Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = direct C–H bond addition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3599 KiB  
Review
Recent Advances in Borylation and Suzuki-Type Cross-Coupling—One-Pot Miyaura-Type C–X and C–H Borylation–Suzuki Coupling Sequence
by Nouhaila Bahyoune, Mohammed Eddahmi, Perikleia Diamantopoulou, Ioannis D. Kostas and Latifa Bouissane
Catalysts 2025, 15(8), 738; https://doi.org/10.3390/catal15080738 - 1 Aug 2025
Viewed by 326
Abstract
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last [...] Read more.
In the last decades, numerous approaches have been explored for the cross-coupling of biaryl building blocks depending on the presence of boron sources. In fact, these changes have been catalyzed by transition metal complexes. This review focuses on the progress of the last decade in transition metal-catalyzed C–X borylation and direct C–H borylation, with emphasis on nickel-catalyzed C–H borylation, as effective and affordable protocols for the borylation of aryl substrates. In addition, Suzuki-type cross-coupling by activation of C–H, C–C, or C–N bonds is also reported. This study then offers an overview of recent advances for the synthesis of bi- and multi-aryls found in synthetic molecular complexes and natural products using the transition metal-catalyzed one-pot Miyaura-type C–X and C–H borylation–Suzuki coupling sequence. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

27 pages, 3805 KiB  
Article
Internally Catalyzed Hydrogen Atom Transfer (I-CHAT)—A New Class of Reactions in Combustion Chemistry
by Rubik Asatryan, Jason Hudzik, Venus Amiri and Mark T. Swihart
Molecules 2025, 30(3), 524; https://doi.org/10.3390/molecules30030524 - 24 Jan 2025
Viewed by 1417
Abstract
The current paradigm of low-T combustion and autoignition of hydrocarbons is based on the sequential two-step oxygenation of fuel radicals. The key chain-branching occurs when the second oxygenation adduct (OOQOOH) is isomerized releasing an OH radical and a key ketohydroperoxide (KHP) intermediate. The [...] Read more.
The current paradigm of low-T combustion and autoignition of hydrocarbons is based on the sequential two-step oxygenation of fuel radicals. The key chain-branching occurs when the second oxygenation adduct (OOQOOH) is isomerized releasing an OH radical and a key ketohydroperoxide (KHP) intermediate. The subsequent homolytic dissociation of relatively weak O–O bonds in KHP generates two more radicals in the oxidation chain leading to ignition. Based on the recently introduced intramolecular “catalytic hydrogen atom transfer” mechanism (J. Phys. Chem. 2024, 128, 2169), abbreviated here as I-CHAT, we have identified a novel unimolecular decomposition channel for KHPs to form their classical isomers—enol hydroperoxides (EHP). The uncertainty in the contribution of enols is typically due to the high computed barriers for conventional (“direct”) keto–enol tautomerization. Remarkably, the I-CHAT dramatically reduces such barriers. The novel mechanism can be regarded as an intramolecular version of the intermolecular relay transfer of H-atoms mediated by an external molecule following the general classification of such processes (Catal. Rev.-Sci. Eng. 2014, 56, 403). Here, we present a detailed mechanistic and kinetic analysis of the I-CHAT-facilitated pathways applied to n-hexane, n-heptane, and n-pentane models as prototype molecules for gasoline, diesel, and hybrid rocket fuels. We particularly examined the formation kinetics and subsequent dissociation of the γ-enol-hydroperoxide isomer of the most abundant pentane-derived isomer γ-C5-KHP observed experimentally. To gain molecular-level insight into the I-CHAT catalysis, we have also explored the role of the internal catalyst moieties using truncated models. All applied models demonstrated a significant reduction in the isomerization barriers, primarily due to the decreased ring strain in transition states. In addition, the longer-range and sequential H-migration processes were also identified and illustrated via a combined double keto–enol conversion of heptane-2,6-diketo-4-hydroperoxide as a potential chain-branching model. To assess the possible impact of the I-CHAT channels on global fuel combustion characteristics, we performed a detailed kinetic analysis of the isomerization and decomposition of γ-C5-KHP comparing I-CHAT with key alternative reactions—direct dissociation and Korcek channels. Calculated rate parameters were implemented into a modified version of the n-pentane kinetic model developed earlier using RMG automated model generation tools (ACS Omega, 2023, 8, 4908). Simulations of ignition delay times revealed the significant effect of the new pathways, suggesting an important role of the I-CHAT pathways in the low-T combustion of large alkanes. Full article
Show Figures

Graphical abstract

25 pages, 1711 KiB  
Review
Bimetallic and Trimetallic Catalysts Advancements in the Conventional and MW-Assisted Propane Dehydrogenation Process
by Olga Muccioli, Concetta Ruocco and Vincenzo Palma
Catalysts 2024, 14(12), 950; https://doi.org/10.3390/catal14120950 - 22 Dec 2024
Cited by 3 | Viewed by 1899
Abstract
A huge variety of chemical commodities are built from propylene molecules, and its conventional production technologies (naphtha steam cracking and fluid catalytic cracking) are unable to satisfy C3H6’s increasing requirements. In this scenario, Direct Propane Dehydrogenation (PDH) provides a [...] Read more.
A huge variety of chemical commodities are built from propylene molecules, and its conventional production technologies (naphtha steam cracking and fluid catalytic cracking) are unable to satisfy C3H6’s increasing requirements. In this scenario, Direct Propane Dehydrogenation (PDH) provides a practical and reliable route for supplying this short demand due to the economic availability of the raw material (C3H8) and the high propylene selectivities. The main challenges of propane dehydrogenation technology are related to the design of very active catalysts with negligible byproduct formation. In particular, the issue of catalyst deactivation by coke deposition still requires further development. In addition, PDH is a considerable endothermic reaction, and the efficiency of this technology is strictly related to heat transfer management. Thus, this current review specifically discusses the recent advances in highly dispersed bimetallic and trimetallic catalysts proposed for the PDH reaction in both conventional-heated and microwave-heated reactors. From the point of view of catalyst development, the recent research is mainly addressed to obtain nanometric and single-atom catalysts and core–shell alloys: atomically dispersed metal atoms promote the desorption of surface-bonded propylene and inhibit its further dehydrogenation. The discussion is focused on the alternative formulations proposed in the last few years, employing active species and supports different from the classical Pt-Sn/Al2O3 catalyst. Concerning the conventional route of energy-supply to the catalytic bed, the advantage of using a membrane as well as fluidized bed reactors is highlighted. Recent developments in alternative microwave-assisted dehydrogenation (PDH) employing innovative catalytic systems based on silicon carbide (SiC) facilitate selective heating of the catalyst. This advancement leads to improved catalytic activity and propylene selectivity while effectively reducing coke formation. Additionally, it promotes environmental sustainability in the ongoing electrification of chemical processes. Full article
Show Figures

Figure 1

17 pages, 12382 KiB  
Article
Microwave Irradiation-Assisted Synthesis of Anisotropic Crown Ether-Grafted Bamboo Pulp Aerogel as a Chelating Agent for Selective Adsorption of Heavy Metals (Mn+)
by Wenxiang Jing, Min Tang, Xiaoyan Lin, Chai Yang, Dongming Lian, Ying Yu and Dongyang Liu
Gels 2024, 10(12), 778; https://doi.org/10.3390/gels10120778 - 28 Nov 2024
Cited by 3 | Viewed by 1089
Abstract
Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel [...] Read more.
Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology. The physical and chemical properties of DB18C6/PA are analyzed by FTIR, XPS, SEM, TEM, TGA, surface area and porosity analyzers. Single or multivariate systems containing Pb2+, Cu2+ and Cd2+ are used as adsorbents. The effects of the DB18C6 addition amount, pH, initial concentration and adsorption temperature on the adsorption of DB18C6/PA are systematically explored. Pseudo-first-order kinetic models, pseudo-second-order kinetic models and the isothermal adsorption models of Langmuir and Freundlich are used to fit the experimental data. The adsorption selectivity is analyzed from the distribution coefficient and the separation factor, and the adsorption mechanism is discussed. The results show that anisotropic DB18C6/PA has the characteristics of 3D directional channels, high porosity (97.67%), large specific surface area (103.7 m2/g), good thermal stability and regeneration (the number of cycles is greater than 5). The surface has a variety of functional groups, including a hydroxyl group, aldehyde group, ether bond, etc. In the single and multivariate systems of Pb2+, Cu2+ and Cd2+, the adsorption process of DB18C6/PA conforms to the pseudo-second-order kinetic model, and the results conform to the Freundlich adsorption isothermal model (a few of them conformed to the Langmuir adsorption isothermal model), indicating that chemical adsorption and physical adsorption are involved in the adsorption process, and the adsorption process is a spontaneous endothermic process. In the single solution system, the maximum adsorption capacities of Pb2+, Cu2+ and Cd2+ by DB18C6/PA are 129.15, 29.85 and 27.89 mg/g, respectively. The adsorption selectivity of DB18C6/PA on Pb2+, Cu2+ and Cd2+ is in the order of Pb2+ >> Cu2+ > Cd2+. Full article
Show Figures

Figure 1

18 pages, 5210 KiB  
Article
Isolation and Characterization of Novel Cellulose Micro/Nanofibers from Lygeum spartum Through a Chemo-Mechanical Process
by Sabrina Ahmima, Nacira Naar, Patryk Jędrzejczak, Izabela Klapiszewska, Łukasz Klapiszewski and Teofil Jesionowski
Polymers 2024, 16(21), 3001; https://doi.org/10.3390/polym16213001 - 25 Oct 2024
Viewed by 1175
Abstract
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, [...] Read more.
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as Lygeum spartum, a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose. This study investigates the extraction of novel cellulose micro/nanofibers from Lygeum spartum using a two-step method, including both alkali and mechanical treatment as post-treatment with ultrasound, as well as homogenization using water and dilute alkali solution as a solvent. To determine the structural properties of CNFs, a series of characterization techniques was applied. A significant correlation was observed between the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) results. The FTIR results revealed the elimination of amorphous regions and an increase in the energy of the H-bonding modes, while the XRD results showed that the crystal structure of micro/nanofibers was preserved during the process. In addition, they indicated an increase in the crystallinity index obtained with both methods (deconvolution and Segal). Thermal analysis based on thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed improvement in the thermal properties of the isolated micro/nanofibers. The temperatures of maximum degradation were 335 °C and 347 °C. Morphological analysis using a scanning electron microscope (SEM) and atomic force microscope (AFM) showed the formation of fibers along the axis, with rough and porous surfaces. The findings indicate the potential of Lygeum spartum as a source for producing high-quality micro/nanofibers. A future direction of study is to use the cellulose micro/nanofibers as additives in recycled paper and to evaluate the mechanical properties of the paper sheets, as well as investigate their use in smart paper. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

23 pages, 30220 KiB  
Article
Substantiation of the Effectiveness of Water-Soluble Hydrophobic Agents on the Properties of Cement Composites
by Jakub Hodul, Tatiana Beníková and Rostislav Drochytka
Buildings 2024, 14(11), 3364; https://doi.org/10.3390/buildings14113364 - 24 Oct 2024
Cited by 1 | Viewed by 1348
Abstract
This paper aims to verify the effect of water-soluble hydrophobisations on cementitious composites such as concrete (S1) and cement-bonded particle boards (S2). The research was focused on the water-soluble hydrophobisations based on methylsilanolate (MS), a mixture of silanes and siloxanes (SS) and alcohol [...] Read more.
This paper aims to verify the effect of water-soluble hydrophobisations on cementitious composites such as concrete (S1) and cement-bonded particle boards (S2). The research was focused on the water-soluble hydrophobisations based on methylsilanolate (MS), a mixture of silanes and siloxanes (SS) and alcohol with the addition of nano-silica (N). The results provide a comprehensive overview of the benefits and effectiveness of water-soluble hydrophobisations in the context of building materials, outlining a direction towards the development of new, more environmentally friendly solutions in the construction industry. For this reason, alternative raw materials (brick recyclate and brick dust) were used for S1 substrate preparations. How the water-soluble hydrophobisations, including hydrophobisations with the addition of nano-silica (N), affect the process of water evaporation during hydration and the resulting water repellence of the S1 and S2 substrates were experimentally verified through a series of tests, e.g., measurement of the contact angle and depth of water penetration under pressure. The evaluation of the effect of hydrophobisations on the resistance of substrate to aggressive gaseous and liquid environments was observed by the determination of the resistance to carbonation and sulphation processes and the resistance of the concrete to aggressive liquid media (10% H2SO4, 10% CH3COOH). Although the hydrophobisations did not have a significant effect on some aspects of S1, such as the resistance to carbonation and sulphate attack, improvement was observed in other areas, such as the quadrupling increase in contact angle of the surface and 9 mm decrease in water pressure penetration into the concrete substrate. Full article
(This article belongs to the Special Issue Actual Trends in Rehabilitation and Reconstruction of Buildings)
Show Figures

Figure 1

19 pages, 13292 KiB  
Article
Study on the Hydrophobic Modification Mechanism of Stearic Acid on the Surface of Coal Gasification Fly Ash
by Jian Yang, Longjiang Li and Wenyuan Wang
Molecules 2024, 29(17), 4071; https://doi.org/10.3390/molecules29174071 - 28 Aug 2024
Cited by 3 | Viewed by 1413
Abstract
In this study, the hydrophobic modification of coal gasification fly ash (FA) was investigated given the adverse effects of surface hydrophilic structures on the material field. The surface of FA was modified using stearic acid (SA), which successfully altered its hydrophilic structure. When [...] Read more.
In this study, the hydrophobic modification of coal gasification fly ash (FA) was investigated given the adverse effects of surface hydrophilic structures on the material field. The surface of FA was modified using stearic acid (SA), which successfully altered its hydrophilic structure. When the contact angle of S-FA increased from 23.4° to 127.2°, the activation index increased from 0 to 0.98, the oil absorption decreased from 0.564 g/g to 0.510 g/g, and the BET-specific surface area decreased from 13.973 m2/g to 3.218 m2/g. The failure temperature of SA on the surface of S-FA was 210 °C. The adsorption mechanism of FA was analyzed using density functional theory (DFT) and molecular dynamics (MD). The adsorption of water molecules by FA involved both chemical and physical adsorption, with active adsorption sites for Al, Fe, and Si. The adsorbed water molecules on the surface of FA formed hydrogen bonds with a bond length of 1.5–2.5 Å, leading to agglomeration. In addition, the long alkyl chain in SA mainly relied on the central carbon atom in the (-CH3) structure to obtain electrons in different directions from the H atoms in space, increasing the Coulomb repulsion with the O atoms in the water molecule and thereby achieving the hydrophobic effect. In the temperature range of 298 K to 358 K, the combination of FA and SA became stronger as the temperature increased. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

14 pages, 5622 KiB  
Article
Self-Neutralizing Melamine–Urea–Formaldehyde–Citric Acid Resins for Wood Panel Adhesives
by Xuedong Xi, Antonio Pizzi, Hong Lei, Xiaojian Zhou and Guanben Du
Polymers 2024, 16(13), 1819; https://doi.org/10.3390/polym16131819 - 27 Jun 2024
Cited by 6 | Viewed by 1772
Abstract
In this study, we used a self-neutralizing system to counteract too acidic a pH, unsuitable for wood adhesives, and tested it on MUF resins augmented by the addition of citric acid or other organic acids, based on the addition of small percentages of [...] Read more.
In this study, we used a self-neutralizing system to counteract too acidic a pH, unsuitable for wood adhesives, and tested it on MUF resins augmented by the addition of citric acid or other organic acids, based on the addition of small percentages of hexamine or another suitable organic base to form an acid–base buffer. In this manner, the pH of the adhesive was maintained above the minimum allowed value of 4, and the strength results of wood particleboard and plywood bonded with this adhesive system increased due to the additional cross-linking imparted by the citric acid. Thus, the wood constituents at the wood/adhesive interface were not damaged/degraded by too low a pH, thus avoiding longer-term service failure of the bonded joints. The addition of the buffering system increased the strength of the bondline in both the plywood and particleboard, both when dry and after hot water and boiling water tests. The IB strength of the particleboard was then increased by 15–17% when dry but by 82% after boiling. For the plywood, the shear strengths when dry and after 3 h in hot water at 63 °C were, respectively, 37% and 90% higher than for the control. The improvement in the bonded panel strength is ascribed to multiple reasons: (i) the slower, more regular cross-linking rate due to the action of the buffer; (ii) the shift in the polycondensation–degradation equilibrium to the left induced by the higher pH and the long-term stability of the organic buffer; (iii) the additional cross-linking by citric acid of some of the MUF resin amine groups; (iv) the already known direct linking of citric acid with the carbohydrates and lignin constituents at the interface of the wood substrate; and (v) the likely covalent linking to the interfacial wood constituents of the prelinked MUF–citric acid resin by some of the unreacted citric acid carboxyl groups. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

16 pages, 2850 KiB  
Article
Self-Association and Microhydration of Phenol: Identification of Large-Amplitude Hydrogen Bond Librational Modes
by Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(13), 3012; https://doi.org/10.3390/molecules29133012 - 25 Jun 2024
Cited by 4 | Viewed by 1721
Abstract
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association [...] Read more.
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association mechanisms of relevance for biological molecular recognition processes via spectroscopic observations of large-amplitude hydrogen bond librational modes of phenol cluster molecules embedded in inert neon “quantum” matrices complemented by domain-based local pair natural orbital-coupled cluster DLPNO-CCSD(T) theory. The spectral signatures confirm a primarily intermolecular O-H⋯H hydrogen-bonded structure of the phenol dimer strengthened further by cooperative contributions from inter-ring London dispersion forces as supported by DLPNO-based local energy decomposition (LED) predictions. In the same way, the hydrogen bond librational bands observed for the trimeric cluster molecule confirm a pseudo-C3 symmetric cyclic cooperative hydrogen-bonded barrel-like potential energy minimum structure. This structure is vastly different from the sterically favored “chair” conformations observed for aliphatic alcohol cluster molecules of the same size owing to the additional stabilizing London dispersion forces and C–H⋯π interactions between the aromatic rings. The hydrogen bond librational transition observed for the phenol monohydrate finally confirms that phenol acts as a hydrogen bond donor to water in contrast to the hydrogen bond acceptor role observed for aliphatic alcohols. Full article
Show Figures

Figure 1

17 pages, 5572 KiB  
Article
Palladium Complexes Derived from Waste as Catalysts for C-H Functionalisation and C-N Bond Formation
by Khairil A. Jantan, Gregor Ekart, Sean McCarthy, Andrew J. P. White, D. Christopher Braddock, Angela Serpe and James D. E. T. Wilton-Ely
Catalysts 2024, 14(5), 295; https://doi.org/10.3390/catal14050295 - 29 Apr 2024
Cited by 2 | Viewed by 2861
Abstract
Three-way catalysts (TWCs) are widely used in vehicles to convert the exhaust emissions from internal combustion engines into less toxic pollutants. After around 8–10 years of use, the declining catalytic activity of TWCs causes them to need replacing, leading to the generation of [...] Read more.
Three-way catalysts (TWCs) are widely used in vehicles to convert the exhaust emissions from internal combustion engines into less toxic pollutants. After around 8–10 years of use, the declining catalytic activity of TWCs causes them to need replacing, leading to the generation of substantial amounts of spent TWC material containing precious metals, including palladium. It has previously been reported that [NnBu4]2[Pd2I6] is obtained in high yield and purity from model TWC material using a simple, inexpensive and mild reaction based on tetrabutylammonium iodide in the presence of iodine. In this contribution, it is shown that, through a simple ligand exchange reaction, this dimeric recovery complex can be converted into PdI2(dppf) (dppf = 1,1′-bis(diphenylphosphino)ferrocene), which is a direct analogue of a commonly used catalyst, PdCl2(dppf). [NnBu4]2[Pd2I6] displayed high catalytic activity in the oxidative functionalisation of benzo[h]quinoline to 10-alkoxybenzo[h]quinoline and 8-methylquinoline to 8-(methoxymethyl)quinoline in the presence of an oxidant, PhI(OAc)2. Near-quantitative conversions to the desired product were obtained using a catalyst recovered from waste under milder conditions (50 °C, 1–2 mol% Pd loading) and shorter reaction times (2 h) than those typically used in the literature. The [NnBu4]2[Pd2I6] catalyst could also be recovered and re-used multiple times after the reaction, providing additional sustainability benefits. Both [NnBu4]2[Pd2I6] and PdI2(dppf) were also found to be active in Buchwald–Hartwig amination reactions, and their performance was optimised through a Design of Experiments (DoE) study. The optimised conditions for this waste-derived palladium catalyst (1–2 mol% Pd loading, 3–6 mol% of dppf) in a bioderived solvent, cyclopentyl methyl ether (CPME), offer a more sustainable approach to C-N bond formation than comparable amination protocols. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Graphical abstract

16 pages, 5920 KiB  
Article
Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se2N2 Chalcogen Bonding
by Evgeny A. Dukhnovsky, Alexander S. Novikov, Alexey S. Kubasov, Alexander V. Borisov, Nkumbu Donovan Sikaona, Anatoly A. Kirichuk, Victor N. Khrustalev, Andreii S. Kritchenkov and Alexander G. Tskhovrebov
Int. J. Mol. Sci. 2024, 25(7), 3972; https://doi.org/10.3390/ijms25073972 - 3 Apr 2024
Cited by 9 | Viewed by 2128
Abstract
The synthesis and structural characterization of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles with various counterions is reported herein, demonstrating a strategy for directed supramolecular dimerization in the solid state. The compounds were obtained through a recently discovered 1,3-dipolar cycloaddition reaction between nitriles and bifunctional 2-pyridylselenyl reagents, [...] Read more.
The synthesis and structural characterization of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles with various counterions is reported herein, demonstrating a strategy for directed supramolecular dimerization in the solid state. The compounds were obtained through a recently discovered 1,3-dipolar cycloaddition reaction between nitriles and bifunctional 2-pyridylselenyl reagents, and their structures were confirmed by the X-ray crystallography. α-Haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles exclusively formed supramolecular dimers via four-center Se···N chalcogen bonding, supported by additional halogen bonding involving α-haloalkyl substituents. The introduction of halogens at the α-position of the substituent R in the selenadiazole core proved effective in promoting supramolecular dimerization, which was unaffected by variation of counterions. Additionally, the impact of cocrystallization with a classical halogen bond donor C6F3I3 on the supramolecular assembly was investigated. Non-covalent interactions were studied using density functional theory calculations and topological analysis of the electron density distribution, which indicated that all ChB, XB and HB interactions are purely non-covalent and attractive in nature. This study underscores the potential of halogen and chalcogen bonding in directing the self-assembly of functional supramolecular materials employing 1,2,4-selenadiazoles derived from recently discovered cycloaddition between nitriles and bifunctional 2-pyridylselenyl reagents. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 2608 KiB  
Article
Comparison of Oil-Seed Shell Biomass-Based Biochar for the Removal of Anionic Dyes—Characterization and Adsorption Efficiency Studies
by Shrikanta Sutradhar, Arijit Mondal, Felix Kuehne, Oliver Krueger, Sudip K. Rakshit and Kang Kang
Plants 2024, 13(6), 820; https://doi.org/10.3390/plants13060820 - 13 Mar 2024
Cited by 11 | Viewed by 2182
Abstract
This research investigated the synthesis of biochar through the direct pyrolysis of pre-roasted sunflower seed shells (SFS) and peanut shells (PNS) and compared their application for the effective removal of textile dyes from wastewater. Biochar prepared at 900 °C (SFS900 and PNS900) showed [...] Read more.
This research investigated the synthesis of biochar through the direct pyrolysis of pre-roasted sunflower seed shells (SFS) and peanut shells (PNS) and compared their application for the effective removal of textile dyes from wastewater. Biochar prepared at 900 °C (SFS900 and PNS900) showed the highest adsorption capacity, which can be attributed to the presence of higher nitrogen content and graphite-like structures. CHNS analysis revealed that PNS900 exhibited an 11.4% higher carbon content than SFS900, which enhanced the environmental stability of PNS biochar. Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses of the produced biochar indicated the degradation of cellulosic and lignin moieties. X-ray photoelectron spectroscopy (XPS) revealed a 13.8% and 22.6% increase in C-C/C=C mass concentrations in the SFS900 and PNS900, respectively, and could be attributed to the condensation of polyaromatic structures. Batch experiments for dye removal demonstrated that irrespective of dye species, PNS900 exhibited superior dye removal efficiency compared to SFS900 at similar dosages. In addition to H-bonding and electrostatic interactions, the presence of pyridinic-N and graphitic-N can play a vital role in enhancing Lewis acid-base and π-π EDA interactions. The results can provide valuable insights into the biochar–dye interaction mechanisms. Full article
(This article belongs to the Special Issue Lignocellulose Based Biofuels and Biomaterials)
Show Figures

Figure 1

15 pages, 1589 KiB  
Communication
Dearomatization of 3-Aminophenols for Synthesis of Spiro[chromane-3,1′-cyclohexane]-2′,4′-dien-6′-ones via Hydride Transfer Strategy-Enabled [5+1] Annulations
by Jia-Cheng Ge, Yufeng Wang, Feng-Wei Guo, Xiangyun Kong, Fangzhi Hu and Shuai-Shuai Li
Molecules 2024, 29(5), 1012; https://doi.org/10.3390/molecules29051012 - 26 Feb 2024
Cited by 1 | Viewed by 1385
Abstract
The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1′-cyclohexane]-2′,4′-dien-6′-ones. The “two-birds-with-one-stone” strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)–H bond functionalization of oxygen through cascade [...] Read more.
The Sc(OTf)3-catalyzed dearomative [5+1] annulations between readily available 3-aminophenols and O-alkyl ortho-oxybenzaldehydes were developed for synthesis of spiro[chromane-3,1′-cyclohexane]-2′,4′-dien-6′-ones. The “two-birds-with-one-stone” strategy was disclosed by the dearomatization of phenols and direct α-C(sp3)–H bond functionalization of oxygen through cascade condensation/[1,5]-hydride transfer/dearomative-cyclization process. In addition, the antifungal activity assay and derivatizations of products were conducted to further enrich the utility of the structure. Full article
(This article belongs to the Special Issue Synthesis and Properties of Heterocyclic Compounds: Recent Advances)
Show Figures

Graphical abstract

7 pages, 2421 KiB  
Short Note
N-(2,4-Difluorophenyl)-2-fluorobenzamide
by Niall Hehir and John F. Gallagher
Molbank 2024, 2024(1), M1771; https://doi.org/10.3390/M1771 - 4 Feb 2024
Viewed by 2763
Abstract
The title compound N-(2,4-difluorophenyl)-2-fluorobenzamide (Fo24) was synthesized in high yield (1.09 g; 87%) using standard synthetic procedures from the condensation reaction of 2-fluorobenzoyl chloride with 2,4-difluoroaniline. Crystals of Fo24 were grown from CH2Cl2 at room temperature. The [...] Read more.
The title compound N-(2,4-difluorophenyl)-2-fluorobenzamide (Fo24) was synthesized in high yield (1.09 g; 87%) using standard synthetic procedures from the condensation reaction of 2-fluorobenzoyl chloride with 2,4-difluoroaniline. Crystals of Fo24 were grown from CH2Cl2 at room temperature. The Fo24 crystal structure was determined using single-crystal X-ray diffraction methods at 294 (1) K in space group Pn (No. 7). Fo24 is the second regular tri-fluorinated benzamide with the formula C13H8F3N1O1 to be reported and contrasts with the more common difluorinated and tetra-fluorinated analogues. In Fo24, both aromatic rings are effectively coplanar with an interplanar angle of 0.7(2)°. The central amide group plane is oriented by 23.04(18)° and 23.69(17)° from both aromatic rings, forming an intramolecular contact with an ortho-F12 atom with H1⋯F12 = 2.12(4) Å. The primary hydrogen bonds are 1D amide–amide interactions that form along the b-axis direction. In addition, weaker C-H⋯F/O interactions are noted: a R22(12) synthon involving two C-H, a N-H and two C-F groups, with C-F⋯C ring–ring stacking contacts completing the interactions. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

16 pages, 26009 KiB  
Article
Theoretical Investigation of Iridium Complex with Aggregation-Induced Emission Properties
by Piotr Lodowski and Maria Jaworska
Molecules 2024, 29(3), 580; https://doi.org/10.3390/molecules29030580 - 24 Jan 2024
Viewed by 1629
Abstract
The mechanism of aggregation-induced emission (AIE) for the bis(1-(2,4-difluorophenyl)-1H-pyrazole)(2-(20-hydroxyphenyl)-2-oxazoline)iridium(III) complex, denoted as Ir(dfppz)2(oz), was investigated with use DFT and the TD-DFT level of theory. The mechanism of radiationless deactivation of the triplet state was elucidated. Such a mechanism requires an additional, [...] Read more.
The mechanism of aggregation-induced emission (AIE) for the bis(1-(2,4-difluorophenyl)-1H-pyrazole)(2-(20-hydroxyphenyl)-2-oxazoline)iridium(III) complex, denoted as Ir(dfppz)2(oz), was investigated with use DFT and the TD-DFT level of theory. The mechanism of radiationless deactivation of the triplet state was elucidated. Such a mechanism requires an additional, photophysical triplet channel of the internal conversion (IC) type, which is activated as a result of intramolecular motion deforming the structure of the oz ligand and distorting the iridium coordination sphere. Formally, the rotational movement of the oxazoline relative to the C–C bond in the oz ligand is the main active coordinate that leads to the opening of the triplet channel. The rotation of the oxazoline group and the elongation of the Ir-Nox bond cause a transition between the luminescent, low-lying triplet state with a d/ππ* characteristic (T1(eq)), and the radiationless dd triplet state (T1(Ir)). This transition is made possible by the low energy barrier, which, based on calculations, was estimated at approximately 8.5 kcal/mol. Dimerization, or generally aggregation of the complex molecules, blocks the intramolecular movement in the ligand and is responsible for a strong increase in the energy barrier for the T1(eq)T1(Ir) conversion of triplet states. Thus, the aggregation phenomenon blocks the nonradiative deactivation channel of the excited states and, consequently, contributes to directing the photophysical process toward phosphorescence. The mechanism involved in locking the nonradiative triplet path can be called restricted access to singlet–triplet crossing (RASTC). Full article
Show Figures

Graphical abstract

Back to TopTop