Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = differential scanning fluorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1186 KiB  
Article
Targeting the Cell Wall Salvage Pathway: Dual-Enzyme Inhibition of AmgK and MurU as a Strategy Against Antibiotic Resistance
by Hwa Young Kim, Seri Jo, Mi-Sun Kim and Dong Hae Shin
Int. J. Mol. Sci. 2025, 26(15), 7368; https://doi.org/10.3390/ijms26157368 - 30 Jul 2025
Viewed by 210
Abstract
The rise of multidrug-resistant Pseudomonas aeruginosa underscores the need for novel therapeutic targets beyond conventional peptidoglycan biosynthesis. Some bacterial strains bypass MurA inhibition by fosfomycin via a cell wall salvage pathway. This study targeted P. aeruginosa AmgK (PaAmgK) and MurU ( [...] Read more.
The rise of multidrug-resistant Pseudomonas aeruginosa underscores the need for novel therapeutic targets beyond conventional peptidoglycan biosynthesis. Some bacterial strains bypass MurA inhibition by fosfomycin via a cell wall salvage pathway. This study targeted P. aeruginosa AmgK (PaAmgK) and MurU (PaMurU) to identify inhibitors that could complement fosfomycin therapy. A malachite-green-based dual-enzyme assay enabled efficient activity measurements and high-throughput chemical screening. Screening 232 compounds identified Congo red and CTAB as potent PaMurU inhibitors. A targeted mass spectrometric analysis confirmed the selective inhibition of PaMurU relative to that of PaAmgK. Molecular docking simulations indicate that Congo red preferentially interacts with PaMurU through electrostatic contacts, primarily involving the residues Arg28 and Arg202. The binding of Congo red to PaMurU was corroborated further using SUPR-differential scanning fluorimetry (SUPR-DSF), which revealed ligand-induced thermal destabilization. Ongoing X-ray crystallographic studies, in conjunction with site-directed mutagenesis and enzyme kinetic analyses, aim to elucidate the binding mode at an atomic resolution. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 2173 KiB  
Article
Unveiling the Solvent Effect: DMSO Interaction with Human Nerve Growth Factor and Its Implications for Drug Discovery
by Francesca Paoletti, Tjaša Goričan, Alberto Cassetta, Jože Grdadolnik, Mykola Toporash, Doriano Lamba, Simona Golič Grdadolnik and Sonia Covaceuszach
Molecules 2025, 30(14), 3030; https://doi.org/10.3390/molecules30143030 - 19 Jul 2025
Viewed by 361
Abstract
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral [...] Read more.
Background: The Nerve Growth Factor (NGF) is essential for neuronal survival and function and represents a key therapeutic target for pain and inflammation-related disorders, as well as for neurodegenerative diseases. Small-molecule antagonists of human NGF (hNGF) offer advantages over monoclonal antibodies, including oral availability and reduced immunogenicity. However, their development is often hindered by solubility challenges, necessitating the use of solvents like dimethyl sulfoxide (DMSO). This study investigates whether DMSO directly interacts with hNGF and affects its receptor-binding properties. Methods: Integrative/hybrid computational and experimental biophysical approaches were used to assess DMSO-NGF interaction by combining machine-learning tools and Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared (FT-IR) spectroscopy, Differential Scanning Fluorimetry (DSF) and Grating-Coupled Interferometry (GCI). These techniques evaluated binding affinity, conformational stability, and receptor-binding dynamics. Results: Our findings demonstrate that DMSO binds hNGF with low affinity in a specific yet non-disruptive manner. Importantly, DMSO does not induce significant conformational changes in hNGF nor affect its interactions with its receptors. Conclusions: These results highlight the importance of considering solvent–protein interactions in drug discovery, as these low-affinity yet specific interactions can affect experimental outcomes and potentially alter the small molecules binding to the target proteins. By characterizing DMSO-NGF interactions, this study provides valuable insights for the development of NGF-targeting small molecules, supporting their potential as effective alternatives to monoclonal antibodies for treating pain, inflammation, and neurodegenerative diseases. Full article
Show Figures

Graphical abstract

13 pages, 3523 KiB  
Article
Simple and High-Throughput Quantification of Mono- and Bivalent Foot-and-Mouth Disease Virus Vaccine Antigens by Differential Scanning Fluorimetry
by Yanli Yang, Xiaojie Chen, Ming Li, Fei Xin, Yi Zhao, Chengfeng Zhang, Yiping Pan, Chuanyu He and Sun He
Vaccines 2025, 13(7), 721; https://doi.org/10.3390/vaccines13070721 - 2 Jul 2025
Viewed by 449
Abstract
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) [...] Read more.
Background/Objectives: An accurate quantification of the effective antigens from different serotypes is essential for the quality control of multivalent vaccines, but it remains challenging. Herein, we developed a simple and high-throughput method using differential scanning fluorimetry (DSF) for quantifying foot-and-mouth disease virus (FMDV) antigens in monovalent and bivalent vaccines. Methods: Purified serotypes A and O FMDV were used to establish and validate the method. The DSF parameters, including the dye concentration, thermal scanning velocity, and PCR tube material, were optimized at different FMDV concentrations. The established DSF method was validated for the quantification of monovalent and A/O bivalent FMDV, and was compared with the ultracentrifugation of 86 samples from different processing stages and serotypes. Results: The DSF showed that the melting temperature (Tm) of type A (56.2 °C) was significantly higher than that of type O FMDV (50.5 °C), indicating that their Tm can be distinguished in bivalent antigens. After optimizing the DSF parameters, a strong correlation (R2 > 0.998) was observed between the 146S concentration and the maximum of the first derivative of the DSF fluorescence (d(RFU)/dT) for both serotypes A and O FMDV. The method demonstrated good reproducibility (RSD < 10%) and high sensitivity (limit of detection: 0.7 μg/mL). Using a multiple linear regression analysis, the simultaneous quantification of A and O FMDV in the bivalent mixtures achieved recovery rates of 82.4–105.5%, with an RSD < 10% for most of the samples. Additionally, the DSF results correlated well with the ultracentrifugation data (Pearson ρ = 0.9789), validating its accuracy and broad applicability. Conclusions: In summary, DSF represents a simple, rapid, and high-throughput tool for the quality control of monovalent and bivalent FMDV vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

20 pages, 3984 KiB  
Article
Discovery of Small Molecules Against Foot-and-Mouth Disease Virus Replication by Targeting 2C Helicase Activity
by Saisai Zhou, Suyu Mu, Shuqi Yu, Yang Tian, Sijia Lu, Zhen Li, Hao Wu, Jiaying Zhao, Huanchun Chen, Shiqi Sun and Yunfeng Song
Viruses 2025, 17(6), 785; https://doi.org/10.3390/v17060785 - 29 May 2025
Viewed by 497
Abstract
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed [...] Read more.
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed to identify 2C helicase inhibitors. Primary screening evaluated 4424 compounds for helicase inhibition. Molecular docking analyzed inhibitor interactions with the N207 residue within the catalytic core and helicase inhibition assays classified the inhibitor type (mixed, competitive, noncompetitive). Differential scanning fluorimetry (nanoDSF) quantified 2C thermal destabilization. Antiviral activity was assessed via indirect immunofluorescence, RT-qPCR, and plaque reduction assays. Results: Six compounds inhibited 2C helicase activity at >620 μM. Molecular docking revealed hydrogen bonding, hydrophobic interactions, and π-cation stabilization at the catalytic core. 2-MPO and MPPI were classified as mixed-type inhibitors, 5-TzS and 2-PyOH as competitive, and DCMQ/Spiro-BD-CHD-dione as noncompetitive. NanoDSF showed a ΔTm ≥ 1.5 °C (2.5 mM compounds), with reduced destabilization in N207A mutants. Antiviral assays identified 2-MPO and MPPI as optimal inhibitors. MPPI achieved effective FMDV suppression at 160 μM, exhibiting two orders of magnitude higher potency than 2-MPO (400 μM). Conclusions: The established FRET-based HTS platform targeting 2C helicase facilitates anti-FMDV lead discovery, while 2C inhibitors may serve as an effective therapeutic strategy against other picornaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 3280 KiB  
Article
Three Isomeric Dioctyl Derivatives of 2,7-Dithienyl[1]benzo-thieno[3,2-b][1]benzothiophene: Synthesis, Optical, Thermal, and Semiconductor Properties
by Lev L. Levkov, Nikolay M. Surin, Oleg V. Borshchev, Yaroslava O. Titova, Nikita O. Dubinets, Evgeniya A. Svidchenko, Polina A. Shaposhnik, Askold A. Trul, Akmal Z. Umarov, Denis V. Anokhin, Martin Rosenthal, Dimitri A. Ivanov, Victor V. Ivanov and Sergey A. Ponomarenko
Materials 2025, 18(4), 743; https://doi.org/10.3390/ma18040743 - 7 Feb 2025
Cited by 2 | Viewed by 1834
Abstract
Organic semiconductor materials are interesting due to their application in various organic electronics devices. [1]benzothieno[3,2-b][1]benzothiophene (BTBT) is a widely used building block for the creation of such materials. In this work, three novel solution-processable regioisomeric derivatives of BTBT—2,7-bis(3-octylthiophene-2-yl)BTBT (1), 2,7-bis(4-octylthiophene-2-yl)BTBT ( [...] Read more.
Organic semiconductor materials are interesting due to their application in various organic electronics devices. [1]benzothieno[3,2-b][1]benzothiophene (BTBT) is a widely used building block for the creation of such materials. In this work, three novel solution-processable regioisomeric derivatives of BTBT—2,7-bis(3-octylthiophene-2-yl)BTBT (1), 2,7-bis(4-octylthiophene-2-yl)BTBT (2), and 2,7-bis(5-octylthiophene-2-yl)BTBT (3)—were synthesized and investigated. Their optoelectronic properties were characterized experimentally by ultraviolet–visible and fluorescence spectroscopy, time-resolved fluorimetry, and cyclic voltammetry and studied theoretically by Time-Dependent Density Functional Theory calculations. Their thermal properties were investigated by a thermogravimetric analysis, differential scanning calorimetry, polarizing optical microscopy, and in situ small-/wide-angle X-ray scattering measurements. It was shown that the introduction of alkyl substituents at different positions (3, 4, or 5) of thiophene moieties attached to a BTBT fragment significantly influences the optoelectronic properties, thermal stability, and phase behavior of the materials. Thin films of each compound were obtained by drop-casting, spin-coating and doctor blade techniques and used as active layers for organic field-effect transistors. All the OFETs exhibited p-channel characteristics under ambient conditions, while compound 3 showed the best electrical performance with a charge carrier mobility up to 1.1 cm2·V−1s−1 and current on/off ratio above 107. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

17 pages, 5448 KiB  
Article
Biophysical Analysis of Vip3Aa Toxin Mutants Before and After Activation
by Pongsatorn Khunrach, Wahyu Surya, Boonhiang Promdonkoy, Jaume Torres and Panadda Boonserm
Int. J. Mol. Sci. 2024, 25(22), 11970; https://doi.org/10.3390/ijms252211970 - 7 Nov 2024
Viewed by 1266
Abstract
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill [...] Read more.
Cry toxins from Bacillus thuringiensis are effective biopesticides that kill lepidopteran pests, replacing chemical pesticides that indiscriminately attack both target and non-target organisms. However, resistance in susceptible pests is an emerging problem. B. thuringiensis also produces vegetative insecticidal protein (Vip3A), which can kill insect targets in the same group as Cry toxins but using different host receptors, making the combined application of Cry and Vip3A an exciting possibility. Vip3A toxicity requires the formation of a homotetramer. Hence, screening of Vip3A mutants for increased stability requires orthogonal biophysical assays that can test both tetrameric integrity and monomeric robustness. For this purpose, we have used herein for the first time a combination of analytical ultracentrifugation (AUC), mass photometry (MP), differential static light scattering (DSLS) and differential scanning fluorimetry (DSF) to test five mutants at domains I and II. Although all mutants appeared more stable than the wild type (WT) in DSLS, mutants that showed more dissociation into dimers in MP and AUC experiments also showed earlier thermal unfolding by DSF at domains IV–V. All of the mutants were less toxic than the WT, but toxicity was highest for domain II mutations N242C and F229Y. Activation of the protoxin was complete and resulted in a form with a lower sedimentation coefficient. Future high-resolution structural data may lead to a deeper understanding of the increased stability that will help with rational design while retaining native toxicity. Full article
(This article belongs to the Special Issue Molecular Insights into Protein Structure and Folding)
Show Figures

Figure 1

31 pages, 9203 KiB  
Article
Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF)
by Maria Giannakou, Ifigeneia Akrani, Angeliki Tsoka, Vassilios Myrianthopoulos, Emmanuel Mikros, Constantinos Vorgias and Dimitris G. Hatzinikolaou
Pharmaceuticals 2024, 17(10), 1286; https://doi.org/10.3390/ph17101286 - 27 Sep 2024
Cited by 1 | Viewed by 2162
Abstract
Background: Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful [...] Read more.
Background: Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. Methods: The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. Results and Conclusions: Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 5469 KiB  
Article
Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori
by Marija Zora Mišković, Marta Wojtyś, Maria Winiewska-Szajewska, Beata Wielgus-Kutrowska, Marija Matković, Darija Domazet Jurašin, Zoran Štefanić, Agnieszka Bzowska and Ivana Leščić Ašler
Int. J. Mol. Sci. 2024, 25(14), 7613; https://doi.org/10.3390/ijms25147613 - 11 Jul 2024
Cited by 2 | Viewed by 1642
Abstract
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly [...] Read more.
The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

16 pages, 6769 KiB  
Article
The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity
by Cheuk W. Au, Iain Manfield, Michael E. Webb, Emanuele Paci, W. Bruce Turnbull and James F. Ross
Toxins 2024, 16(3), 133; https://doi.org/10.3390/toxins16030133 - 4 Mar 2024
Cited by 1 | Viewed by 3157
Abstract
Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter [...] Read more.
Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools. Full article
(This article belongs to the Special Issue Cholera Toxin)
Show Figures

Graphical abstract

26 pages, 2591 KiB  
Review
Fluorescence-Based Protein Stability Monitoring—A Review
by Negin Gooran and Kari Kopra
Int. J. Mol. Sci. 2024, 25(3), 1764; https://doi.org/10.3390/ijms25031764 - 1 Feb 2024
Cited by 19 | Viewed by 10425
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. [...] Read more.
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions. Full article
(This article belongs to the Collection Feature Papers in 'Macromolecules')
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Structural Studies of Klebsiella pneumoniae Fosfomycin-Resistance Protein and Its Application for the Development of an Optical Biosensor for Fosfomycin Determination
by Christina Varotsou, Farid Ataya, Anastassios C. Papageorgiou and Nikolaos E. Labrou
Int. J. Mol. Sci. 2024, 25(1), 85; https://doi.org/10.3390/ijms25010085 - 20 Dec 2023
Viewed by 1872
Abstract
Fosfomycin-resistance proteins (FosAs) are dimeric metal-dependent glutathione transferases that conjugate the antibiotic fosfomycin (Fos) to the tripeptide glutathione (γ-Glu-Cys-Gly, GSH), rendering it inactive. In the present study, we reported a comparative analysis of the functional features of two FosAs from Pseudomonas aeruginosa (FosAPA) [...] Read more.
Fosfomycin-resistance proteins (FosAs) are dimeric metal-dependent glutathione transferases that conjugate the antibiotic fosfomycin (Fos) to the tripeptide glutathione (γ-Glu-Cys-Gly, GSH), rendering it inactive. In the present study, we reported a comparative analysis of the functional features of two FosAs from Pseudomonas aeruginosa (FosAPA) and Klebsiella pneumoniae (FosAKP). The coding sequences of the enzymes were cloned into a T7 expression vector, and soluble active enzymes were expressed in E. coli. FosAKP displayed higher activity and was selected for further studies. The crystal structure of the dimeric FosAKP was determined via X-ray crystallography at 1.48 Å resolution. Fos and tartrate (Tar) were found bound in the active site of the first and second molecules of the dimer, respectively. The binding of Tar to the active site caused slight rearrangements in the structure and dynamics of the enzyme, acting as a weak inhibitor of Fos binding. Differential scanning fluorimetry (DSF) was used to measure the thermal stability of FosAKP under different conditions, allowing for the selection of a suitable buffer to maximize enzyme operational stability. FosAKP displays absolute specificity towards Fos; therefore, this enzyme was exploited for the development of an enzyme-based colorimetric biosensor. FosAKP was tethered at the bottom of a plastic cuvette using glutaraldehyde chemistry to develop a simple colorimetric method for the determination of Fos in drinking water and animal plasma. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 2215 KiB  
Article
Synthesis and Biological Evaluation of 2-Substituted Quinazolin-4(3H)-Ones with Antiproliferative Activities
by Maria Karelou, Dionysis Kampasis, Amalia D. Kalampaliki, Leentje Persoons, Andreas Krämer, Dominique Schols, Stefan Knapp, Steven De Jonghe and Ioannis K. Kostakis
Molecules 2023, 28(23), 7912; https://doi.org/10.3390/molecules28237912 - 2 Dec 2023
Cited by 3 | Viewed by 2610
Abstract
Sixteen new 2-substituted quinazolines were synthesized using a straightforward methodology starting from 2-methoxybezoic acid or 3-methoxy-2-naphthoic acid. The anti-proliferative activity of the target compounds was evaluated against nine cancer cell lines. Additionally, all the compounds were screened for their potency and selectivity against [...] Read more.
Sixteen new 2-substituted quinazolines were synthesized using a straightforward methodology starting from 2-methoxybezoic acid or 3-methoxy-2-naphthoic acid. The anti-proliferative activity of the target compounds was evaluated against nine cancer cell lines. Additionally, all the compounds were screened for their potency and selectivity against a panel of 109 kinases and four bromodomains, using Differential Scanning Fluorimetry (DSF). Compound 17 bearing a 2-methoxyphenyl substitution along with a basic side chain displayed a remarkable profile against the majority of the tested cell lines. Full article
(This article belongs to the Special Issue Design, Synthesis and Biological Evaluation of Heterocyclic Compounds)
Show Figures

Figure 1

15 pages, 4774 KiB  
Article
Generation of a DSF-Guided Refolded Bacterially Expressed Hemagglutinin Ectodomain of Influenza Virus A/Puerto Rico/8/1934 H1N1 as a Model for Influenza Vaccine Antigens
by Vlad-Constantin Tofan, Andreea-Laura Ermeneanu, Iuliana Caraș, Alina Lenghel, Irina-Elena Ionescu, Cătălin Țucureanu, Claudiu Gal, Crina-Georgeta Stăvaru and Adrian Onu
Vaccines 2023, 11(10), 1520; https://doi.org/10.3390/vaccines11101520 - 24 Sep 2023
Cited by 1 | Viewed by 2230
Abstract
Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our [...] Read more.
Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18–528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18–528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18–528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development. Full article
(This article belongs to the Special Issue Vaccines against Influenza Virus)
Show Figures

Figure 1

16 pages, 1263 KiB  
Article
Impact of Deep Eutectic Solvents on Kinetics and Folding Stability of Formate Dehydrogenase
by Nicolás F. Gajardo-Parra, Gabriel Rodríguez, Andrés F. Arroyo-Avirama, Astrit Veliju, Thomas Happe, Roberto I. Canales, Gabriele Sadowski and Christoph Held
Processes 2023, 11(10), 2815; https://doi.org/10.3390/pr11102815 - 22 Sep 2023
Cited by 10 | Viewed by 2264
Abstract
Specifically designed co-solvent mixtures are an efficient way to enhance the kinetics of enzyme-catalyzed reactions without compromising enzyme stability; among them, several deep eutectic solvents have emerged as exciting co-solvent mixtures for biocatalytic reactions. DESs nature allows one to tailor the enzyme-co-solvent interactions [...] Read more.
Specifically designed co-solvent mixtures are an efficient way to enhance the kinetics of enzyme-catalyzed reactions without compromising enzyme stability; among them, several deep eutectic solvents have emerged as exciting co-solvent mixtures for biocatalytic reactions. DESs nature allows one to tailor the enzyme-co-solvent interactions by using DESs constituents of diverse functional groups. In this work, the influence of co-solvents (betaine, glycerol, and sorbitol) and two DESs (betaine:glycerol and betaine:sorbitol) on the kinetics of candida boidinii Formate dehydrogenase was evaluated. The results showed a 30% increase in catalytic efficiency by adding 15 wt.-% of betaine to the buffered aqueous reaction media. Further, cbFDH folded-state stability was evaluated using differential scanning fluorimetry to finally obtain the binding affinity, unfolding curves, and thermodynamic unfolding parameters. The addition of glycerol, sorbitol, and DESs increased cbFDH protection against thermal stress, and this effect could be improved by increasing co-solvent concentrations. Moreover, DESs showed the ability to reduce the irreversibility of the unfolding process. Betaine was the only co-solvent that had a negative stability effect, which was offset by using betaine-based DESs. The latter was a result of the additivity of certain individual co-solvent effects on thermal stability. Non-monotonous stability effects were obtained by adding sorbitol to the buffer solutions, probably because hydrogen bond dynamics between cbFDH/co-solvent/water change dramatically with the amount of water present. Finally, DESs improved NAD+ binding affinity with cbFDH interestingly without direct correlation with the results obtained for kinetics. Full article
(This article belongs to the Special Issue Development, Modelling and Simulation of Biocatalytic Processes)
Show Figures

Figure 1

18 pages, 4087 KiB  
Article
Changes in Hemoglobin Properties in Complex with Glutathione and after Glutathionylation
by Iuliia D. Kuleshova, Pavel I. Zaripov, Yuri M. Poluektov, Anastasia A. Anashkina, Dmitry N. Kaluzhny, Evgeniia Yu. Parshina, Georgy V. Maksimov, Vladimir A. Mitkevich, Alexander A. Makarov and Irina Yu. Petrushanko
Int. J. Mol. Sci. 2023, 24(17), 13557; https://doi.org/10.3390/ijms241713557 - 31 Aug 2023
Cited by 9 | Viewed by 3204
Abstract
Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important [...] Read more.
Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized. For this purpose, the methods of circular dichroism, Raman spectroscopy, infrared spectroscopy, tryptophan fluorescence, differential scanning fluorimetry, and molecular modeling were used. It was found that the glutathionylation of oxyhemoglobin caused changes in the secondary structure of the protein, reducing the alpha helicity, but did not affect the heme environment, tryptophan fluorescence, and the thermostability of the protein. In the noncovalent complex of oxyhemoglobin with reduced glutathione, the secondary structure of hemoglobin remained almost unchanged; however, changes in the heme environment and the microenvironment of tryptophans, as well as a decrease in the protein’s thermal stability, were observed. Thus, the formation of a noncovalent complex of hemoglobin with glutathione makes a more significant effect on the tertiary and quaternary structure of hemoglobin than glutathionylation, which mainly affects the secondary structure of the protein. The obtained data are important for understanding the functioning of glutathionylated hemoglobin, which is a marker of oxidative stress, and hemoglobin in complex with GSH, which appears to deposit GSH and release it during deoxygenation to increase the antioxidant protection of cells. Full article
(This article belongs to the Special Issue Best Materials of the VII Congress of Russian Biophysicists)
Show Figures

Graphical abstract

Back to TopTop