Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Waste, Pretreatment, and Bacterial Strain Cultivation
2.2. Physicochemical Analysis
2.3. Hydrogen Production Assays
2.4. Statistical Analysis
3. Results
3.1. Impact of Different Pretreatment Methods on Sunflower Husk Fermentation by E. coli
3.2. Enhanced Hydrogen Production Through Co-Fermentation of SH and Glycerol
4. Conclusions
- In the sole-SH fermentation process, optimal pretreatment and substrate concentration play key roles in biomass yield. The highest biomass yield of 0.37 ± 0.13 (g CDW) × L−1 was achieved with a 100 g L−1 SH concentration, following a 2× dilution after acid hydrolysis. A 75 g L−1 SH concentration resulted in a similar yield of 0.3 ± 0.1 (g CDW) × L−1, indicating that the latter is also a highly efficient and potentially more resource-effective concentration. In contrast, a 50 g L−1 SH concentration, with the same pretreatment and dilution, produced a lower yield of 0.17 ± 0.05 (g CDW) × L−1, highlighting the significant impact of substrate concentration on biomass production.
- The most significant improvement in the biomass yield was observed at 100 g L−1 SH with 2× dilution, constituting 0.42 ± 0.012 (g CDW) × L−1 when supplemented with glycerol. This represents a ~15% enhancement, demonstrating that co-fermentation can substantially optimize the production of biomass.
- The most significant improvement in H2 yield was observed at 50 g L−1 SH with 5× dilution, where it increased from 1.050 to 5.685 mmol H2 (g sugar)−1 when supplemented with glycerol.
- The presence and variability of inhibitory compounds such as furfural and hydroxymethylfurfural (HMF) in glycerol utilization and hydrolysates may affect microbial performance at larger volumes.
- Complexities in maintaining uniform conditions, such as pH, oxygen transfer, and substrate distribution, can influence fermentation efficiency and consistency.
- Efficient product recovery becomes increasingly critical at scale. For hydrogen, this includes gas capture, purification (e.g., CO2 removal), and safe storage or compression. For biomass, downstream handling may involve separation, concentration, and drying—steps that can be energy- and cost-intensive if not optimized.
- Combining sunflower husk with other agricultural or industrial wastes to broaden the feedstock base;
- Exploring microbial co-cultures or genetically engineered strains to improve substrate utilization and inhibitor tolerance;
- Conducting continuous or pilot-scale fermentations to validate scalability, process robustness, and economic feasibility;
- Implementing detoxification strategies or pretreatment refinements to further reduce inhibitory compound formation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K. Sunflower Oil and Its Applications. Lipid Technol. 2014, 26, 260–263. [Google Scholar] [CrossRef]
- Le Clef, E.; Kemper, T. Sunflower Seed Preparation and Oil Extraction. In Sunflower; Elsevier: Amsterdam, The Netherlands, 2015; pp. 187–226. [Google Scholar]
- Puttha, R.; Venkatachalam, K.; Hanpakdeesakul, S.; Wongsa, J.; Parametthanuwat, T.; Srean, P.; Pakeechai, K.; Charoenphun, N. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae 2023, 9, 1079. [Google Scholar] [CrossRef]
- Milovanov, O.; Klimov, D.; Kuzmin, S.; Grigoriev, S.; Mikhalev, A.; Isemin, R.; Brulé, M. Application of Torrefaction for Improved Fuel Properties of Sunflower Husks. Energies 2024, 17, 4643. [Google Scholar] [CrossRef]
- Turzyński, T.; Kluska, J.; Ochnio, M.; Kardaś, D. Comparative Analysis of Pelletized and Unpelletized Sunflower Husks Combustion Process in a Batch-Type Reactor. Materials 2021, 14, 2484. [Google Scholar] [CrossRef] [PubMed]
- Perea-Moreno, M.-A.; Manzano-Agugliaro, F.; Perea-Moreno, A.-J. Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability 2018, 10, 3407. [Google Scholar] [CrossRef]
- Havrysh, V.; Kalinichenko, A.; Mentel, G.; Mentel, U.; Vasbieva, D.G. Husk Energy Supply Systems for Sunflower Oil Mills. Energies 2020, 13, 361. [Google Scholar] [CrossRef]
- Osman, A.I.; Lai, Z.Y.; Farghali, M.; Yiin, C.L.; Elgarahy, A.M.; Hammad, A.; Ihara, I.; Al-Fatesh, A.S.; Rooney, D.W.; Yap, P.-S. Optimizing Biomass Pathways to Bioenergy and Biochar Application in Electricity Generation, Biodiesel Production, and Biohydrogen Production. Environ. Chem. Lett. 2023, 21, 2639–2705. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. ‘Renewable’ Hydrogen: Prospects and Challenges. Renew. Sustain. Energy Rev. 2011, 15, 3034–3040. [Google Scholar] [CrossRef]
- Kamran, M.; Turzyński, M. Exploring Hydrogen Energy Systems: A Comprehensive Review of Technologies, Applications, Prevailing Trends, and Associated Challenges. J. Energy Storage 2024, 96, 112601. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Biofuels, Biodiesel and Biohydrogen Production Using Bioprocesses. A Review. Environ. Chem. Lett. 2020, 18, 1049–1072. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Mat Aron, N.S.; Jeevanantham, S.; Karishma, S.; Yaashikaa, P.R.; Chew, K.W.; Show, P.L. A Review on Bioconversion Processes for Hydrogen Production from Agro-Industrial Residues. Int. J. Hydrogen Energy 2022, 47, 37302–37320. [Google Scholar] [CrossRef]
- Trchounian, K.; Poladyan, A.; Vassilian, A.; Trchounian, A. Multiple and Reversible Hydrogenases for Hydrogen Production by Escherichia coli: Dependence on Fermentation Substrate, PH and the F0F1-ATPase. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Poladyan, A.; Trchounian, K.; Vassilian, A.; Trchounian, A. Hydrogen Production by Escherichia coli Using Brewery Waste: Optimal Pretreatment of Waste and Role of Different Hydrogenases. Renew. Energy 2018, 115, 931–936. [Google Scholar] [CrossRef]
- Soto, M.L.; Domínguez, H.; Núñez, M.J.; Lema, J.M. Enzymatic Saccharification of Alkali-Treated Sunflower Hulls. Bioresour. Technol. 1994, 49, 53–59. [Google Scholar] [CrossRef]
- Mirzoyan, S.; Aghekyan, H.; Vanyan, L.; Vassilian, A.; Trchounian, K. Coffee Silverskin as a Substrate for Biobased Production of Biomass and Hydrogen by Escherichia coli. Int. J. Energy Res. 2022, 46, 23110–23121. [Google Scholar] [CrossRef]
- Vanyan, L.; Aghekyan, H.; Vassilian, A.; Poladyan, A.; Trchounian, K. Biotechnological Potential of Spent Coffee Grounds for Biohydrogen Production by Escherichia coli. Int. J. Hydrogen Energy 2024, 142, 1121–1131. [Google Scholar] [CrossRef]
- Gleizer, S.; Ben-Nissan, R.; Bar-On, Y.M.; Antonovsky, N.; Noor, E.; Zohar, Y.; Jona, G.; Krieger, E.; Shamshoum, M.; Bar-Even, A.; et al. Conversion of Escherichia coli to Generate All Biomass Carbon from CO2. Cell 2019, 179, 1255–1263.e12. [Google Scholar] [CrossRef] [PubMed]
- Aristidou, A.A.; San, K.-Y.; Bennett, G.N. Improvement of Biomass Yield and Recombinant Gene Expression in Escherichia coli by Using Fructose as the Primary Carbon Source. Biotechnol. Prog. 1999, 15, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Sołowski, G.; Konkol, I.; Cenian, A. Methane and Hydrogen Production from Cotton Waste by Dark Fermentation under Anaerobic and Micro-Aerobic Conditions. Biomass Bioenergy 2020, 138, 105576. [Google Scholar] [CrossRef]
- Raposo, F.; Delarubia, M.; Borja, R.; Alaiz, M. Assessment of a Modified and Optimised Method for Determining Chemical Oxygen Demand of Solid Substrates and Solutions with High Suspended Solid Content. Talanta 2008, 76, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Bradstreet, R.B. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Gevorgyan, H.K. THE UTILIZATION OF CARBON SOURCES MIXTURE (GLUCOSE, GLYCEROL AND FORMATE) AND GENERATION OF FERMENTATION END-PRODUCTS BY ESCHERICHIA COLI. Proc. YSU B Chem. Biol. Sci. 2020, 54, 55–62. [Google Scholar] [CrossRef]
- Simensen, V.; Schulz, C.; Karlsen, E.; Bråtelund, S.; Burgos, I.; Thorfinnsdottir, L.B.; García-Calvo, L.; Bruheim, P.; Almaas, E. Experimental Determination of Escherichia coli Biomass Composition for Constraint-Based Metabolic Modeling. PLoS ONE 2022, 17, e0262450. [Google Scholar] [CrossRef] [PubMed]
- Taha, F.S.; Wagdy, S.M.; Hassanein, M.M.M.; Hamed, S.F. Evaluation of the Biological Activity of Sunflower Hull Extracts. Grasas Aceites 2012, 63, 184–192. [Google Scholar] [CrossRef]
- Casoni, A.I.; Gutierrez, V.S.; Volpe, M.A. Conversion of Sunflower Seed Hulls, Waste from Edible Oil Production, into Valuable Products. J. Environ. Chem. Eng. 2019, 7, 102893. [Google Scholar] [CrossRef]
- Fox, D.J.; Gray, P.P.; Dunn, N.W.; Marsden, W.L. Comparison of Alkali and Steam (Acid) Pretreatments of Lignocellulosic Materials to Increase Enzymic Susceptibility: Evaluation under Optimised Pretreatment Conditions. J. Chem. Technol. Biotechnol. 1989, 44, 135–146. [Google Scholar] [CrossRef]
- Bekbayev, K.; Mirzoyan, S.; Toleugazykyzy, A.; Tlevlessova, D.; Vassilian, A.; Poladyan, A.; Trchounian, K. Growth and Hydrogen Production by Escherichia coli during Utilization of Sole and Mixture of Sugar Beet, Alcohol, and Beer Production Waste. Biomass Convers. Biorefin. 2022, 14, 909–919. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, S.; Yang, S.; Ding, S.-Y. Lignin Plays a Negative Role in the Biochemical Process for Producing Lignocellulosic Biofuels. Curr. Opin. Biotechnol. 2014, 27, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wu, C.; Tang, W.; Huang, M.; Ma, C.; He, Y.-C. Enhancing Enzymatic Saccharification of Sunflower Straw through Optimal Tartaric Acid Hydrothermal Pretreatment. Bioresour. Technol. 2023, 385, 129279. [Google Scholar] [CrossRef] [PubMed]
- Ohgren, K.; Bura, R.; Saddler, J.; Zacchi, G. Effect of Hemicellulose and Lignin Removal on Enzymatic Hydrolysis of Steam Pretreated Corn Stover. Bioresour. Technol. 2007, 98, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Kovárová-Kovar, K.; Egli, T. Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics. Microbiol. Mol. Biol. Rev. 1998, 62, 646–666. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.P. The Chemistry Involved in the Steam Treatment of Lignocellulosic Materials. Quim. Nova 2003, 26, 863–871. [Google Scholar] [CrossRef]
- Kabir, F.; Katayama, S.; Tanji, N.; Nakamura, S. Antimicrobial Effects of Chlorogenic Acid and Related Compounds. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 359–365. [Google Scholar] [CrossRef]
- Nenkova, S.; Vasileva, T.; Stanulov, K. Production of Phenol Compounds by Alkaline Treatment of Technical Hydrolysis Lignin and Wood Biomass. Chem. Nat. Compd. 2008, 44, 182–185. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G.T.; Sels, B.F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef] [PubMed]
- Piskarev, I.M.; Ushkanov, V.A.; Aristova, N.A.; Likhachev, P.P.; Myslivets, T.S. Establishment of the Redox Potential of Water Saturated with Hydrogen. Biophysics 2010, 55, 13–17. [Google Scholar] [CrossRef]
- Murarka, A.; Dharmadi, Y.; Yazdani, S.S.; Gonzalez, R. Fermentative Utilization of Glycerol by Escherichia coli and Its Implications for the Production of Fuels and Chemicals. Appl. Environ. Microbiol. 2008, 74, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, K.; Flores, N.; Castañeda, H.M.; Martínez-Batallar, G.; Hernández-Chávez, G.; Ramírez, O.T.; Gosset, G.; Encarnación, S.; Bolivar, F. New Insights into Escherichia coli Metabolism: Carbon Scavenging, Acetate Metabolism and Carbon Recycling Responses during Growth on Glycerol. Microb. Cell Fact. 2012, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent Advances and Challenges in Single Cell Protein (SCP) Technologies for Food and Feed Production. npj Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Salerno, M.B.; Rittmann, B.E. Thermodynamic Evaluation on H2 Production in Glucose Fermentation. Environ. Sci. Technol. 2008, 42, 2401–2407. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.S.; Kumar, P.; Kalia, V.C. Enhancing Biological Hydrogen Production through Complementary Microbial Metabolisms. Int. J. Hydrogen Energy 2012, 37, 10590–10603. [Google Scholar] [CrossRef]
- Mikoyan, G.; Vanyan, L.; Toleugazykyzy, A.; Bekbayeva, R.; Baichiyeva, K.; Bekbayev, K.; Trchounian, K. Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production. Energies 2025, 18, 2648. [Google Scholar] [CrossRef]
Pretreatment | |||
---|---|---|---|
Thermal | Physicochemical | ||
Hydrolyzing agent | - | Sulfuric acid (H2SO4) | Sodium hydroxide (NaOH) |
Concentration | - | 0.5% | 1.5% |
Hydrolysis duration | 45 min 121 °C | ||
pH after hydrolysis | 5 | 1.5–2 | 8–9 |
pH adjustment | Dipotassium phosphate (K2HPO4) | Dipotassium phosphate (K2HPO4) | Hydrogen chloride (HCl)/Phosphoric acid (H3PO4) |
This Study | [28] | [27] | |
---|---|---|---|
Proximate Analysis (% Dry Basis) | |||
Total solids | 59 ± 1.8 TS [%FM] | ||
Volatile matter (solids) % | 98 ± 2.5 VS [%TS] | 79.8% | |
Fixed carbon (%) | 18.1 | ||
Ash (%) | 2.1 | 2.78 ± 0.713 | |
Moisture (%) | 6.1 | ||
Ultimate Analysis (%) | |||
Carbon (C) | 76.0 | ||
Hydrogen (H) | 3.1 | ||
Oxygen (O) | 19.4 | ||
Nitrogen (N) | 1.5 | ||
Chemical composition (%) | |||
Hemicellulose | 18.0 | ||
Cellulose | 39.0 | ||
Lignin | 20.0 | ||
Oil | 10.47 ± 0.896 | ||
Nitrogen | 8.7 ± 0.27 | 2.6 ± 0.652 | |
Nitrogen-Free Extract | 30.23 ± 0.781 | ||
Fermentation-Relevant Properties | |||
COD [g (g VS)−1] | 1.256 ± 0.04 |
Carbon Conversion Efficiency to Biomass, % | ||
---|---|---|
−glyc | +glyc | |
50 g L−1 0× | 3.81 ± 0.12 | 1.77 ± 0.05 |
50 g L−1 2× | 8.89 ± 0.27 | 2.46 ± 0.08 |
50 g L−1 5× | 19.16 ± 0.6 | 3.20 ± 0.1 |
75 g L−1 0× | 2.46 ± 0.08 | 2.18 ± 0.08 |
75 g L−1 2× | 10.34 ± 0.32 | 1.27 ± 0.05 |
75 g L−1 5× | 16.92 ± 0.5 | 3.33 ± 0.1 |
100 g L−1 0× | 4.83 ± 0.15 | 2.64 ± 0.08 |
100 g L−1 2× | 9.81 ± 0.3 | 3.81 ± 0.11 |
100 g L−1 5× | 20.26 ± 0.6 | 4.35 ± 0.13 |
150 g L−1 0× | 2.26 ± 0.08 | 1.93 ± 0.06 |
150 g L−1 2× | 3.71 ± 0.11 | 2.43 ± 0.07 |
150 g L−1 5× | 11.72 ± 0.35 | 3.77 ± 0.113 |
Accumulated Hydrogen (mM) | H2 Yield Mmol (g Sugar)−1 | |||
---|---|---|---|---|
−glyc | +glyc | −glyc | +glyc | |
50 g L−1 0× | 1.19 ± 0.04 | 3.06 ± 0.1 | 0.517 ± 0.016 | 1.227 ± 0.04 |
50 g L−1 2× | 0.87 ± 0.03 | 2.26 ± 0.07 | 0.642 ± 0.02 | 1.687 ± 0.05 |
50 g L−1 5× | 0.53 ± 0.016 | 2.82 ± 0.085 | 1.050 ± 0.032 | 5.685 ± 0.17 |
75 g L−1 0× | 1.3 ± 0.04 | 3.6 ± 0.1 | 0.302 ± 0.009 | 0.893 ± 0.03 |
75 g L−1 2× | 1.2 ± 0,04 | 3 ± 0.09 | 0.6 ± 0.02 | 1.608 ± 0.05 |
75 g L−1 5× | 0.7 ± 0.021 | 3.2 ± 0.096 | 1.209 ± 0.04 | 4.324 ± 0.13 |
100 g L−1 0× | 1.4 ± 0.042 | 3.5 ± 0.105 | 0.284 ± 0.009 | 0.628 ± 0.018 |
100 g L−1 2× | 1.26 ± 0.038 | 2.96 ± 0.089 | 0.529 ± 0.016 | 1.109 ± 0.033 |
100 g L−1 5× | 0.84 ± 0.025 | 3.28 ± 0.01 | 0.719 ± 0.022 | 3.037 ± 0.0911 |
150 g L−1 0× | 2.14 ± 0.064 | 4.6 ± 0.138 | 0.291 ± 0.009 | 0.558 ± 0.016 |
150 g L−1 2× | 1.81 ± 0.054 | 4.3 ± 0.13 | 0.386 ± 0.016 | 1.044 ± 0.031 |
150 g L−1 5× | 1 ± 0.03 | 4.3 ± 0.13 | 0.8 ± 0.024 | 2.953 ± 0.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanyan, L.; Toleugazykyzy, A.; Yegizbay, K.; Daniyarova, A.; Zuloyan, L.; Mikoyan, G.; Vassilian, A.; Poladyan, A.; Bekbayev, K.; Trchounian, K. Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production. Energies 2025, 18, 3885. https://doi.org/10.3390/en18143885
Vanyan L, Toleugazykyzy A, Yegizbay K, Daniyarova A, Zuloyan L, Mikoyan G, Vassilian A, Poladyan A, Bekbayev K, Trchounian K. Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production. Energies. 2025; 18(14):3885. https://doi.org/10.3390/en18143885
Chicago/Turabian StyleVanyan, Liana, Akerke Toleugazykyzy, Kaisar Yegizbay, Ayaulym Daniyarova, Lyudmila Zuloyan, Gayane Mikoyan, Anait Vassilian, Anna Poladyan, Kairat Bekbayev, and Karen Trchounian. 2025. "Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production" Energies 18, no. 14: 3885. https://doi.org/10.3390/en18143885
APA StyleVanyan, L., Toleugazykyzy, A., Yegizbay, K., Daniyarova, A., Zuloyan, L., Mikoyan, G., Vassilian, A., Poladyan, A., Bekbayev, K., & Trchounian, K. (2025). Microbial Valorization of Sunflower Husk for Sustainable Biohydrogen and Biomass Production. Energies, 18(14), 3885. https://doi.org/10.3390/en18143885