Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Synthesis of Chcl: Gly (1:2) for Oat husk (OH) pretreatment
- Optimization of microwave-assisted DES pretreatment using Box–Behnken design (BBD).
- Characterization of sugars and inhibitors present in hydrolysates
- Validation of production under optimum conditions
- Xylooligosaccharide analysis under optimum conditions
- Component analysis of untreated and DES-pretreated oat husk
- Submerged and solid state fermentation of inulinase using Aspergillus niger A42.
2.2. Raw Materials
2.3. Synthesis of DES
2.4. Microwave Assisted DES Pretreatment of OH
2.5. Microorganism
2.6. Submerged Fermentation
2.7. Solid State Fermentation
2.8. Analysis
2.8.1. Compositional Analysis of the Biomass Samples
2.8.2. Hydrolyzate Analysis
Fermentable Sugar Content and Total Phenolic Content
Sugars, XOS and Inhibitor Analysis
2.8.3. Enzyme Activity Assessment
- y = Fructose concentration (µmol/mL)
- DF = Dilution factor
- RV = Total volume in the test tube/enzyme solution volume
- t = Reaction time (min)
3. Results and Discussion
3.1. Optimization of Microwave-Assisted DES Pretreatment of Oat Husk
3.2. Impact of DES Pretreatment on Biomass Structure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuthiala, T.; Thakur, K.; Sharma, D.; Singh, G.; Khatri, M.; Arya, S.K. The eco-friendly approach of cocktail enzyme in agricultural waste treatment: A comprehensive review. Int. J. Biol. Macromol. 2022, 209, 1956–1974. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tian, X. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int. J. Biol. Macromol. 2022, 202, 256–268. [Google Scholar] [CrossRef]
- Wischral, D.; Arias, J.M.; Modesto, L.F.; de França Passos, D.; Pereira, N., Jr. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation. Biotechnol. Prog. 2019, 35, e2718. [Google Scholar] [CrossRef] [PubMed]
- Haldar, D.; Purkait, M.K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 2020, 264, 128523. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lee, D.-J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. Bioresour. Technol. 2021, 339, 125587. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Xia, Q.; Guo, B.; Wang, Q.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Efficient cleavage of lignin–carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 2017, 10, 1692–1700. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Mu, T.; Garcia-Vaquero, M. Sustainable closed-loop biorefinery of γ-valerolactone from lignocellulosic biomass: Pretreatments of multiple biomass and synthesis of γ-valerolactone from multiple biomass-derived feedstocks. Biomass Bioenergy 2025, 193, 107594. [Google Scholar] [CrossRef]
- Tan, J.; Li, Y.; Tan, X.; Wu, H.; Li, H.; Yang, S. Advances in pretreatment of straw biomass for sugar production. Front. Chem. 2021, 9, 696030. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.-J. Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef]
- Santibáñez, L.; Henríquez, C.; Corro-Tejeda, R.; Bernal, S.; Armijo, B.; Salazar, O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr. Polym. 2021, 251, 117118. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, P.; Kaur, J.; Singla, D.; Taggar, M.S. Xylanase, xylooligosaccharide and xylitol production from lignocellulosic biomass: Exploring biovalorization of xylan from a sustainable biorefinery perspective. Ind. Crops Prod. 2024, 215, 118610. [Google Scholar] [CrossRef]
- Singh, R.S.; Chauhan, K.; Kennedy, J.F. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications. Int. J. Biol. Macromol. 2017, 96, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Singh, T.; Hassan, M.; Kennedy, J.F. Updates on inulinases: Structural aspects and biotechnological applications. Int. J. Biol. Macromol. 2020, 164, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Canatar, M.; Tufan, H.N.G.; Ünsal, S.B.E.; Koc, C.Y.; Ozcan, A.; Kucuk, G.; Basmak, S.; Yatmaz, E.; Germec, M.; Yavuz, I.; et al. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int. J. Biol. Macromol. 2023, 245, 125520. [Google Scholar] [CrossRef]
- Ruviaro, A.S.; Santana, H.A.; dos Santos Lima, G.T.; Barraza, M.T.; Silvestro, L.; Gleize, P.J.P.; Pelisser, F. Valorization of oat husk ash in metakaolin-based geopolymer pastes. Constr. Build. Mater. 2023, 367, 130341. [Google Scholar] [CrossRef]
- Neitzel, N.; Eder, M.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. Chemical composition, particle geometry, and micro-mechanical strength of barley husks, oat husks, and wheat bran as alternative raw materials for particleboards. Mater. Today Commun. 2023, 36, 106602. [Google Scholar] [CrossRef]
- Hosta Yavuz, H.G.; Ibrahim Isci, A.; Turhan, I. Harnessing deep eutectic solvent for enhanced inulinase production from agricultural via submerged fermentation with Aspergillus niger. Int. J. Biol. Macromol. 2025, 295, 139592. [Google Scholar] [CrossRef]
- Hosta Yavuz, H.G.; Yavuz, I.; Yakan, A.I.; Turhan, I. Conversion of wheat bran into fermentable sugars using deep eutectic solvent pretreatment in a high-pressure reactor. Biomass Convers. Biorefin. 2023, 14, 24515–24525. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Isci, A.; Erdem, G.M.; Bagder Elmaci, S.; Sakiyan, O.; Lamp, A.; Kaltschmitt, M. Effect of microwave-assisted deep eutectic solvent pretreatment on lignocellulosic structure and bioconversion of wheat straw. Cellulose 2020, 27, 8949–8962. [Google Scholar] [CrossRef]
- Germec, M.; Ozcan, A.; Turhan, I. Bioconversion of wheat bran into high value-added products and modelling of fermentations. Ind. Crops Prod. 2019, 139, 111565. [Google Scholar] [CrossRef]
- Ilgın, M.; Germec, M.; Turhan, I. Statistical and kinetic modeling of Aspergillus niger inulinase fermentation from carob extract and its partial concentration. Ind. Crops Prod. 2020, 156, 112866. [Google Scholar] [CrossRef]
- Germec, M.; Turhan, I. Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization. Bioproc. Biosyst. Eng. 2019, 42, 1993–2005. [Google Scholar] [CrossRef]
- Basmak, S.; Turhan, I. Production of β-mannanase, inulinase, and oligosaccharides from coffee wastes and extracts. Int. J. Biol. Macromol. 2024, 261, 129798. [Google Scholar] [CrossRef]
- Chen, H.-Q.; Chen, X.-M.; Chen, T.-X.; Xu, X.-M.; Jin, Z.-Y. Extraction optimization of inulinase obtained by solid state fermentation of Aspergillus ficuum JNSP5-06. Carbohydr. Polym. 2011, 85, 446–451. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process. Technol. 2004, 85, 1201–1211. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Demirel, F.; Germec, M.; Coban, H.B.; Turhan, I. Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 2018, 25, 6377–6393. [Google Scholar] [CrossRef]
- Kuhn, R.C.; Maugeri Filho, F.; Silva, V.; Palacio, L.; Hernández, A.; Prádanos, P. Mass transfer and transport during purification of fructooligosaccharides by nanofiltration. J. Membr. Sci. 2010, 365, 356–365. [Google Scholar] [CrossRef]
- Germec, M.; Kartal, F.K.; Bilgic, M.; Ilgin, M.; Ilhan, E.; Güldali, H.; Isci, A.; Turhan, I. Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol. Prog. 2016, 32, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Germec, M.; Tarhan, K.; Yatmaz, E.; Tetik, N.; Karhan, M.; Demirci, A.; Turhan, I. Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnol. Prog. 2016, 32, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, A.; Pisano, I.; Illek, P.; Leahy, J.J. A rapid HPLC method for the simultaneous determination of organic acids and furans: Food applications. Beverages 2022, 8, 6. [Google Scholar] [CrossRef]
- Dinarvand, M.; BAriff, A.; Moeini, H.; Masomian, M.; Mousavi, S.S.; Nahavandi, R.; Mustafa, S. Effect of extrinsic and intrinsic parameters on inulinase production by Aspergillus niger ATCC 20611. Electron. J. Biotechnol. 2012, 15, 5. [Google Scholar] [CrossRef]
- Gürler, H.N.; Çoban, H.B.; Turhan, I. Investigation of the inhibitory effects of furfural and hydroxymethylfurfural on the production of Aspergillus niger inulinase and modeling of the process. Biomass Convers. Biorefinery 2023, 13, 4291–4303. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Roberto, I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review. Bioresour Technol. 2004, 93, 1–10. [Google Scholar] [CrossRef]
- Kohli, K.; Katuwal, S.; Biswas, A.; Sharma, B.K. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour. Technol. 2020, 303, 122897. [Google Scholar] [CrossRef]
- Park, C.W.; Gwon, J.; Han, S.Y.; Park, J.S.; Bandi, R.; Dadigala, R.; Kim, J.K.; Kwon, G.J.; Lee, S.H. Effect of deep eutectic solvent pretreatment on defibrillation efficiency and characteristics of lignocellulose nanofibril. Wood Sci. Technol. 2023, 57, 197–209. [Google Scholar] [CrossRef]
- Narayanan, K.; Venkatachalam, P.; Panakkal, E.J.; Tantayotai, P.; Tandhanskul, A.; Selvasembian, R.; Chuetor, S.; Sriariyanun, M. Exploring ternary deep eutectic solvent pretreatment in a one-pot process with Napier grass for bioethanol production. BioEnergy Res. 2024, 17, 2213–2225. [Google Scholar] [CrossRef]
- Xu, L.H.; Ma, C.Y.; Zhang, C.; Liu, J.; Peng, X.P.; Yao, S.Q.; Min, D.Y.; Yuan, T.Q.; Wen, J.L. Ultrafast fractionation of wild-type and CSE down-regulated poplars by microwave-assisted deep eutectic solvents (DES) for cellulose bioconversion enhancement and lignin nanoparticles fabrication. Ind. Crops Prod. 2022, 176, 114275. [Google Scholar] [CrossRef]
- Ma, C.Y.; Xu, L.H.; Sun, Q.; Sun, S.N.; Cao, X.F.; Wen, J.L.; Yuan, T.Q. Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresour. Technol. 2022, 352, 127065. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef]
- Moreira, B.P.; Draszewski, C.P.; Celante, D.; Brondani, L.; Lachos-Perez, D.; Mayer, F.D.; Abaide, E.R.; Castilhos, F. Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis. Bioresour. Technol. 2022, 351, 127063. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, H.; Sun, Z.; Ni, Z.; Li, C. Catabolism mechanism and growth-promoting effect of xylooligosaccharides in Lactiplantibacillus plantarum strain B20. Fermentation 2025, 11, 280. [Google Scholar] [CrossRef]
- Jain, S.C.; Jain, P.; Kango, N. Production of inulinase from Kluyveromyces marxianus using Dahlia tuber extract. Braz. J. Microbiol. 2012, 43, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Urrutia, C.; Volke-Sepulveda, T.; Figueroa-Martinez, F.; Favela-Torres, E. Solid-state fermentation enhances inulinase and invertase production by Aspergillus brasiliensis. Process Biochem. 2021, 108, 169–175. [Google Scholar] [CrossRef]
- Öngen-Baysal, G.; Sukan, Ş.S.; Vassilev, N. Production and properties of inulinase from Aspergillus niger. Biotechnol. Lett. 1994, 16, 275–280. [Google Scholar] [CrossRef]
- Ali, S.; Shahzadi, H. Nutritional optimizations for improved exo-inulinase production from Aspergillus oryzae for high fructose syrup preparations. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 618–631. [Google Scholar]
- Saber, W.; El-Naggar, N. Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 2009, 8, 425–433. [Google Scholar] [CrossRef]
- Singh, R.S.; Dhaliwal, R.; Puri, M. Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem. 2006, 41, 1703–1707. [Google Scholar] [CrossRef]
R un | P (W) | t (s) | LSR (w/w) | FSC | TPC | HMF | Furfural | Glucose | Xylose | Fructose | Sucrose | Maltose | Arabinose |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 120 | 90 | 7 | 37.99 | 1.08 | 1299.30 | 190.96 | 7.04 | 33.90 | 17.49 | 1.16 | ND | 3.14 |
2 | 350 | 90 | 10 | 36.88 | 1.05 | 1491.02 | 233.09 | 3.76 | 35.97 | 18.00 | 0.58 | ND | 3.04 |
3 | 120 | 30 | 7 | 39.71 | 1.40 | 1739.53 | 275.94 | 2.74 | 40.76 | 23.36 | 0.68 | ND | 15.37 |
4 | 350 | 60 | 7 | 40.83 | 0.95 | 1177.88 | 162.09 | 7.78 | 32.75 | 15.33 | 1.28 | ND | 3.12 |
5 | 120 | 60 | 10 | 40.65 | 1.05 | 1202.97 | 181.37 | 6.45 | 34.40 | 15.28 | 0.86 | ND | 3.44 |
6 | 460 | 90 | 7 | 33.22 | 0.78 | 1011.47 | 173.38 | 6.31 | 29.82 | 14.11 | 0.91 | ND | 2.99 |
7 | 350 | 30 | 10 | 43.49 | 0.72 | 811.22 | 119.31 | 5.70 | 11.30 | 9.81 | 1.17 | ND | 2.52 |
8 | 350 | 60 | 7 | 39.56 | 0.96 | 1439.33 | 249.93 | 5.20 | 35.45 | 18.64 | 0.95 | ND | 2.77 |
9 | 350 | 60 | 7 | 40.65 | 0.85 | 1317.53 | 226.38 | 4.91 | 32.97 | 17.01 | 0.79 | ND | 3.09 |
10 | 120 | 60 | 4 | 40.56 | 1.27 | 1335.24 | 187.82 | 7.89 | 33.44 | 14.95 | 1.21 | ND | 2.76 |
11 | 350 | 60 | 7 | 40.64 | 1.06 | 1387.51 | 236.16 | 5.10 | 35.21 | 18.39 | 0.96 | ND | 3.69 |
12 | 350 | 60 | 7 | 41.65 | 0.90 | 1081.33 | 176.03 | 10.31 | 26.20 | 13.10 | 1.55 | ND | 3.11 |
13 | 460 | 60 | 10 | 38.17 | 1.08 | 1319.20 | 222.71 | 5.53 | 32.50 | 17.06 | 0.78 | ND | 2.44 |
14 | 460 | 60 | 4 | 37.69 | 0.85 | 1116.71 | 191.46 | 10.41 | 32.91 | 14.27 | 1.41 | ND | 5.66 |
15 | 350 | 30 | 4 | 45.21 | 0.90 | 1264.21 | 187.34 | 6.40 | 27.39 | 15.65 | 1.04 | ND | 2.72 |
16 | 350 | 90 | 4 | 36.97 | 0.57 | 994.84 | 166.69 | 8.57 | 29.53 | 11.96 | 1.28 | ND | 3.13 |
17 | 460 | 30 | 7 | 42.80 | 0.95 | 1093.18 | 147.06 | 11.01 | 27.96 | 12.14 | 1.79 | ND | 2.29 |
Source | FSC (g/L) | TPC (g GA/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | Df | MS | F | P | SS | df | MS | F | P | |
Model | 153.06 | 9 | 17.01 | 9.17 | 0.0040 ** | 0.5885 | 12 | 0.049 | 8.14 | 0.0285 |
A-Power (W) | 7.94 | 1 | 7.94 | 4.28 | 0.0774 | 0.0393 | 1 | 0.0393 | 6.53 | 0.063 |
B-t (s) | 109.65 | 1 | 109.65 | 59.10 | 0.0001 ** | 5.94 × 10−6 | 1 | 5.94 × 10−6 | 0.001 | 0.9765 |
C-LSR (w/w) | 0.2458 | 1 | 0.2459 | 0.1325 | 0.7266 | 0.0218 | 1 | 0.0218 | 3.62 | 0.13 |
AB | 19.77 | 1 | 19.77 | 10.66 | 0.0138 * | 0.0053 | 1 | 0.0053 | 0.8745 | 0.4027 |
AC | 0.0494 | 1 | 0.0494 | 0.0266 | 0.8750 | 0.0509 | 1 | 0.0509 | 8.44 | 0.0439 |
BC | 0.8527 | 1 | 0.8527 | 0.4596 | 0.5196 | 0.1082 | 1 | 0.1082 | 17.95 | 0.0133 |
A2 | 12.32 | 1 | 12.32 | 6.64 | 0.0366 * | 0.1376 | 1 | 0.1376 | 22.84 | 0.0088 |
B2 | 0.1122 | 1 | 0.1122 | 0.0605 | 0.8128 | 0.0216 | 1 | 0.0216 | 3.58 | 0.1314 |
C2 | 2.60 | 1 | 2.60 | 1.40 | 0.2751 | 0.0154 | 1 | 0.0154 | 2.55 | 0.1857 |
ABC | 0 | 0 | ||||||||
A2B | 0.0297 | 1 | 0.0297 | 4.92 | 0.0907 | |||||
A2C | 0.0108 | 1 | 0.0108 | 1.8 | 0.2512 | |||||
AB2 | 0.0145 | 1 | 0.0145 | 2.41 | 0.1953 | |||||
Residual | 12.99 | 7 | 1.86 | |||||||
Lack of Fit | 5.09 | 3 | 1.70 | 0.8592 | 0.5309 | |||||
Pure Error | 7.90 | 4 | 1.97 | 0.0241 | 4 | 0.0060 | ||||
Cor Total | 166.05 | 16 | 0.6126 | 16 | ||||||
R2 | 0.9522 | 0.9606 | ||||||||
Adj R2 | 0.8907 | 0.8426 | ||||||||
Pred R2 | 0.4826 | NA | ||||||||
Adeq Precision | 16.8531 | 12.1438 |
Method | Extractive Material 1 (%) | Hemicellulose 1 (%) | Lignin 1 (%) | Cellulose 1 (%) | Acetic Acid 2(g/L) | Benzoic Acid 2 (g/L) | Formic Acid 2 (g/L) |
---|---|---|---|---|---|---|---|
Raw Oat husk | 9.45 a | 41.43 a | 21.20 a | 27.21 b | 2.28 a | 123.60 a | ND |
Microwave-DES pretreated- | 6.01 b | 29.44 a | 16.24 b | 48.31 a | 1.18 b | 42.85 b | 0.49 a |
X4 (mg/L) | X6 (mg/L) | |
---|---|---|
DES pretreated Hydrolyzate | ND | 3.74 |
Liquid phase separated from the DES pretreatment | 6.47 | 230.78 |
Inulinase (U/mL) | Invertase (U/mL) | I/S | |
---|---|---|---|
SmF | 60.45 | 21.83 | 2.76 |
SSF | 37.03 | 17.64 | 2.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosta Yavuz, H.G.; Yavuz, I.; Turhan, I. Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment. Fermentation 2025, 11, 561. https://doi.org/10.3390/fermentation11100561
Hosta Yavuz HG, Yavuz I, Turhan I. Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment. Fermentation. 2025; 11(10):561. https://doi.org/10.3390/fermentation11100561
Chicago/Turabian StyleHosta Yavuz, Hatice Gözde, Ibrahim Yavuz, and Irfan Turhan. 2025. "Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment" Fermentation 11, no. 10: 561. https://doi.org/10.3390/fermentation11100561
APA StyleHosta Yavuz, H. G., Yavuz, I., & Turhan, I. (2025). Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment. Fermentation, 11(10), 561. https://doi.org/10.3390/fermentation11100561