Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = dilute acid hydrolysate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1154 KB  
Communication
Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp.
by Hyeongjin Hwang
Microorganisms 2025, 13(10), 2295; https://doi.org/10.3390/microorganisms13102295 - 2 Oct 2025
Viewed by 272
Abstract
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% [...] Read more.
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% carbohydrate (dry-weight basis). HPLC showed a monosaccharide profile enriched in L-rhamnose and D-xylose, with lower levels of D-mannose, D-glucose, D-glucuronolactone, and D-glucuronic acid. Batch fermentations with three Lactobacillus strains revealed clear strain-dependent kinetics and carbon partitioning. Maximum LA titers/yields (time at maximum) were 2.0 g L−1/0.49 g g−1 at 9 h for L. rhamnosus, 2.3 g L−1/0.30 g g−1 at 36 h for L. casei, and 2.8 g L−1/0.23 g g−1 at 48 h for L. brevis; L. rhamnosus achieved the highest yield on sugars consumed, whereas L. brevis reached the highest titer by utilizing a broader sugar spectrum, notably xylose; L. casei showed intermediate performance with limited xylose use. Co-products included acetic and succinic acids (major) and trace 1,2-propanediol and acetaldehyde, consistent with flux through Embden–Meyerhof–Parnas versus phosphoketolase pathways. These results demonstrate that C. fulvescens hydrolysate is a viable marine feedstock for LA production and highlight practical levers—expanding pentose/uronic-acid catabolism in high-yield strains and tuning pretreatment severity—to further improve both yield and titer. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
Show Figures

Figure 1

16 pages, 1477 KB  
Article
Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment
by Hatice Gözde Hosta Yavuz, Ibrahim Yavuz and Irfan Turhan
Fermentation 2025, 11(10), 561; https://doi.org/10.3390/fermentation11100561 - 28 Sep 2025
Viewed by 587
Abstract
This study presents an integrated valorization strategy for oat husks through microwave-assisted pretreatment using a deep eutectic solvent (DES) composed of choline chloride and glycerol (1:2). The process was designed to enhance the release of fermentable sugars, enable xylooligosaccharide (XOS) production, and support [...] Read more.
This study presents an integrated valorization strategy for oat husks through microwave-assisted pretreatment using a deep eutectic solvent (DES) composed of choline chloride and glycerol (1:2). The process was designed to enhance the release of fermentable sugars, enable xylooligosaccharide (XOS) production, and support inulinase production by Aspergillus niger A42 via submerged fermentation of the hydrolysate and solid-state fermentation of the residual biomass. Response surface methodology (RSM) was applied to evaluate the effects of microwave power, treatment time, and liquid-to-solid ratio (LSR) on fermentable sugar content (FSC) and total phenolic compounds (TPCs). Following pretreatment, the biomass was hydrolyzed using 1.99% sulfuric acid for 1 min. Optimal pretreatment conditions (350 W, 30 s, LSR 4 w/w) yielded an FSC of 51.14 g/L. Additionally, 230.78 mg/L xylohexaose and 6.47 mg/L xylotetraose were detected. Submerged fermentation of the liquid fraction with A. niger A42 resulted in inulinase and invertase activities of 60.45 U/mL and 21.83 U/mL, respectively. Solid-state fermentation of the pretreated solids produced 37.03 U/mL inulinase and 17.64 U/mL invertase. The integration of microwave-assisted DES pretreatment, dilute acid hydrolysis, and fungal fermentation established a robust strategy for the sequential production of XOS, fermentable sugars, and inulinase from oat husks, supporting their comprehensive utilization within a sustainable biorefinery framework. Full article
Show Figures

Figure 1

14 pages, 3172 KB  
Article
Transforming Tilapia into Indoleacetic Acid-Containing Biostimulants: Synergistic Effect of Enzymolysis and Multi-Strain Fermentation
by Hanyi Xie, Bin Zhong, Qimin Zhang, Xi Hu, Xuesen Xia, Hong Xie and Zhenqiang Wu
Fermentation 2025, 11(9), 525; https://doi.org/10.3390/fermentation11090525 - 8 Sep 2025
Viewed by 564
Abstract
Following new trends in green development, many studies have focused on the high-value utilization of fish resources through green biological processes. This study innovatively introduced a one-step process of mixed strain–enzyme synergy (MES) with which to prepare tilapia hydrolysates and explored the synergistic [...] Read more.
Following new trends in green development, many studies have focused on the high-value utilization of fish resources through green biological processes. This study innovatively introduced a one-step process of mixed strain–enzyme synergy (MES) with which to prepare tilapia hydrolysates and explored the synergistic effects of strains and enzymes on both the protein hydrolysis process and its products’ characteristics via comparative experiments. Further, soybean was used as a model crop to verify the agronomic effects of the hydrolysates. The addition of exogenous papain increased hydrolysis by 31.94% compared to the fermentation-only group. Peptides and amino acids contents in the mixed strains were higher than those in the single fermentation process (p < 0.05), while 8.46 mg/L of indoleacetic acid was produced through fermentation. Hydrolysates promoted the growth of lateral roots in soybean seedlings (p < 0.05) via the use of a 2500-fold dilution of the biostimulant, increasing the root area and stem length and reducing the sugar content of soybean seedlings by 1.59-, 1.44- and 1.69-fold compared to those in Hoagland’s nutrient solution. These results lay a foundation for the biological preparation of biostimulants for hydroponic vegetables through the utilization of fish waste resources, aligning with green development goals. Full article
Show Figures

Figure 1

17 pages, 1390 KB  
Article
Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production
by Liana Vanyan, Akerke Toleugazykyzy, Kaisar Yegizbay, Ayaulym Daniyarova, Lyudmila Zuloyan, Gayane Mikoyan, Anait Vassilian, Anna Poladyan, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(14), 3885; https://doi.org/10.3390/en18143885 - 21 Jul 2025
Viewed by 602
Abstract
Various pretreatment methods for the valorization of sunflower husks (SHs) for H2 gas generation through fermentation by Escherichia coli were investigated. We analyzed thermal treatment (TT), acid hydrolysis (AH), and alkaline hydrolysis (AlkH) at different substrate concentrations (50 g L−1, [...] Read more.
Various pretreatment methods for the valorization of sunflower husks (SHs) for H2 gas generation through fermentation by Escherichia coli were investigated. We analyzed thermal treatment (TT), acid hydrolysis (AH), and alkaline hydrolysis (AlkH) at different substrate concentrations (50 g L−1, 75 g L−1, 100 g L−1, and 150 g L−1) and dilution levels (undiluted, 2× diluted, and 5× diluted). A concentration of 75 g L−1 SH that was acid-hydrolyzed and dissolved twice in the medium yielded optimal microbial growth, reaching 0.3 ± 0.1 g cell dry weight (CDW) L−1 biomass. The highest substrate level enabling effective fermentation was 100 g L−1, producing 0.37 ± 0.13 (g CDW) × L−1 biomass after complete fermentation, while 150 g L−1 exhibited pronounced inhibitory effects. It is worth mentioning that the sole alkaline treatment was not optimal for growth and H2 production. Co-fermentation with glycerol significantly enhanced both biomass formation (up to 0.42 ± 0.15 (g CDW) × L−1)) and H2 production. The highest H2 yield was observed during batch growth at 50 g L−1 SH hydrolysate with 5× dilution, reaching up to 5.7 mmol H2 (g sugar)−1 with glycerol supplementation. This study introduces a dual-waste valorization strategy that combines agricultural and biodiesel industry residues to enhance clean energy generation. The novelty lies in optimizing pretreatment and co-substrate fermentation conditions to maximize both biohydrogen yield and microbial biomass using E. coli, a widely studied and scalable host. Full article
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production
by Gayane Mikoyan, Liana Vanyan, Akerke Toleugazykyzy, Roza Bekbayeva, Kamila Baichiyeva, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(10), 2648; https://doi.org/10.3390/en18102648 - 20 May 2025
Cited by 1 | Viewed by 1254
Abstract
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP [...] Read more.
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP was pretreated via thermochemical hydrolysis, and the effects of substrate concentration, dilution, and glycerol supplementation were evaluated. Hydrogen production was highly dependent on substrate dilution and nutrient balance. The septuple mutant achieved the highest H2 yield in 30 g L−1 SBP hydrolysate (0.75% sulfuric acid) at 5× dilution with glycerol, reaching 12.06 mmol H2 (g sugar)−1 and 0.28 mmol H2 (g waste)−1, while the wild type under the same conditions yielded 3.78 mmol H2 (g sugar)−1 and 0.25 mmol H2 (g waste)−1. In contrast, undiluted hydrolysates favored biomass accumulation over H2 production, with the highest biomass yield (0.3 g CDW L−1) obtained using the septuple mutant in 30 g L−1 SBP hydrolysate without glycerol. These findings highlight the potential of genetically optimized E. coli and optimized hydrolysate conditions to enhance the valorization of agro-industrial waste, supporting future advances in sustainable hydrogen bioeconomy and integrated waste biorefineries. Full article
Show Figures

Figure 1

15 pages, 3759 KB  
Article
Diluted Acid Hydrolysate of Olive Stones: Overliming and Biomass Fermentation
by Jeanne Andary, Naïm Ouaini and Rony Abou-Khalil
Fermentation 2025, 11(2), 100; https://doi.org/10.3390/fermentation11020100 - 17 Feb 2025
Cited by 1 | Viewed by 1272
Abstract
To valorize olive stones, this study focuses on the composition of their dilute-acid hydrolysate DAH and aims to highlight the effect of the overliming process to achieve an effective treatment that maximizes sugar concentrations while minimizing the number of toxic materials. The study [...] Read more.
To valorize olive stones, this study focuses on the composition of their dilute-acid hydrolysate DAH and aims to highlight the effect of the overliming process to achieve an effective treatment that maximizes sugar concentrations while minimizing the number of toxic materials. The study examined the impact of pH (10 and 12), temperature (25 and 60 °C), and detoxification time (15, 30, and 60 min) on the viability and vitality of M. pulcherrima and S. cerevisiae, using an experimental design of 2231. Detoxification was significantly influenced by pH and temperature, with xylose and furans probably following the same kinetic degradation. Viability improved to 52% for M. pulcherrima and 67% for S. cerevisiae in detoxified hydrolysate due to reduced toxic compounds. Optimal conditions were found to be a pH of 10 at 25 °C for 30 min, achieving 71% and 62% degradation of hydroxymethylfurfural and furfural, respectively, with a minimum polyphenol concentration of 580 mg·L−1. M. pulcherima exhibited greater vitality than S. cerevisiae because of the medium’s high xylose content and low glucose concentration. Conversely, pH 12 not only promoted sugar (xylose) loss but also generated new toxic compounds that negatively affected yeast development. To improve fermentation, further attention needs to be paid to these conditions. Full article
(This article belongs to the Special Issue Current Trends in Bioprocesses for Waste Valorization)
Show Figures

Figure 1

16 pages, 6150 KB  
Article
Lactic Acid Production from Distiller’s Dried Grains Dilute Acid Hydrolysates
by Greta Naydenova, Petya Popova-Krumova, Svetla Danova and Dragomir Yankov
Fermentation 2024, 10(11), 581; https://doi.org/10.3390/fermentation10110581 - 12 Nov 2024
Cited by 3 | Viewed by 1536
Abstract
Lactic acid (LA) is an important chemical with diverse applications in various industries. LA can be produced by the fermentation of different substrates by many microorganisms such as bacteria, fungi, yeasts, and algae. Lactic acid bacteria (LAB) are generally accepted as the main [...] Read more.
Lactic acid (LA) is an important chemical with diverse applications in various industries. LA can be produced by the fermentation of different substrates by many microorganisms such as bacteria, fungi, yeasts, and algae. Lactic acid bacteria (LAB) are generally accepted as the main producers of LA. A distinct characteristic of LAB is the complexity of the fermentation media. Distiller’s dried grains with solubles (DDGS), a by-product from bioethanol production, represent a promising substitute for costly sugars in the nutrition media for LA production. In the present paper, the possibility of using dilute acid DDGS hydrolysates as a substrate for LA fermentation was investigated. The influence of different factors (acid concentration, time, pressure, solid-to-liquid ratio) on the reducing sugars (RS) obtained was studied. Additional enzyme hydrolysis was carried out to increase RS content in the hydrolysates. LA production from hydrolysates without and with control of the pH during fermentation was monitored and compared with lactose as a substrate. Inhibition of the process was observed in both substrates in the absence of pH control which was overcome in the case of pH control. A mathematical model based on the Verhulst and Ludeking–Piret equations was proposed and tested, showing very good agreement with experimental data. Full article
Show Figures

Figure 1

20 pages, 1660 KB  
Article
Biomass Demineralization and Pretreatment Strategies to Reduce Inhibitor Concentrations in Itaconic Acid Fermentation by Aspergillus terreus
by Gregory J. Kennedy, Michael J. Bowman, Kim L. Ascherl, Nancy N. Nichols and Badal C. Saha
Biomass 2024, 4(4), 1122-1141; https://doi.org/10.3390/biomass4040062 - 27 Oct 2024
Viewed by 1687
Abstract
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and [...] Read more.
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and IA production by the fungus. It is well known that the side products of lignocellulosic biomass conversion to sugars act as microbial growth inhibitors. An uncommon feature of fungal organic acid fermentations is production inhibition caused by mineral ions in biomass hydrolysate after pretreatment and enzymatic hydrolysis. To minimize mineral introduction during pretreatment and hydrolysis, we determined the sources of growth and production inhibitors at each of these steps. Biomass demineralization and four pretreatment strategies were evaluated for inhibitor introduction. Dilution assays determined the approximate degree of inhibition for each hydrolysate. An ammonium hydroxide pretreatment of demineralized wheat straw presented the lowest concentration of inhibitors and concomitant lowest inhibition: subsequent fermentations produced 35 g L−1 IA from wheat straw hydrolysate (91 g L−1 sugar) without post-hydrolysis mitigation. Full article
Show Figures

Graphical abstract

26 pages, 6380 KB  
Article
Cell Disruption and Hydrolysis of Microchloropsis salina Biomass as a Feedstock for Fermentation
by Ayşe Koruyucu, Tillmann Peest, Emil Korzin, Lukas Gröninger, Patricia, Thomas Brück and Dirk Weuster-Botz
Appl. Sci. 2024, 14(21), 9667; https://doi.org/10.3390/app14219667 - 23 Oct 2024
Cited by 4 | Viewed by 1558
Abstract
Microalgae are a promising biomass source because of their capability to fixate CO2 very efficiently. In this study, the potential of Microchloropsis salina biomass as a feedstock for fermentation was explored, focusing on biomass hydrolysis by employing various mechanical and chemical cell [...] Read more.
Microalgae are a promising biomass source because of their capability to fixate CO2 very efficiently. In this study, the potential of Microchloropsis salina biomass as a feedstock for fermentation was explored, focusing on biomass hydrolysis by employing various mechanical and chemical cell disruption strategies in combination with enzymatic hydrolysis. Among the mechanical cell disruption methods investigated on a lab scale, namely ultrasonication, bead milling, and high-pressure homogenization, the most effective was bead milling using stainless-steel beads with a diameter of 2 mm. In this way, 87–97% of the cells were disrupted in 40 min using a mixer mill. High-pressure homogenization was also effective, achieving 86% disruption efficiency after four passes on a 30–200 L scale using biomass with 15% (w/w) solids content. Enzymatic hydrolysis of the disrupted cells using a mixture of cellulases and mannanases yielded up to 25% saccharification efficiency after 72 h. Acidic hydrolysis of undisrupted cells followed by enzymatic treatment yielded around 30% saccharification efficiency but was coupled with significant dilution of the resulting hydrolysate. Microalgal biomass hydrolysate produced was determined to have ~8.1 g L−1 sugars and 2.5% (w/w) total carbon, as well as sufficient nitrogen and phosphorus content as a fermentation medium. Full article
(This article belongs to the Special Issue Bioenergy and Bioproducts from Biomass and Waste)
Show Figures

Figure 1

14 pages, 4181 KB  
Article
Pullulan Production from Sugarcane Bagasse Hemicellulosic Hydrolysate by Aureobasidium pullulans ATCC 42023 inBubble Column Reactor
by Rufis Fregue Tiegam Tagne, Mónica María Cruz-Santos, Felipe Antonio Fernandes Antunes, Vinícius Pereira Shibukawa, Sara Barboza Miano, Junie Albine Atangana Kenfack, Silvio Silvério da Silva, Serges Bruno Lemoupi Ngomade and Júlio César Santos
Fermentation 2024, 10(6), 322; https://doi.org/10.3390/fermentation10060322 - 20 Jun 2024
Cited by 6 | Viewed by 2699
Abstract
Due to its unique physicochemical properties, Pullulan is an exopolysaccharide with many applications in the food, biomedical, and pharmaceutical industries. Aiming to reduce its production cost, an interesting alternative is to consider other possibilities of raw materials, including the production of this biopolymer [...] Read more.
Due to its unique physicochemical properties, Pullulan is an exopolysaccharide with many applications in the food, biomedical, and pharmaceutical industries. Aiming to reduce its production cost, an interesting alternative is to consider other possibilities of raw materials, including the production of this biopolymer in a lignocellulosic biorefinery concept. Xylose is the main sugar of hemicellulosic hydrolysates obtained from different biomasses, and it is a sugar still not extensively exploited regarding its potential for pullulan production. This study aimed to evaluate the production of pullulan from sugarcane bagasse hemicellulosic hydrolysate by cultivating Aureobasidium pullulans ATCC 42023 in a bubble column reactor. The hemicellulosic hydrolysate was obtained through dilute acid treatment carried out in a stirred tank reactor before being detoxified to remove microbial growth inhibitors. The maximum concentration of 28.62 ± 1.43 g/L of pullulan was obtained after 120 h of fermentation in a bubble column reactor in batch mode. Analysis of spectroscopic properties through FTIR of the obtained pullulan revealed α-(1→6)-linked maltosyl units, similar to those of commercial samples of the biopolymer. XRD analysis showed that the prepared pullulan is amorphous, and a homogeneous morphology with a smooth surface of the pullulan was observed in SEM analysis. This study showed the potential of the production of pullulan from sugarcane bagasse hemicellulosic hydrolysate in a bubble column bioreactor, an alternative strategy for the industrial production of this biopolymer. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

17 pages, 5754 KB  
Article
Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae
by Fadi Xu, Dongming Sun, Zhaojiang Wang, Menglei Li, Xiaolong Yin, Hongxing Li, Lili Xu, Jianzhi Zhao and Xiaoming Bao
Microorganisms 2024, 12(6), 1174; https://doi.org/10.3390/microorganisms12061174 - 9 Jun 2024
Cited by 2 | Viewed by 2657
Abstract
Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study [...] Read more.
Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

11 pages, 1884 KB  
Article
Enhanced Production of Clean Fermentable Sugars by Acid Pretreatment and Enzymatic Saccharification of Sugarcane Bagasse
by Mario Alberto Yaverino-Gutierrez, Lucas Ramos, Jesús Jiménez Ascencio and Anuj Kumar Chandel
Processes 2024, 12(5), 978; https://doi.org/10.3390/pr12050978 - 10 May 2024
Cited by 7 | Viewed by 2984
Abstract
Sugarcane bagasse (SCB), an agro-industrial byproduct generated by a sugar mill, holds a substantial carbohydrate content of around 70 wt.%, comprising cellulose and hemicellulose. Saccharification plays a pivotal role in the conversion of SCB into second-generation (2G)-ethanol and valuable compounds, which is significantly [...] Read more.
Sugarcane bagasse (SCB), an agro-industrial byproduct generated by a sugar mill, holds a substantial carbohydrate content of around 70 wt.%, comprising cellulose and hemicellulose. Saccharification plays a pivotal role in the conversion of SCB into second-generation (2G)-ethanol and valuable compounds, which is significantly aided by thermochemical pretreatments. In this study, SCB underwent diluted sulfuric acid pretreatment (2% H2SO4, 80 rpm, 200 °C, 20 min), resulting in the removal of 77.3% of the xylan. The hemicellulosic hydrolysate was analyzed to identify the sugars and degraded products acting as microbial inhibitors. The acid hydrolysate showed a xylose yield of 68.0% (16.4 g/L) and a yield of 3.8 g/L of acetic acid. Afterward, the hemicellulosic hydrolysate was concentrated 2.37 times to obtain a xylose-rich stream (39.87 g/L). The sequential detoxification, employing calcium oxide and activated carbon, removed the inhibitory compounds, including acetic acid, while preserving the xylose at 38.10 g/L. The enzymatic saccharification of cellulignin at 5% and 10% of the total solids (TSs) yielded comparable reducing sugar (RS) yields of 47.3% (15.2 g/L) and 47.4% (30.4 g/L), respectively, after 96 h, employing a 10 FPU/g enzyme loading of Cellic® CTec3 (Novozymes Inc. Parana, Brazil). In summary, these findings outline an integrated green chemistry approach aimed at addressing the key challenges associated with pretreatment, concentration, detoxification, and enzymatic hydrolysis to produce fermentable sugars. Full article
(This article belongs to the Special Issue Integrated Process Design and Development of Biorefinery)
Show Figures

Figure 1

12 pages, 616 KB  
Article
Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum
by Dmitrii O. Osipov, Anna S. Dotsenko, Margarita V. Semenova, Alexandra M. Rozhkova and Arkady P. Sinitsyn
Agronomy 2024, 14(3), 499; https://doi.org/10.3390/agronomy14030499 - 28 Feb 2024
Cited by 4 | Viewed by 1454
Abstract
Non-edible cellulosic biomass from perennial herbaceous plants is a promising and abundant feedstock for replacing slow-growing woody plants used in biotechnological applications. Herbaceous plant biomass, as other types of plant biomass, requires pretreatment before biochemical conversion. In this study, miscanthus straw was pretreated [...] Read more.
Non-edible cellulosic biomass from perennial herbaceous plants is a promising and abundant feedstock for replacing slow-growing woody plants used in biotechnological applications. Herbaceous plant biomass, as other types of plant biomass, requires pretreatment before biochemical conversion. In this study, miscanthus straw was pretreated using different methods and subjected to enzymatic hydrolysis with Penicillium verruculosum enzyme complexes under laboratory conditions. The convertibility after enzymatic hydrolysis varied from 15% to 66%, depending on the pretreatment method. Dilute alkaline pretreatment showed the highest convertibility compared to other methods, reaching up to 66%. The efficiency of dilute acid pretreatment was relatively low compared to other methods. The maximum convertibility was 37% for sulfuric acid pretreatment (the least efficient) and 51% for nitric acid. Convertibility was almost equal with 43% for white liquor and 46% for hot water. The glucose-to-xylose ratio was 4.7:1 for dilute alkaline pretreatment and 11–13:1 for white liquor. Both sulfuric and nitric acid resulted in a low xylose content in the enzymatic hydrolysates. Low-xylose hydrolysates with less than 2% of the glucose amount can be produced by hot water pretreatment. Preparation C, enriched with endoglucanase I from T. reesei and endoglucanase II from P. verruculosum, was found to be the most effective of the different enzyme preparations (EPs) tested. Full article
(This article belongs to the Special Issue Pretreatment and Bioconversion of Crop Residues II)
Show Figures

Figure A1

22 pages, 4596 KB  
Article
Rapid Dilute Sulfuric Acid Hydrolysis of Soy Flour to Amino Acids for Microbial Processes and Biorefining
by Patricia J. Slininger, Maureen A. Shea-Andersh and Bruce S. Dien
Fermentation 2023, 9(12), 1028; https://doi.org/10.3390/fermentation9121028 - 16 Dec 2023
Cited by 2 | Viewed by 3204
Abstract
Amino acids have relevance in biorefining as fermentation nutrients but also as valued coproducts obtainable from plant biomass. Soy flour was studied as a representative low-cost protein source requiring hydrolysis to free primary amino acids for utilization. Within the context of biorefining, process [...] Read more.
Amino acids have relevance in biorefining as fermentation nutrients but also as valued coproducts obtainable from plant biomass. Soy flour was studied as a representative low-cost protein source requiring hydrolysis to free primary amino acids for utilization. Within the context of biorefining, process schemes, reactant concentrations, times, and temperatures were varied to explore the efficiency of dilute sulfuric acid hydrolysis of soy flour to release amino acids. Two process strategies were optimized. Either soy flour was co-processed with switchgrass biomass using a dilute-acid pretreatment, or it was hydrolyzed alone with dilute acid. Significant improvement to hydrolysate fermentability was accomplished by adding 2.5–10 g/L soy flour to switchgrass pretreatment with dilute sulfuric acid (0.936% v/v) for 15 min at 160 °C. This practice optimized accumulation of neutral sugars and resulted in a 25% reduction in furfural while boosting xylose 7% and up to doubling primary amino nitrogen (PAN), as compared to no soy flour addition to switchgrass pretreatment. When soy flour was hydrolyzed alone, PAN titers were optimized to 1588 mg N/L (9.9 g amino acids/L) and yield to 0.0529 g PAN/g flour (61% of theoretical) using a 10% (v/v) (1.8 M) sulfuric acid hydrolysis 30 min at 160 °C. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology 2.0)
Show Figures

Figure 1

14 pages, 2354 KB  
Article
Xylitol Production by Debaryomyces hansenii in Extracted Olive Pomace Dilute-Acid Hydrolysate
by Ana Rita C. Morais, Luís C. Duarte, Pedro Lourenço, Ivone Torrado, Teresa Brás, Luísa A. Neves and Florbela Carvalheiro
Fermentation 2023, 9(12), 1020; https://doi.org/10.3390/fermentation9121020 - 14 Dec 2023
Cited by 1 | Viewed by 2522
Abstract
The extracted olive pomace (EOP) is an industrial lignocellulosic by-product of olive pomace oil extraction, currently mainly used for energy production through combustion. In this work, the hemicellulosic fraction of EOP was selectively hydrolyzed by diluted acid hydrolysis to obtain pentose-rich hydrolysates that [...] Read more.
The extracted olive pomace (EOP) is an industrial lignocellulosic by-product of olive pomace oil extraction, currently mainly used for energy production through combustion. In this work, the hemicellulosic fraction of EOP was selectively hydrolyzed by diluted acid hydrolysis to obtain pentose-rich hydrolysates that can potentially be upgraded by Debaryomyces hansenii, targeting xylitol production. The monosaccharides and degradation by-products released along the pre-treatment were quantified and several detoxification methods for the removal of potentially toxic compounds were evaluated, including pH adjustment to 5.5, the use of anion-exchange resins, adsorption into activated charcoal, concentration by evaporation, and membrane techniques, i.e., nanofiltration. The latter approach was shown to be the best method allowing the full removal of furfural, 41% of 5-hydroxymethylfurfural, 54% of acetic acid, and 67% of the phenolic compounds present in the hydrolysate. The effects of the supplementation of both non-detoxified and detoxified hydrolysates were also assessed. The non-detoxified hydrolysate, under aerobic conditions, supported the yeast growth and xylitol production at low levels. Supplementation with the low-cost corn steep liquor of the nanofiltration detoxified hydrolysate showed a higher xylitol yield (0.57 g/g) compared to the non-detoxified hydrolysate. The highest xylitol productivity was found in hydrolysate detoxified with anionic resins (0.30 g/L·h), which was 80% higher than in the non-detoxified culture medium. Overall, the results showed that EOP dilute acid hydrolysates can efficiently be used for xylitol production by D. hansenii if detoxification, and supplementation, even with low-cost supplements, are performed. Full article
(This article belongs to the Special Issue Microbial Biorefineries)
Show Figures

Figure 1

Back to TopTop