Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = digestive vacuole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2421 KiB  
Article
Dietary Bacillus subtilis Supplementation Improves Intestinal Health of Meagre (Argyrosomus regius) Juveniles Fed Plant-Based Diets
by Joana Oliveira, Raquel Ribeiro, Gabriela Gonçalves, Rafaela Santos, Cláudia Serra, Paula Enes, Pedro Pousão-Ferreira, Aires Oliva-Teles and Ana Couto
J. Mar. Sci. Eng. 2025, 13(6), 1013; https://doi.org/10.3390/jmse13061013 - 23 May 2025
Viewed by 617
Abstract
As aquaculture expands, plant-based feeds are increasingly used, but some fish species poorly tolerate them, affecting health and growth. Probiotics can help counter these effects by improving digestion, nutrient absorption, and immunity. This study evaluated the effect of dietary incorporation of Bacillus subtilis [...] Read more.
As aquaculture expands, plant-based feeds are increasingly used, but some fish species poorly tolerate them, affecting health and growth. Probiotics can help counter these effects by improving digestion, nutrient absorption, and immunity. This study evaluated the effect of dietary incorporation of Bacillus subtilis FI99 on the intestinal health of meagre. A nutritional challenge was performed with a practical control diet and three diets higher in plant-based ingredients: one without probiotic and two with probiotic incorporated at 1 × 109 CFU g−1 and 5.5 × 1011 CFU g−1. Histomorphological analysis was used to assess intestinal health and validate previously established machine learning models in predicting fish nutritional status. No differences were observed in zootechnical performance and biometric indexes. Most effects were observed in the anterior intestinal section, where probiotics improved total area, lumen area, lumen maximum diameter, total maximum diameter, villi area, and villi + lumen area. Additionally, probiotics improved supranuclear vacuole size, eosinophilic granulocytes, and intraepithelial leukocytes presence in anterior and intermediate sections. Machine learning models could not accurately predict the nutritional status of fish. Overall, the study indicates that dietary inclusion of B. subtilis enhances the intestinal health of meagre fed plant-based diets. Machine learning models require further development for improved accuracy. Full article
(This article belongs to the Special Issue Sustainable Development and Resource Management of Marine Aquaculture)
Show Figures

Figure 1

15 pages, 61249 KiB  
Article
Antioxidant and Histopathological Effects of Paraquat and Fluroxypyr Herbicides on the Apple Snail Pomacea canaliculata (Lamarck, 1822)
by Alejandra D. Campoy-Diaz, Israel A. Vega and Maximiliano Giraud-Billoud
Stresses 2025, 5(2), 33; https://doi.org/10.3390/stresses5020033 - 16 May 2025
Viewed by 872
Abstract
Argentina is among the top consumers of herbicides, yet studies on their environmental and health impact remain scarce. This work aimed to evaluate the effects of herbicide exposure on Pomacea canaliculata as potential biomarkers of contamination. Specifically, we investigated whether paraquat (Pq) and [...] Read more.
Argentina is among the top consumers of herbicides, yet studies on their environmental and health impact remain scarce. This work aimed to evaluate the effects of herbicide exposure on Pomacea canaliculata as potential biomarkers of contamination. Specifically, we investigated whether paraquat (Pq) and fluroxypyr (Fx) alter enzymatic antioxidant defenses in tissues following acute exposure and induce histological modifications in the digestive gland (DG), particularly in symbiotic corpuscles, after chronic exposure. The nominal no-observed-effect concentration on lethality (NOECL) values were 3.62 µg/g dry mass (DM) for Pq and 10.42 µg/g DM for Fx. After acute exposure, superoxide dismutase activity decreased in the DG but increased in the kidney for both herbicides. Catalase activity decreased in the gills but increased in the kidneys of exposed snails, while glutathione-S-transferase activity increased in the DG and kidney after Pq exposure. Following chronic exposure (Pq: 1.45 µg/g DM; Fx: 6.94 µg/g DM), epithelial thickening and vacuolization were observed in Fx-exposed snails. Morphometric analysis of the DG showed that Pq reduced the epithelial occupancy of the symbiont’s vegetative form while increasing its cystic form. These findings indicate that both herbicides impact antioxidant defenses, DG function and host–symbiont interactions, reinforcing the suitability of P. canaliculata as bioindicator organisms. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

14 pages, 1651 KiB  
Article
Extracellular Vesicle Abundance, but Not a High Aggregation-Prone Peptide Cargo, Is Associated with Dihydroartemisinin Exposure in Plasmodium falciparum
by Kwesi Z. Tandoh, Yunuen Avalos-Padilla, Prince Ameyaw, Elisabeth K. Laryea-Akrong, Gordon A. Awandare, Michael David Wilson, Neils B. Quashie, Xavier Fernàndez-Busquets and Nancy O. Duah-Quashie
Int. J. Mol. Sci. 2025, 26(9), 3962; https://doi.org/10.3390/ijms26093962 - 22 Apr 2025
Viewed by 683
Abstract
Our understanding of the molecular mechanisms undergirding artemisinin (ART) resistance in Plasmodium falciparum is currently based on two organizing principles: reduced hemoglobin trafficking into the digestive food vacuole, resulting in lower levels of activated ART, and increased tolerance to ART-induced oxidative stress in [...] Read more.
Our understanding of the molecular mechanisms undergirding artemisinin (ART) resistance in Plasmodium falciparum is currently based on two organizing principles: reduced hemoglobin trafficking into the digestive food vacuole, resulting in lower levels of activated ART, and increased tolerance to ART-induced oxidative stress in the infected erythrocyte. We had previously proposed an extracellular vesicle (EV) export model of ART resistance in P. falciparum. This model predicts that EV abundance will be altered by ART exposure and that the peptide cargo of EVs from the ART-exposed condition will be enriched with aggregation-prone peptides. We tested the predictions of the EV export hypothesis in this study using in vitro culture assays of an ART-resistant transgenic line engineered on a 3D7 background (R561H) and a 3D7 knock-out line (PfVps60KO) with deficient EV production phenotype. EV enrichment was obtained from in vitro parasite culture supernatants via a series of ultracentrifugation and filtration steps, followed by size exclusion chromatography. A quality check on EVs was performed using dynamic light scattering. Liquid chromatography with tandem mass spectrometry was used to determine the proteome cargo from extracted EVs, and parasite peptides were queried for aggregation-prone tendency using open-access software. We report that dihydroartemisinin (DHA) exposure was positively correlated with EV abundance (coefficient estimate = 1038.58, confidence interval of 194.86–1882.30, and p-value = 0.018) and suggests that EV biogenesis is part of the parasite’s response to DHA/ART. Furthermore, our findings suggest the expression of a non-constitutive DHA-induced alternate EV biogenesis pathway as the PfVps60KO was observed to produce the highest number of EVs under DHA exposure. Finally, we show that EVs from both ART-susceptible and resistant parasites under DHA exposure carry a cargo of Chorein N-terminal domain-containing protein (PF3D7_1021700) with a high aggregation-prone index (prion-like domain [PrLD] score = 26.5) out of nine identified parasite peptides. The former of these findings is in concordance with the EV export hypothesis, which posits that the removal of DHA/ART-induced aggregated and/or misfolded peptides is critical to the parasite’s survival under DHA/ART exposure. This observation further implicates EVs in the development of the ART-resistant phenotype. However, the finding of one aggregation-prone peptide out of the nine parasite proteins in the EV cargo does not sufficiently support the EV export hypothesis. Future replicates of this study and further interrogations of the EV export hypothesis are needed. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

15 pages, 6490 KiB  
Article
Metabolomics-Based Analysis of Adaptive Mechanism of Eleutheronema tetradactylum to Low-Temperature Stress
by Minxuan Jin, Anna Zheng, Evodia Moses Mkulo, Linjuan Wang, Huijuan Zhang, Baogui Tang, Hui Zhou, Bei Wang, Jiansheng Huang and Zhongliang Wang
Animals 2025, 15(8), 1174; https://doi.org/10.3390/ani15081174 - 19 Apr 2025
Viewed by 445
Abstract
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated [...] Read more.
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated the physiological responses of the liver in E. tetradactylum exposed to a constant temperature of 18 °C for durations of both 7 and 14 days, utilizing liquid chromatography–mass spectrometry (LC-MS), metabolomics, and conventional biochemical assays. The antioxidant status, liver histology, and metabolite profiles were examined at different time points. Our results revealed that, following sustained cold exposure, the activities of key antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)—initially increased and then decreased. Additionally, levels of malondialdehyde (MDA), a marker of oxidative damage, significantly elevated after 7 and 14 days of cold stress. Histopathological examination of liver tissues showed varying degrees of vacuolation and nuclear atrophy in hepatocytes, indicating oxidative damage. Metabolomic profiling identified 87 and 116 differentially expressed metabolites in the liver on days 7 and 14, respectively. Pathway enrichment analysis revealed significant alterations in pathways related to carbohydrate digestion and absorption, glutathione metabolism, and glycerolipid metabolism. These findings suggest that mechanisms regulating cell membrane fluidity, energy metabolism, autophagy, and antioxidant defense are crucial for the adaptation of E. tetradactylum to cold stress. Overall, this study provides valuable insights into the molecular and physiological adaptations of E. tetradactylum to low temperature, highlighting the activation of protective antioxidant responses and modifications of metabolic pathways in the liver. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 8085 KiB  
Article
Methionine Antagonizes Liver and Kidney Antioxidant Function Damage in Heat-Stressed Rex Rabbits
by Shu Li, Xiaosong Wang, Gongyan Liu, Lei Liu and Fuchang Li
Animals 2025, 15(8), 1148; https://doi.org/10.3390/ani15081148 - 16 Apr 2025
Viewed by 644
Abstract
Heat stress triggers systemic oxidative stress that compromises physiological homeostasis. This study evaluated methionine’s effects on hepatic and renal antioxidant capacity in heat-stressed Rex rabbits. Rabbits were divided into five groups (30 replicates/group): control (20–25 °C, basal diet), heat stress (HS, 30–34 °C, [...] Read more.
Heat stress triggers systemic oxidative stress that compromises physiological homeostasis. This study evaluated methionine’s effects on hepatic and renal antioxidant capacity in heat-stressed Rex rabbits. Rabbits were divided into five groups (30 replicates/group): control (20–25 °C, basal diet), heat stress (HS, 30–34 °C, basal diet), and HS +0.15%, 0.3%, or 0.45% methionine-supplemented groups. After 21 days, serum, skin, liver, and kidney samples were analyzed for biochemical parameters, oxidative stress markers, and gene expression. Results showed that 0.15–0.3% methionine supplementation under heat stress increased methionine apparent digestibility and suppressed amino acid catabolism; decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels; reduced skin malondialdehyde (MDA) and elevated (MSRA) activity; attenuated hepatic central venous congestion and renal tubular vacuolization; enhanced hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (0.3% group); and modulated antioxidant gene expression via Nrf2/HO-1 and Nrf2/NQO1 pathways. Pathological analysis confirmed reduced fibrosis and cellular damage in liver/kidney tissues. Optimal methionine supplementation (0.3%) effectively mitigated heat-induced oxidative organ damage by enhancing endogenous antioxidant defenses and regulating redox-sensitive signaling pathways. These findings provide a nutritional strategy for alleviating heat stress-related metabolic disorders in rabbits. Full article
(This article belongs to the Special Issue Amino Acids Nutrition and Health in Farm Animals)
Show Figures

Figure 1

15 pages, 2707 KiB  
Article
The Flash Vacuum Expansion Process Increases the Bioaccessibility and Stability of Antioxidant Compounds in Papaya Puree During Digestion
by Teresita de Jesús Castillo-Romero, Leticia Xochitl López-Martínez, Marco Antonio Salgado-Cervantes, Eber Addí Quintana-Obregón, Gustavo Adolfo González-Aguilar and Manuel Vargas-Ortiz
Resources 2024, 13(12), 175; https://doi.org/10.3390/resources13120175 - 20 Dec 2024
Viewed by 1277
Abstract
Among all fruits, the papaya ranks among the most significant, occupying fourth place in terms of marketing volumes. The papaya encounters various deterioration issues throughout the marketing chain, which results in the loss of bioactive phytochemicals in the fruit’s pulp. Making puree is [...] Read more.
Among all fruits, the papaya ranks among the most significant, occupying fourth place in terms of marketing volumes. The papaya encounters various deterioration issues throughout the marketing chain, which results in the loss of bioactive phytochemicals in the fruit’s pulp. Making puree is the best way to make papaya pulp last longer, but processing can break down antioxidants like phenolic compounds (which are mostly stored in cell vacuoles) and carotenoids (which are stored in chromoplasts). The flash vacuum expansion process (FVE) promotes an expansion of the water present in the vacuoles, which generates cell rupture and consequently, the release of intracellular components. Because cell rupture is promoted from within the cell, the expulsion of bioactive compounds is more efficient and can therefore increase their bioaccessibility. Our results show that the FVE process increased the antioxidant capacity of the purees (measured by TEAC, FRAP, and DPPH assays) before and during digestion. Our results show that the FVE process significantly enhances the bioaccessibility and stability of antioxidant compounds, providing a clear advantage over the conventional method. Fruit purees generated by FVE can be an ingredient that increases the functionality of foods (juices, nectars, purees, ice creams, and yogurt) aimed at people with digestive problems, baby food, or the use of fruits with low commercial value. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

22 pages, 9848 KiB  
Review
Effects of the Symbiotic Chlorella variabilis on the Host Ciliate Paramecium bursaria Phenotypes
by Yuuki Kodama and Masahiro Fujishima
Microorganisms 2024, 12(12), 2537; https://doi.org/10.3390/microorganisms12122537 - 9 Dec 2024
Cited by 1 | Viewed by 2167
Abstract
Paramecium bursaria, a ciliated protist, forms a symbiotic relationship with the green alga Chlorella variabilis. This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside [...] Read more.
Paramecium bursaria, a ciliated protist, forms a symbiotic relationship with the green alga Chlorella variabilis. This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside in specialized compartments called perialgal vacuoles (PVs) within the host cytoplasm, which protect them from digestion by host lysosomal fusion. The relationship between P. bursaria and symbiotic Chlorella spp. is characterized by mutualism, in which both organisms benefit from this association. Furthermore, symbiotic algae also influence their host phenotypes, and algae-free P. bursaria can be obtained through various methods and reassociated with symbiotic algae, making it a valuable tool for studying secondary endosymbiosis. Recent advancements in genomic and transcriptomic studies on both hosts and symbionts have further enhanced the utility of this model system. This review summarizes the infection process of the symbiotic alga C. variabilis and its effects on the algal infection on number of host trichocysts, mitochondria, cytoplasmic crystals, total protein amount, stress responses, photoaccumulation, and circadian rhythms of the host P. bursaria. Full article
Show Figures

Figure 1

18 pages, 18326 KiB  
Article
Combined Analysis of Metabolomics and Transcriptome Revealed the Effect of Bacillus thuringiensis on the 5th Instar Larvae of Dendrolimus kikuchii Matsumura
by Jinyan Li, Qiang Guo, Bin Yang and Jielong Zhou
Int. J. Mol. Sci. 2024, 25(21), 11823; https://doi.org/10.3390/ijms252111823 - 4 Nov 2024
Cited by 1 | Viewed by 1306
Abstract
Dendrolimus kikuchii Matsumura (D. kikuchii) is a serious pest of coniferous trees. Bacillus thuringiensis (Bt) has been widely studied and applied as a biological control agent for a variety of pests. Here, we found that the mortality rate of [...] Read more.
Dendrolimus kikuchii Matsumura (D. kikuchii) is a serious pest of coniferous trees. Bacillus thuringiensis (Bt) has been widely studied and applied as a biological control agent for a variety of pests. Here, we found that the mortality rate of D. kikuchii larvae after being fed Bt reached 95.33% at 24 h; the midgut membrane tissue was ulcerated and liquefied, the MDA content in the midgut tissue decreased and the SOD, CAT and GPx enzyme activities increased, indicating that Bt has toxic effects on D. kikuchii larvae. In addition, transmission electron microscopy showed that Bt infection caused severe deformation of the nucleus of the midgut tissue of D. kikuchii larvae, vacuoles in the nucleolus, swelling and shedding of microvilli, severe degradation of mitochondria and endoplasmic reticulum and decreased number. Surprisingly, metabolomics and transcriptome association analysis revealed that four metabolic-related signaling pathways, Nicotinate and nicotinamide metabolism, Longevity regulating pathway—worm, Vitamin digestion and absorption and Lysine degradation, were co-annotated in larvae. More surprisingly, Niacinamide was a common differential metabolite in the first three signaling pathways, and both Niacinamide and L-2-Aminoadipic acid were reduced. The differentially expressed genes involved in the four signaling pathways, including NNT, ALDH, PNLIP, SETMAR, GST and RNASEK, were significantly down-regulated, but only SLC23A1 gene expression was up-regulated. Our results illustrate the effects of Bt on the 5th instar larvae of D. kikuchii at the tissue, cell and molecular levels, and provide theoretical support for the study of Bt as a new biological control agent for D. kikuchii. Full article
(This article belongs to the Special Issue Recent Research on Cell and Molecular Biology)
Show Figures

Figure 1

18 pages, 5936 KiB  
Article
Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm
by Khaoula Aouaichia, Nedjoud Grara, Kamel Eddine Bazri, Edison Barbieri, Nedjma Mamine, Hadia Hemmami, Anna Capaldo, Luigi Rosati and Stefano Bellucci
Life 2024, 14(9), 1209; https://doi.org/10.3390/life14091209 - 23 Sep 2024
Cited by 1 | Viewed by 1670
Abstract
The present study used the adult earthworm Aporrectodea trapezoides as a bioindicator species to look into the possible dangers of ammonium sulfate (AS) fertilizer. Two complementary toxicity tests were conducted to determine the LC50values, growth rate inhibition, morphological alterations, and histopathological texture of [...] Read more.
The present study used the adult earthworm Aporrectodea trapezoides as a bioindicator species to look into the possible dangers of ammonium sulfate (AS) fertilizer. Two complementary toxicity tests were conducted to determine the LC50values, growth rate inhibition, morphological alterations, and histopathological texture of worms. The lethality test included four increasing concentrations of AS fertilizer (ranging from 2500 to 7500 mg/kg of dry soil weight (d.w.)), while sub-lethal concentrations were based on 10%, 30%, 40%, and 50% of the 14-day median lethal concentration (LC50), with a control group included for both tests. The LC(50) values for AS fertilizer were significantly higher at 7 days (4831.13 mg/kg d.w.) than at 14 days (2698.67 mg/kg d.w.) of exposure. Notably, earthworms exhibited significant growth rate inhibition under exposure to various concentrations and time durations (14/28 exposure days). Morphological alterations such as clitellar swelling, bloody lesions, whole body coiling and constriction, body strangulation, and fragmentation were accentuated steadily, with higher concentrations. Histopathological manifestations included severe injuries to the circular and longitudinal muscular layers, vacuolation, muscle layer atrophy, degradation of the chloragogenous tissue in the intestine, collapsed digestive epithelium of the pharynx with weak reserve inclusion, and fibrosis of blood vessels. These effects were primarily influenced by increasing concentrations of fertilizer and time exposure. The study highlights the strong relationship between concentration and exposure time responses and underscores the potential of A. trapezoides earthworms as valuable biological control agents against acidic ammonium sulfate fertilizer. Importantly, this research contributes to the use of such biomarkers in evaluating soil toxicity and the biological control of environmental risk assessment associated with chemical fertilizers. Full article
Show Figures

Graphical abstract

15 pages, 9200 KiB  
Article
Histomorphological and Dynamical Changes in Female River Lampreys during Maturation under Controlled Conditions as a Part of Lamprey Restoration Programs
by Joanna Nowosad, Roman Kujawa, Shahid Sherzada, Dariusz Kucharczyk, Mateusz Mikiewicz, Katarzyna Dryl, Andrzej Kapusta, Joanna Łuczyńska and Hany M. R. Abdel-Latif
Animals 2024, 14(17), 2516; https://doi.org/10.3390/ani14172516 - 29 Aug 2024
Viewed by 1081
Abstract
More than 40 species of lampreys (Petromyzontiformes) are known worldwide. Some of them are parasitic and feed on the blood of fish or other aquatic animals. Lampreys spawn once in their lifetime, after which they die. One of the representatives of the ichthyofauna [...] Read more.
More than 40 species of lampreys (Petromyzontiformes) are known worldwide. Some of them are parasitic and feed on the blood of fish or other aquatic animals. Lampreys spawn once in their lifetime, after which they die. One of the representatives of the ichthyofauna of European rivers is the river lamprey, Lampetra fluviatilis. The river lamprey is now an endangered species due to loss and degradation of their habitats. The present study investigated gonadal development without hormonal stimulation in female river lampreys during puberty under controlled conditions for a period of seven months. Female river lampreys were kept in conditions that mimicked the natural environment. During the November–May period, samples were taken monthly to determine the extent of gonadal development and gastrointestinal and liver changes using histological examination. From the results obtained, the dynamical changes were determined for the following: gonadosomatic index (GSI; %), hepatosomatic index (his; %), and digestivesomatic index (DSI; %). With the gonadal development of female lampreys, an increase in GSI (7–23%; November–May) and a decrease in DSI (0.4–0.1%; November–May) histological changes were observed in the gonads (oocyte development), intestines (over time, decreased lipid vacuoles and enterocyte apoptosis), and in the liver (decreased lipid vacuoles and hepatocyte apoptosis over time) and in the digestive system resulting from its degradation. Also, it was observed that there was a change in the color of the liver to green in April. This study demonstrated the key role of the liver in the oocyte maturation process in this species. Full article
Show Figures

Figure 1

14 pages, 20538 KiB  
Article
Transcriptome Analysis of Transiently Reversible Cell Vacuolization Caused by Excessive Serum Concentration in Scophthalmus maximus
by Yuting Song, Lijun Shao and Xiaoli Yu
Biology 2024, 13(7), 545; https://doi.org/10.3390/biology13070545 - 19 Jul 2024
Viewed by 1550
Abstract
As an important research tool, cell lines play a vital role in life science research, medical research, and drug development. During the culture of the Scophthalmus maximus head kidney (TK) cell line, we found a phenomenon of cell vacuolization caused by excessive serum [...] Read more.
As an important research tool, cell lines play a vital role in life science research, medical research, and drug development. During the culture of the Scophthalmus maximus head kidney (TK) cell line, we found a phenomenon of cell vacuolization caused by excessive serum concentration. Moreover, the vacuolization of the cells gradually disappeared after passage by trypsin digestion. In clarifying the formation mechanism of this reversible cellular vacuolation, transcriptomics was utilized to explore the mechanism of cell vacuolization caused by excessive serum concentration. Transcriptome analysis indicated that excessive serum concentration could cause the up-regulated expression of PORCN and other genes to promote cell proliferation. Compared with cells whose vacuolization disappeared after trypsin digestion and passage, the expression of mitosis-related genes (BUB1, ttk, Mad2, Cdc20, CDK1, CCNB1), nuclear stability-related genes LMNB1 and tissue stress and repair-related genes HMMR in vacuolated cells caused by excessive serum concentration was significantly up-regulated. There is a regulatory system related to adaptation and stress repair in the cells, which can maintain cell stability to a certain extent. This study provides a theoretical basis for the stable culture of fish cell lines and the solution to the problem of cell vacuolation. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

16 pages, 514 KiB  
Review
Feeding Mechanisms of Pathogenic Protozoa with a Focus on Endocytosis and the Digestive Vacuole
by Mark F. Wiser
Parasitologia 2024, 4(3), 222-237; https://doi.org/10.3390/parasitologia4030019 - 1 Jul 2024
Cited by 1 | Viewed by 4126
Abstract
Endocytosis is a quintessential feature of eukaryotes, and the emergence of endocytosis played a major role in the origin and evolution of eukaryotes. During the early evolution of eukaryotes, phagocytosis and the digestion of prey (i.e., bacteria) combined with the endocytosis of macromolecules [...] Read more.
Endocytosis is a quintessential feature of eukaryotes, and the emergence of endocytosis played a major role in the origin and evolution of eukaryotes. During the early evolution of eukaryotes, phagocytosis and the digestion of prey (i.e., bacteria) combined with the endocytosis of macromolecules opened a new source of nutrients beyond osmotrophy. Pathogenic and commensal protozoa have retained endocytosis as a major mechanism of nutrient acquisition even though, in theory, nutrients could be obtained from the host through osmotrophy. Nearly all pathogenic protozoa exhibit endocytosis and have lysosomal-like compartments that function as digestive vacuoles, and endocytosis appears to play a major role in the acquisition of nutrients. Cryptosporidium is a possible exception that may not exhibit endocytosis. Phagotrophy, however, is only observed in parasites of the intestinal lumen and appears to have been lost in blood and tissue parasites. Overall, the basic features of endocytosis and lysosomes are similar to other eukaryotes. Nonetheless, adaptation to the host has generated some novel features that are specific to certain protozoan lineages. Full article
Show Figures

Figure 1

19 pages, 6753 KiB  
Article
Hybrid Peptide-Alkoxyamine Drugs: A Strategy for the Development of a New Family of Antiplasmodial Drugs
by Ange W. Embo-Ibouanga, Michel Nguyen, Lucie Paloque, Mathilde Coustets, Jean-Patrick Joly, Jean-Michel Augereau, Nicolas Vanthuyne, Raphaël Bikanga, Naomie Coquin, Anne Robert, Gérard Audran, Jérôme Boissier, Philippe Mellet, Françoise Benoit-Vical and Sylvain R. A. Marque
Molecules 2024, 29(6), 1397; https://doi.org/10.3390/molecules29061397 - 21 Mar 2024
Cited by 6 | Viewed by 2199
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as [...] Read more.
The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite’s food vacuoles, our approach is summarized as “to dig its grave with its fork”. However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity. Full article
(This article belongs to the Special Issue Chemistry of Antiparasitic Drugs)
Show Figures

Figure 1

14 pages, 1976 KiB  
Review
The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome
by Mark F. Wiser
Pathogens 2024, 13(3), 182; https://doi.org/10.3390/pathogens13030182 - 20 Feb 2024
Cited by 13 | Viewed by 5003
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. [...] Read more.
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria. Full article
(This article belongs to the Special Issue Nutrient Uptake and Trafficking in Plasmodium Species)
Show Figures

Figure 1

12 pages, 5299 KiB  
Article
Ultrastructural Changes in the Midgut of Brazilian Native Stingless Bee Melipona scutellaris Exposed to Fungicide Pyraclostrobin
by Caio E. C. Domingues, Lais V. B. Inoue, Aleš Gregorc, Leticia S. Ansaloni, Osmar Malaspina and Elaine C. Mathias da Silva
Toxics 2023, 11(12), 1028; https://doi.org/10.3390/toxics11121028 - 18 Dec 2023
Cited by 2 | Viewed by 2200
Abstract
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal [...] Read more.
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal concentrations of pyraclostrobin on the midgut ultrastructure of M. scutellaris forager workers. The bees were collected from three non-parental colonies and kept under laboratory conditions. The bees were orally exposed continuously for five days to pyraclostrobin in syrup at concentrations of 0.125 ng a.i./µL (FG1) and 0.005 ng a.i./µL (FG2). The control bees (CTL) were fed a no-fungicide sucrose solution, and the acetone solvent control bees (CAC) received a sucrose solution containing acetone. At the end of the exposure, the midguts were sampled, fixed in Karnovsky solution, and routinely processed for transmission electron microscopy. Ultrastructural analysis demonstrated that both the fungicide concentrations altered the midgut, such as cytoplasmic vacuolization (more intense in FG1), the presence of an atypical nuclear morphology, and slightly dilated mitochondrial cristae in the bees from the FG1 and FG2 groups (both more intense in FG1). Additionally, there was an alteration in the ultrastructure of the spherocrystals (FG1), which could be the result of cellular metabolism impairment and the excretion of toxic metabolites in the digestive cells as a response to fungicide exposure. The results indicate that ingested pyraclostrobin induced cytotoxic effects in the midgut of native stingless bees. These cellular ultrastructural responses of the midgut are a prelude to a reduced survival rate, as observed in previous studies. Full article
Show Figures

Figure 1

Back to TopTop