable direct alcohol fuel cell (DAFC) in terms of safety and current density. The obstacle to DEFC commercialization is the low reaction kinetics of ethanol (C2H5OH) oxidation because of the poor performance of the electrocatalyst. In this study, for the first time, graphene nanoplates (GNPs) were coated with sulfated zirconium dioxide (ZrO2) as adequate support for platinum (Pt) catalysts in DEFCs. A Pt/S-ZrO2-GNP electrocatalyst was prepared by a new process, polyol synthesis, using microwave heating. Field emission scanning electron microscope (FESEM) imaging revealed well-dispersed platinum nanoparticles supported on the S-ZrO2-GNP powder. Analysis of the Fourier transform infrared (FTIR) spectrometry confirmed that sulfate modified the surfaces of the sample. In X-ray diffraction (XRD), no effect of S-ZrO2 on the crystallinity net in Pt was found. Pt/S-ZrO2-GNP electrode outperformed those with unsulfated counterparts, primarily for the higher access with electron and proton, confirming sulfonating as a practical approach for increasing the performance, electrocatalytic activity, and carbon monoxide (CO) tolerance in an electrocatalyst. A considerable decrease in the voltage of the CO electrooxidation peak from 0.93 V for Pt/C to 0.76 V for the Pt/S-ZrO2-GNP electrode demonstrates that the new material increases activity for CO electrooxidation. Moreover, the as-prepared Pt/S-ZrO2-GNPs electrocatalyst exhibits high catalytic activity for the EOR in terms of electrochemical surface area with respect to Pt/ZrO2-GNPs and Pt/C (199.1 vs. 95 and 67.2 cm2.mg−1 Pt), which may be attributed to structural changes caused by the high specific surface area of graphene nanoplates catalyst support and sulfonating effect as mentioned above. Moreover, EIS results showed that the Pt/S-ZrO2-GNPs electrocatalyst has a lower charge transfer resistance than Pt/ ZrO2-GNPs and Pt/C in the presence of ethanol demonstrating an increased ethanol oxidation activity and reaction kinetics by Pt/S-ZrO2-GNPs. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Graphical abstract

23 pages, 5258 KiB  
Review
Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells—A Concise Review
by Hari Gopi Kuppusamy, Prabhakaran Dhanasekaran, Niluroutu Nagaraju, Maniprakundil Neeshma, Baskaran Mohan Dass, Vishal M. Dhavale, Sreekuttan M. Unni and Santoshkumar D. Bhat
Materials 2022, 15(16), 5601; https://doi.org/10.3390/ma15165601 - 15 Aug 2022
Cited by 19 | Viewed by 4881
Abstract
Solid anion exchange membrane (AEM) electrolytes are an essential commodity considering their importance as separators in alkaline polymer electrolyte fuel cells (APEFC). Mechanical and thermal stability are distinguished by polymer matrix characteristics, whereas anion exchange capacity, transport number, and conductivities are governed by [...] Read more.
Solid anion exchange membrane (AEM) electrolytes are an essential commodity considering their importance as separators in alkaline polymer electrolyte fuel cells (APEFC). Mechanical and thermal stability are distinguished by polymer matrix characteristics, whereas anion exchange capacity, transport number, and conductivities are governed by the anionic group. The physico-chemical stability is regulated mostly by the polymer matrix and, to a lesser extent, the cationic head framework. The quaternary ammonium (QA), phosphonium, guanidinium, benzimidazolium, pyrrolidinium, and spirocyclic cation-based AEMs are widely studied in the literature. In addition, ion solvating blends, hybrids, and interpenetrating networks still hold prominence in terms of membrane stability. To realize and enhance the performance of an alkaline polymer electrolyte fuel cell (APEFC), it is also necessary to understand the transport processes for the hydroxyl (OH) ion in anion exchange membranes. In the present review, the radiation grafting of the monomer and chemical modification to introduce cationic charges/moiety are emphasized. In follow-up, the recent advances in the synthesis of anion exchange membranes from poly(phenylene oxide) via chloromethylation and quaternization, and from aliphatic polymers such as poly(vinyl alcohol) and chitosan via direct quaternization are highlighted. Overall, this review concisely provides an in-depth analysis of recent advances in anion exchange membrane (AEM) and its viability in APEFC. Full article
Show Figures

Figure 1

12 pages, 3600 KiB  
Article
Alcohol Diffusion in Alkali-Metal-Doped Polymeric Membranes for Using in Alkaline Direct Alcohol Fuel Cells
by Andrea Fernández-Nieto, Sagrario Muñoz and Vicenta María Barragán
Membranes 2022, 12(7), 666; https://doi.org/10.3390/membranes12070666 - 28 Jun 2022
Cited by 3 | Viewed by 2006
Abstract
The alcohol permeability of anion exchange membranes is a crucial property when they are used as a solid electrolyte in alkaline direct alcohol fuel cells and electrolyzers. The membrane is the core component to impede the fuel crossover and allows the ionic transport, [...] Read more.
The alcohol permeability of anion exchange membranes is a crucial property when they are used as a solid electrolyte in alkaline direct alcohol fuel cells and electrolyzers. The membrane is the core component to impede the fuel crossover and allows the ionic transport, and it strongly affects the fuel cell performance. The aim of this work is to compare different anion exchange membranes to be used as an electrolyte in alkaline direct alcohol fuels cells. The alcohol permeability of four commercial anion exchange membranes with different structure were analyzed in several hydro-organic media. The membranes were doped using different types of alkaline doping agents (LiOH, NaOH, and KOH) and different conditions to analyze the effect of the treatment on the membrane behavior. Methanol, ethanol, and 1-propanol were analyzed. The study was focused on the diffusive contribution to the alcohol crossover that affects the fuel cell performance. To this purpose, alcohol permeability was determined for various membrane systems. The results show that membrane alcohol permeability is affected by the doping conditions, depending on the effect on the type of membrane and alcohol nature. In general, heterogeneous membranes presented a positive correlation between alcohol permeability and doping capacity, with a lower effect for larger-size alcohols. A definite trend was not observed for homogeneous membranes. Full article
(This article belongs to the Special Issue Membranes for Energy Conversion)
Show Figures

Figure 1

19 pages, 8371 KiB  
Article
Nano-Graphene Layer from Facile, Scalable and Eco-Friendly Liquid Phase Exfoliation Strategy as Effective Barrier Layer for High-Performance and Durable Direct Liquid Alcohol Fuel Cells
by Prabhuraj Balakrishnan, Fereshteh Dehghani Sanij, Zhixin Chang, P. K. Leung, Huaneng Su, Lei Xing and Qian Xu
Molecules 2022, 27(9), 3044; https://doi.org/10.3390/molecules27093044 - 9 May 2022
Cited by 4 | Viewed by 6966
Abstract
Graphene, in spite of exceptional physio-chemical properties, still faces great limitations in its use and industrial scale-up as highly selective membranes (enhanced ratio of proton conductivity to fuel cross-over) in liquid alcohol fuel cells (LAFCs), due to complexity and high cost of prevailing [...] Read more.
Graphene, in spite of exceptional physio-chemical properties, still faces great limitations in its use and industrial scale-up as highly selective membranes (enhanced ratio of proton conductivity to fuel cross-over) in liquid alcohol fuel cells (LAFCs), due to complexity and high cost of prevailing production methods. To resolve these issues, a facile, low-cost and eco-friendly approach of liquid phase exfoliation (bath sonication) of graphite to obtain graphene and spray depositing the prepared graphene flakes, above anode catalyst layer (near the membrane in the membrane electrode assembly (MEA)) as barrier layer at different weight percentages relative to the base membrane Nafion 115 was utilized in this work. The 5 wt.% nano-graphene layer raises 1 M methanol/oxygen fuel cell power density by 38% to 91 mW·cm−2, compared to standard membrane electrode assembly (MEA) performance of 63 mW·cm−2, owing to less methanol crossover with mild decrease in proton conductivity, showing negligible voltage decays over 20 h of operation at 50 mA·cm−2. Overall, this work opens three prominent favorable prospects: exploring the usage of nano-materials prepared by liquid phase exfoliation approach, their effective usage in ion-transport membrane region of MEA and enhancing fuel cell power performance. Full article
(This article belongs to the Special Issue Fuel Cells in China)
Show Figures

Graphical abstract

10 pages, 3136 KiB  
Article
Research on the Morphology Reconstruction of Deep Cryogenic Treatment on PtRu/nitrogen-Doped Graphene Composite Carbon Nanofibers
by Shuaishuai Lv, Yangyang Zhu, Xingxing Wang, Yu Zhu, Kaixuan Wang, Hongjun Ni and Ruobo Gu
Materials 2022, 15(3), 908; https://doi.org/10.3390/ma15030908 - 25 Jan 2022
Cited by 1 | Viewed by 2376
Abstract
To improve the performance of PtRu/nitrogen-doped graphene composite carbon nanofibers, the composite carbon nanofibers were thermally compensated by deep cryogenic treatment (DCT), which realized the morphology reconstruction of composite carbon nanofibers. The effects of different DCT times were compared: 12 h, 18 h, [...] Read more.
To improve the performance of PtRu/nitrogen-doped graphene composite carbon nanofibers, the composite carbon nanofibers were thermally compensated by deep cryogenic treatment (DCT), which realized the morphology reconstruction of composite carbon nanofibers. The effects of different DCT times were compared: 12 h, 18 h, and 24 h. The morphology reconstruction mechanism was explored by combining the change of inner chain structure and material group. The results showed that the fibers treated for 12 h had better physical and chemical properties, where the diameter is evenly distributed between 500 and 800 nm. Combined with Fourier infrared analysis, the longer the cryogenic time, the more easily the water vapor and nitrogen enter polymerization reaction, causing changes of chain structure and degradation performance. With great performance of carbonization and group transformation, the PtRu/nitrogen-doped graphene composite carbon nanofibers can be used as an efficient direct alcohol fuel cell catalyst and promote its commercialization. Full article
(This article belongs to the Special Issue Electrospinning: Nanofabrication and Application)
Show Figures

Figure 1

15 pages, 3881 KiB  
Article
One Dimensional AuAg Nanostructures as Anodic Catalysts in the Ethylene Glycol Oxidation
by Daniel K. Kehoe, Luis Romeral, Ross Lundy, Michael A. Morris, Michael G. Lyons and Yurii K. Gun’ko
Nanomaterials 2020, 10(4), 719; https://doi.org/10.3390/nano10040719 - 10 Apr 2020
Cited by 11 | Viewed by 3400
Abstract
Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also [...] Read more.
Direct alcohol fuel cells are highly promising as efficient power sources for various mobile and portable applications. However, for the further advancement of fuel cell technology it is necessary to develop new, cost-effective Pt-free electrocatalysts that could provide efficient alcohol oxidation and also resist cross-over poisoning. Here, we report new electrocatalytic materials for ethylene glycol oxidation, which are based on AuAg linear nanostructures. We demonstrate a low temperature tunable synthesis that enables the preparation of one dimensional (1D) AuAg nanostructures ranging from nanowires to a new nano-necklace-like structure. Using a two-step method, we showed that, by aging the initial reaction mixture at various temperatures, we produced ultrathin AuAg nanowires with a diameter of 9.2 ± 2 and 3.8 ± 1.6 nm, respectively. These nanowires exhibited a high catalytic performance for the electro-oxidation of ethylene glycol with remarkable poisoning resistance. These results highlight the benefit of 1D metal alloy-based nanocatalysts for fuel cell applications and are expected to make an important contribution to the further development of fuel cell technology. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

21 pages, 3623 KiB  
Article
Ethanol Electrooxidation at Platinum-Rare Earth (RE = Ce, Sm, Ho, Dy) Binary Alloys
by D.M.F. Santos, J.R.B. Lourenço, D. Macciò, A. Saccone, C.A.C. Sequeira and J.L. Figueiredo
Energies 2020, 13(7), 1658; https://doi.org/10.3390/en13071658 - 2 Apr 2020
Cited by 11 | Viewed by 3316
Abstract
Proton exchange membrane fuel cells and direct alcohol fuel cells have been extensively studied over the last three decades or so. They have emerged as potential systems to power portable applications, providing clean energy, and offering good commercial viability. Ethanol is considered one [...] Read more.
Proton exchange membrane fuel cells and direct alcohol fuel cells have been extensively studied over the last three decades or so. They have emerged as potential systems to power portable applications, providing clean energy, and offering good commercial viability. Ethanol is considered one of the most interesting fuels in this field. Herein, platinum-rare earth (Pt-RE) binary alloys (RE = Ce, Sm, Ho, Dy, nominal composition 50 at.% Pt) were produced and studied as anodes for ethanol oxidation reaction (EOR) in alkaline medium. A Pt-Dy alloy with nominal composition 40 at.% Pt was also tested. Their electrocatalytic performance was evaluated by voltammetric and chronoamperometric measurements in 2 M NaOH solution with different ethanol concentrations (0.2–0.8 M) in the 25–45 °C temperature range. Several EOR kinetic parameters were determined for the Pt-RE alloys, namely the charge transfer and diffusion coefficients, and the number of exchanged electrons. Charge transfer coefficients ranging from 0.60 to 0.69 and n values as high as 0.7 were obtained for the Pt0.5Sm0.5 electrode. The EOR reaction order at the Pt-RE alloys was found to vary between 0.4 and 0.9. The Pt-RE electrodes displayed superior performance for EOR than bare Pt, with Pt0.5Sm0.5 exhibiting the highest electrocatalytic activity. The improved electrocatalytic activity in all of the evaluated Pt-RE binary alloys suggests a strategy for the solution of the existing anode issues due to the structure-sensitive EOR. Full article
(This article belongs to the Special Issue Latest Progress for Proton Exchange Membrane Fuel Cells)
Show Figures

Graphical abstract

Back to TopTop