Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se2N2 Chalcogen Bonding
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Remarks
3.2. X-ray Crystal Structure Determination
3.3. Computational Details
3.4. Synthesis of Compounds 3–11
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Introduction. J. Solid State Chem. 2005, 178, v–vi. [CrossRef]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Contreras-García, J.; Yang, W.; Johnson, E.R. Analysis of Hydrogen-Bond Interaction Potentials from the Electron Density: Integration of Noncovalent Interaction Regions. J. Phys. Chem. A 2011, 115, 12983–12990. [Google Scholar] [CrossRef] [PubMed]
- Repina, O.V.; Novikov, A.S.; Khoroshilova, O.V.; Kritchenkov, A.S.; Vasin, A.A.; Tskhovrebov, A.G. Lasagna-like supramolecular polymers derived from the PdII osazone complexes via C(sp2)–H⋯Hal hydrogen bonding. Inorganica Chim. Acta 2019, 502, 119378. [Google Scholar] [CrossRef]
- Mikhaylov, V.N.; Sorokoumov, V.N.; Novikov, A.S.; Melnik, M.V.; Tskhovrebov, A.G.; Balova, I.A. Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. J. Organomet. Chem. 2020, 912, 121174. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.-B.; Zhang, Z.; Xiang, S.; Chen, B. Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. J. Am. Chem. Soc. 2020, 142, 14399–14416. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Accounts Chem. Res. 2012, 46, 280–288. [Google Scholar] [CrossRef]
- Legon, A.C. The halogen bond: An interim perspective. Phys. Chem. Chem. Phys. 2010, 12, 7736–7747. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Clark, T.; Riley, K.E.; Politzer, P. σ-Holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 2011, 18, 541–548. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen Bonding Based Recognition Processes: A World Parallel to Hydrogen Bonding. Accounts Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Nemec, V.; Fotović, L.; Vitasović, T.; Cinčić, D. Halogen bonding of the aldehyde oxygen atom in cocrystals of aromatic aldehydes and 1,4-diiodotetrafluorobenzene. CrystEngComm 2019, 21, 3251–3255. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef]
- Wang, W.; Ji, B.; Zhang, Y. Chalcogen Bond: A Sister Noncovalent Bond to Halogen Bond. J. Phys. Chem. A 2009, 113, 8132–8135. [Google Scholar] [CrossRef] [PubMed]
- Benz, S.; López-Andarias, J.; Mareda, J.; Sakai, N.; Matile, S. Catalysis with Chalcogen Bonds. Angew. Chem. Int. Ed. 2016, 56, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Riwar, L.; Trapp, N.; Root, K.; Zenobi, R.; Diederich, F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem. Int. Ed. 2018, 57, 17259–17264. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans. 2017, 46, 10121–10138. [Google Scholar] [CrossRef]
- Garrett, G.E.; Gibson, G.L.; Straus, R.N.; Seferos, D.S.; Taylor, M.S. Chalcogen Bonding in Solution: Interactions of Benzotelluradiazoles with Anionic and Uncharged Lewis Bases. J. Am. Chem. Soc. 2015, 137, 4126–4133. [Google Scholar] [CrossRef]
- De Vleeschouwer, F.; Denayer, M.; Pinter, B.; Geerlings, P.; De Proft, F. Characterization of chalcogen bonding interactions via an in-depth conceptual quantum chemical analysis. J. Comput. Chem. 2017, 39, 557–572. [Google Scholar] [CrossRef]
- Price, S.L.; Stone, A.J.; Lucas, J.; Rowland, R.S.; Thornley, A.E. The Nature of -Cl.cntdot..cntdot..cntdot.Cl- Intermolecular Interactions. J. Am. Chem. Soc. 1994, 116, 4910–4918. [Google Scholar] [CrossRef]
- Benz, S.; Poblador-Bahamonde, A.I.; Low-Ders, N.; Matile, S. Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew. Chem. Int. Ed. 2018, 57, 5408–5412. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, D.J.; Ling, K.B.; Cockroft, S.L. The Origin of Chalcogen-Bonding Interactions. J. Am. Chem. Soc. 2017, 139, 15160–15167. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, R.; Zhou, Z.; Li, W.; Cheng, J. S···X halogen bonds and H⋯X hydrogen bonds in H2CS–XY (XY = FF, ClF, ClCl, BrF, BrCl, and BrBr) complexes: Cooperativity and solvent effect. J. Chem. Phys. 2012, 136, 014302. [Google Scholar] [CrossRef] [PubMed]
- Teyssandier, J.; Mali, K.S.; De Feyter, S. Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen 2020, 9, 225–241. [Google Scholar] [CrossRef]
- Nelyubina, Y.V.; Antipin, M.Y.; Lyssenko, K.A. Extremely short halogen bond: The nature and energy of iodine–oxygen interactions in crystalline iodic acid. Mendeleev Commun. 2011, 21, 250–252. [Google Scholar] [CrossRef]
- Tsirelson, V.G.; Zhou, P.F.; Tang, T.-H.; Bader, R.F.W. Topological definition of crystal structure: Determination of the bonded interactions in solid molecular chlorine. Acta Crystallogr. Sect. A Found. Crystallogr. 1995, 51, 143–153. [Google Scholar] [CrossRef]
- Brezgunova, M.E.; Aubert, E.; Dahaoui, S.; Fertey, P.; Lebègue, S.; Jelsch, C.; Ángyán, J.G.; Espinosa, E. Charge Density Analysis and Topological Properties of Hal3-Synthons and Their Comparison with Competing Hydrogen Bonds. Cryst. Growth Des. 2012, 12, 5373–5386. [Google Scholar] [CrossRef]
- Bauzá, A.; Frontera, A. On the Importance of Halogen–Halogen Interactions in the Solid State of Fullerene Halides: A Combined Theoretical and Crystallographic Study. Crystals 2017, 7, 191. [Google Scholar] [CrossRef]
- Li, H.; Lu, Y.; Liu, Y.; Zhu, X.; Liu, H.; Zhu, W. Interplay between halogen bonds and π–π stacking interactions: CSD search and theoretical study. Phys. Chem. Chem. Phys. 2012, 14, 9948–9955. [Google Scholar] [CrossRef]
- Eckstein, B.J.; Brown, L.C.; Noll, B.C.; Moghadasnia, M.P.; Balaich, G.J.; McGuirk, C.M. A Porous Chalcogen-Bonded Organic Framework. J. Am. Chem. Soc. 2021, 143, 20207–20215. [Google Scholar] [CrossRef]
- Berionni, G.; Pégot, B.; Marrot, J.; Goumont, R. Supramolecular association of 1,2,5-chalcogenadiazoles: An unexpected self-assembled dissymetric [Se⋯N]2 four-membered ring. CrystEngComm 2009, 11, 986–988. [Google Scholar] [CrossRef]
- Alfuth, J.; Zadykowicz, B.; Sikorski, A.; Połoński, T.; Eichstaedt, K.; Olszewska, T. Effect of Aromatic System Expansion on Crystal Structures of 1,2,5-Thia- and 1,2,5-Selenadiazoles and Their Quaternary Salts: Synthesis, Structure, and Spectroscopic Properties. Materials 2020, 13, 4908. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.C.; Wang, J.Z.; Meloni, F.; Vargas-Baca, I. Chalcogen bonding in materials chemistry. Coord. Chem. Rev. 2020, 422, 213464. [Google Scholar] [CrossRef]
- Risto, M.; Reed, R.W.; Robertson, C.M.; Oilunkaniemi, R.; Laitinen, R.S.; Oakley, R.T. Self-association of the N-methyl benzotellurodiazolylium cation: Implications for the generation of super-heavy atom radicals. Chem. Commun. 2008, 3278–3280. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Xu, Y.; Bryce, D.L. Double Chalcogen Bonds: Crystal Engineering Stratagems via Diffraction and Multinuclear Solid-State Magnetic Resonance Spectroscopy. Chem. A Eur. J. 2019, 26, 3275–3286. [Google Scholar] [CrossRef] [PubMed]
- Ams, M.R.; Trapp, N.; Schwab, A.; Milić, J.V.; Diederich, F. Chalcogen Bonding “2S–2N Squares” versus Competing Interactions: Exploring the Recognition Properties of Sulfur. Chem. A Eur. J. 2018, 25, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Tiekink, E.R. Supramolecular aggregation patterns featuring Se⋯N secondary-bonding interactions in mono-nuclear selenium compounds: A comparison with their congeners. Coord. Chem. Rev. 2021, 443, 214031. [Google Scholar] [CrossRef]
- Khrustalev, V.N.; Grishina, M.M.; Matsulevich, Z.V.; Lukiyanova, J.M.; Borisova, G.N.; Osmanov, V.K.; Novikov, A.S.; Kirichuk, A.A.; Borisov, A.V.; Solari, E.; et al. Novel cationic 1,2,4-selenadiazoles: Synthesis via addition of 2-pyridylselenyl halides to unactivated nitriles, structures and four-center Se⋯N contacts. Dalton Trans. 2021, 50, 10689–10691. [Google Scholar] [CrossRef] [PubMed]
- Grudova, M.V.; Khrustalev, V.N.; Kubasov, A.S.; Strashnov, P.V.; Matsulevich, Z.V.; Lukiyanova, J.M.; Borisova, G.N.; Kritchenkov, A.S.; Grishina, M.M.; Artemjev, A.A.; et al. Adducts of 2-Pyridylselenenyl Halides and Nitriles as Novel Supramolecular Building Blocks: Four-Center Se···N Chalcogen Bonding versus Other Weak Interactions. Cryst. Growth Des. 2021, 22, 313–322. [Google Scholar] [CrossRef]
- Artemjev, A.A.; Novikov, A.P.; Burkin, G.M.; Sapronov, A.A.; Kubasov, A.S.; Nenajdenko, V.G.; Khrustalev, V.N.; Borisov, A.V.; Kirichuk, A.A.; Kritchenkov, A.S.; et al. Towards Anion Recognition and Precipitation with Water-Soluble 1,2,4-Selenodiazolium Salts: Combined Structural and Theoretical Study. Int. J. Mol. Sci. 2022, 23, 6372. [Google Scholar] [CrossRef]
- Aliyeva, V.A.; Gurbanov, A.V.; da Silva, M.F.C.G.; Gomila, R.M.; Frontera, A.; Mahmudov, K.T.; Pombeiro, A.J. Substituent Effect on Chalcogen Bonding in 5-Substituted Benzo[c][1,2,5]selenadiazoles and Their Copper(II) Complexes: Experimental and Theoretical Study. Cryst. Growth Des. 2023, 24, 781–791. [Google Scholar] [CrossRef]
- Lindner, B.D.; Coombs, B.A.; Schaffroth, M.; Engelhart, J.U.; Tverskoy, O.; Rominger, F.; Hamburger, M.; Bunz, U.H.F. From Thia- to Selenadiazoles: Changing Interaction Priority. Org. Lett. 2013, 15, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Sapronov, A.A.; Artemjev, A.A.; Burkin, G.M.; Khrustalev, V.N.; Kubasov, A.S.; Nenajdenko, V.G.; Gomila, R.M.; Frontera, A.; Kritchenkov, A.S.; Tskhovrebov, A.G. Robust Supramolecular Dimers Derived from Benzylic-Substituted 1,2,4-Selenodiazolium Salts Featuring Selenium⋯π Chalcogen Bonding. Int. J. Mol. Sci. 2022, 23, 14973. [Google Scholar] [CrossRef] [PubMed]
- Sapronov, A.A.; Kubasov, A.S.; Khrustalev, V.N.; Artemjev, A.A.; Burkin, G.M.; Dukhnovsky, E.A.; Chizhov, A.O.; Kritchenkov, A.S.; Gomila, R.M.; Frontera, A.; et al. Se⋯π Chalcogen Bonding in 1,2,4-Selenodiazolium Tetraphenylborate Complexes. Symmetry 2023, 15, 212. [Google Scholar] [CrossRef]
- Kazakova, A.A.; Kubasov, A.S.; Chizhov, A.O.; Novikov, A.P.; Volkov, M.A.; Borisov, A.V.; Nenajdenko, V.G.; Dukhnovsky, E.A.; Bely, A.E.; Grishina, M.M.; et al. Perrhenate and Pertechnetate Complexes of Dicationic Pyridinium-fused 1,2,4-Selenodiazoles Featuring Se⋯O Chalcogen Bonding and Anion⋯Anion Interactions. Inorganica Chim. Acta 2024, 563, 121929. [Google Scholar] [CrossRef]
- Artemjev, A.A.; Kubasov, A.S.; Kuznetsov, M.L.; Grudova, M.V.; Khrustalev, V.N.; Kritchenkov, A.S.; Tskhovrebov, A.G. Mechanistic investigation of 1,3-dipolar cycloaddition between bifunctional 2-pyridylselenyl reagents and nitriles including reactions with cyanamides. CrystEngComm 2023, 25, 3691–3701. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Buslov, I.V.; Novikov, A.S.; Khrustalev, V.N.; Grudova, M.V.; Kubasov, A.S.; Matsulevich, Z.V.; Borisov, A.V.; Lukiyanova, J.M.; Grishina, M.M.; Kirichuk, A.A.; et al. 2-Pyridylselenenyl versus 2-Pyridyltellurenyl Halides: Symmetrical Chalcogen Bonding in the Solid State and Reactivity towards Nitriles. Symmetry 2021, 13, 2350. [Google Scholar] [CrossRef]
- Soldatova, N.S.; Suslonov, V.V.; Ivanov, D.M.; Yusubov, M.S.; Resnati, G.; Postnikov, P.S.; Kukushkin, V.Y. Controlled Halogen-Bond-Involving Assembly of Double-σ-Hole-Donating Diaryliodonium Cations and Ditopic Arene Sulfonates. Cryst. Growth Des. 2022, 23, 413–423. [Google Scholar] [CrossRef]
- Gulyaev, R.; Semyonov, O.; Mamontov, G.V.; Ivanov, A.A.; Ivanov, D.M.; Kim, M.; Švorčík, V.; Resnati, G.; Liao, T.; Sun, Z.; et al. Weak Bonds, Strong Effects: Enhancing the Separation Performance of UiO-66 toward Chlorobenzenes via Halogen Bonding. ACS Mater. Lett. 2023, 5, 1340–1349. [Google Scholar] [CrossRef]
- Gurbanov, A.V.; Kuznetsov, M.L.; Resnati, G.; Mahmudov, K.T.; Pombeiro, A.J.L. Chalcogen and Hydrogen Bonds at the Periphery of Arylhydrazone Metal Complexes. Cryst. Growth Des. 2022, 22, 3932–3940. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Dhau, J.S.; Singh, A.; Singh, A.; Sharma, N.; Brandão, P.; Félix, V.; Singh, B.; Sharma, V. A mechanistic study of the synthesis, single crystal X-ray data and anticarcinogenic potential of bis(2-pyridyl)selenides and -diselenides. RSC Adv. 2015, 5, 78669–78676. [Google Scholar] [CrossRef]
- Bruker. SAINT Program; v. 8.40A; Bruker AXS Inc.: Madison, WI, USA, 2019. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Battye, T.G.G.; Kontogiannis, L.; Johnson, O.; Powell, H.R.; Leslie, A.G.W. iMOSFLM: A new graphical interface for diffraction-image processing withMOSFLM. Acta Crystallogr. Sect. D Struct. Biol. 2011, 67, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Evans, P. Scaling and assessment of data quality. Acta Crystallogr. Sect. D Struct. Biol. 2005, 62, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian, v. 09 C.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Barros, C.L.; De Oliveira, P.J.P.; Jorge, F.E.; Neto, A.C.; Campos, M. Gaussian basis set of double zeta quality for atoms Rb through Xe: Application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108, 1965–1972. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Contact | ρ(r) | ∇2ρ(r) | λ2 | Hb | V(r) | G(r) |
---|---|---|---|---|---|---|
3 | ||||||
Se···N 3.199 Å | 0.010 | 0.033 | −0.010 | 0.001 | −0.006 | 0.007 |
Se···Cl 2.886 Å | 0.027 | 0.071 | −0.027 | 0.000 | −0.017 | 0.017 |
Cl···Cl 3.201 Å | 0.012 | 0.041 | −0.012 | 0.002 | −0.007 | 0.009 |
H···Cl 2.590 Å | 0.009 | 0.039 | −0.009 | 0.003 | −0.005 | 0.008 |
4 | ||||||
Se···N 3.139 Å | 0.011 | 0.037 | −0.011 | 0.002 | −0.006 | 0.008 |
Se···O 2.611 Å | 0.026 | 0.101 | −0.026 | 0.003 | −0.020 | 0.023 |
Cl···O 3.334 Å | 0.006 | 0.022 | −0.006 | 0.001 | −0.003 | 0.004 |
Cl···O 3.180 Å | 0.007 | 0.029 | −0.007 | 0.001 | −0.005 | 0.006 |
Cl···Se 3.644 Å | 0.006 | 0.018 | −0.006 | 0.001 | −0.003 | 0.004 |
H···O 2.473 Å | 0.010 | 0.043 | −0.010 | 0.002 | −0.007 | 0.009 |
5 | ||||||
Se···N 2.951 Å | 0.015 | 0.055 | −0.015 | 0.002 | −0.010 | 0.012 |
Se···F 2.916 Å | 0.012 | 0.049 | −0.012 | 0.002 | −0.008 | 0.010 |
Cl···F 3.153 Å | 0.006 | 0.027 | −0.006 | 0.001 | −0.004 | 0.005 |
Cl···F 3.286 Å | 0.005 | 0.020 | −0.005 | 0.001 | −0.003 | 0.004 |
H···F 2.441 Å | 0.008 | 0.033 | −0.008 | 0.001 | −0.006 | 0.007 |
H···F 2.633 Å | 0.006 | 0.026 | −0.006 | 0.001 | −0.004 | 0.005 |
6 | ||||||
Se···N 2.981 Å | 0.014 | 0.052 | −0.014 | 0.002 | −0.009 | 0.011 |
Se···F 2.902 Å | 0.012 | 0.050 | −0.012 | 0.002 | −0.008 | 0.010 |
Cl···F 3.312 Å | 0.004 | 0.018 | −0.004 | 0.001 | −0.003 | 0.004 |
Cl···F 3.293 Å | 0.005 | 0.020 | −0.005 | 0.001 | −0.003 | 0.004 |
H···F 2.345 Å | 0.010 | 0.038 | −0.010 | 0.001 | −0.007 | 0.008 |
H···F 2.575 Å | 0.006 | 0.029 | −0.006 | 0.001 | −0.005 | 0.006 |
7 | ||||||
Se···N 3.125 Å | 0.011 | 0.039 | −0.011 | 0.002 | −0.007 | 0.008 |
Se···Br 3.230 Å | 0.010 | 0.028 | −0.010 | 0.001 | −0.005 | 0.006 |
Br···Br 3.220 Å | 0.017 | 0.042 | −0.017 | 0.000 | −0.010 | 0.010 |
Br···Br 3.316 Å | 0.016 | 0.032 | −0.016 | 0.000 | −0.008 | 0.008 |
H···Br 2.716 Å | 0.011 | 0.041 | −0.011 | 0.001 | −0.008 | 0.009 |
8 | ||||||
Se···N 2.892 Å | 0.017 | 0.062 | −0.017 | 0.002 | −0.011 | 0.013 |
Se···F 2.953 Å | 0.012 | 0.045 | −0.012 | 0.002 | −0.007 | 0.009 |
Se···F 3.068 Å | 0.010 | 0.037 | −0.010 | 0.002 | −0.006 | 0.008 |
H···F 2.583 Å | 0.006 | 0.029 | −0.006 | 0.002 | −0.004 | 0.006 |
H···F 2.768 Å | 0.004 | 0.015 | −0.004 | 0.001 | −0.002 | 0.003 |
H···F 2.838 Å | 0.003 | 0.013 | −0.003 | 0.001 | −0.002 | 0.003 |
9 | ||||||
Se···N 3.029 Å | 0.013 | 0.047 | −0.013 | 0.002 | −0.008 | 0.010 |
Se···Cl 2.968 Å | 0.024 | 0.062 | −0.024 | 0.001 | −0.014 | 0.015 |
H···Cl 2.712 Å | 0.011 | 0.037 | −0.011 | 0.001 | −0.007 | 0.008 |
10 | ||||||
Se···N 3.239 Å | 0.009 | 0.030 | −0.009 | 0.001 | −0.005 | 0.006 |
Se···N 2.694 Å | 0.025 | 0.079 | −0.025 | 0.001 | −0.017 | 0.018 |
Cl···C 3.197 Å | 0.007 | 0.029 | −0.007 | 0.002 | −0.004 | 0.006 |
H···N 2.422 Å | 0.012 | 0.048 | −0.012 | 0.002 | −0.008 | 0.010 |
11 | ||||||
Se···N 3.101 Å | 0.012 | 0.040 | −0.012 | 0.002 | −0.007 | 0.009 |
Se···S 3.591 Å | 0.008 | 0.025 | −0.008 | 0.001 | −0.004 | 0.005 |
Se···C 3.402 Å | 0.007 | 0.024 | −0.007 | 0.001 | −0.004 | 0.005 |
Se···S 3.201 Å | 0.018 | 0.042 | −0.018 | 0.001 | −0.008 | 0.009 |
H···S 2.922 Å | 0.008 | 0.025 | −0.008 | 0.001 | −0.004 | 0.005 |
12 | ||||||
I···Cl 3.358 Å | 0.013 | 0.043 | −0.013 | 0.001 | −0.009 | 0.010 |
I···Cl 3.347 Å | 0.014 | 0.044 | −0.014 | 0.001 | −0.009 | 0.010 |
I···Cl 3.353 Å | 0.014 | 0.044 | −0.014 | 0.001 | −0.009 | 0.010 |
I···Cl 3.180 Å | 0.019 | 0.055 | −0.019 | 0.000 | −0.013 | 0.013 |
I···N 3.116 Å | 0.015 | 0.052 | −0.015 | 0.001 | −0.011 | 0.012 |
Se···Cl 2.968 Å | 0.023 | 0.064 | −0.023 | 0.001 | −0.014 | 0.015 |
H···Cl 2.583 Å | 0.014 | 0.046 | −0.014 | 0.001 | −0.009 | 0.010 |
Contact | Eint ≈ –V(r)/2 |
---|---|
3 | |
Se···N 3.199 Å | 1.9 |
Se···Cl 2.886 Å | 5.3 |
Cl···Cl 3.201 Å | 2.2 |
H···Cl 2.590 Å | 1.6 |
4 | |
Se···N 3.139 Å | 1.9 |
Se···O 2.611 Å | 6.3 |
Cl···O 3.334 Å | 0.9 |
Cl···O 3.180 Å | 1.6 |
Cl···Se 3.644 Å | 0.9 |
H···O 2.473 Å | 2.2 |
5 | |
Se···N 2.951 Å | 3.1 |
Se···F 2.916 Å | 2.5 |
Cl···F 3.153 Å | 1.3 |
Cl···F 3.286 Å | 0.9 |
H···F 2.441 Å | 1.9 |
H···F 2.633 Å | 1.3 |
6 | |
Se···N 2.981 Å | 2.8 |
Se···F 2.902 Å | 2.5 |
Cl···F 3.312 Å | 0.9 |
Cl···F 3.293 Å | 0.9 |
H···F 2.345 Å | 2.2 |
H···F 2.575 Å | 1.6 |
7 | |
Se···N 3.125 Å | 2.2 |
Se···Br 3.230 Å | 1.6 |
Br···Br 3.220 Å | 3.1 |
Br···Br 3.316 Å | 2.5 |
H···Br 2.716 Å | 2.5 |
8 | |
Se···N 2.892 Å | 3.5 |
Se···F 2.953 Å | 2.2 |
Se···F 3.068 Å | 1.9 |
H···F 2.583 Å | 1.3 |
H···F 2.768 Å | 0.6 |
H···F 2.838 Å | 0.6 |
9 | |
Se···N 3.029 Å | 2.5 |
Se···Cl 2.968 Å | 4.4 |
H···Cl 2.712 Å | 2.2 |
10 | |
Se···N 3.239 Å | 1.6 |
Se···N 2.694 Å | 5.3 |
Cl···C 3.197 Å | 1.3 |
H···N 2.422 Å | 2.5 |
11 | |
Se···N 3.101 Å | 2.2 |
Se···S 3.591 Å | 1.3 |
Se···C 3.402 Å | 1.3 |
Se···S 3.201 Å | 2.5 |
H···S 2.922 Å | 1.3 |
12 | |
I···Cl 3.358 Å | 2.8 |
I···Cl 3.347 Å | 2.8 |
I···Cl 3.353 Å | 2.8 |
I···Cl 3.180 Å | 4.1 |
I···N 3.116 Å | 3.5 |
Se···Cl 2.968 Å | 4.4 |
H···Cl 2.583 Å | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukhnovsky, E.A.; Novikov, A.S.; Kubasov, A.S.; Borisov, A.V.; Sikaona, N.D.; Kirichuk, A.A.; Khrustalev, V.N.; Kritchenkov, A.S.; Tskhovrebov, A.G. Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se2N2 Chalcogen Bonding. Int. J. Mol. Sci. 2024, 25, 3972. https://doi.org/10.3390/ijms25073972
Dukhnovsky EA, Novikov AS, Kubasov AS, Borisov AV, Sikaona ND, Kirichuk AA, Khrustalev VN, Kritchenkov AS, Tskhovrebov AG. Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se2N2 Chalcogen Bonding. International Journal of Molecular Sciences. 2024; 25(7):3972. https://doi.org/10.3390/ijms25073972
Chicago/Turabian StyleDukhnovsky, Evgeny A., Alexander S. Novikov, Alexey S. Kubasov, Alexander V. Borisov, Nkumbu Donovan Sikaona, Anatoly A. Kirichuk, Victor N. Khrustalev, Andreii S. Kritchenkov, and Alexander G. Tskhovrebov. 2024. "Halogen Bond-Assisted Supramolecular Dimerization of Pyridinium-Fused 1,2,4-Selenadiazoles via Four-Center Se2N2 Chalcogen Bonding" International Journal of Molecular Sciences 25, no. 7: 3972. https://doi.org/10.3390/ijms25073972