Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori
Abstract
:1. Introduction
2. Results
2.1. Overexpression and Purification of N-His-AdSS in Comparison to C-His-AdSS
2.2. Stability of N-His-AdSS in Comparison to C-His-AdSS and WT AdSS
2.3. Kinetic Properties of N-His-AdSS in Comparison to C-His-AdSS
2.4. Secondary Structure of N-His-AdSS in Comparison to C-His-AdSS
2.5. Crystal Structure of N-His-AdSS
3. Discussion
4. Materials and Methods
4.1. Purification of Enzymes
4.2. Electrophoretic Techniques
4.3. Enzyme Activity Assay
4.4. Determination of Enzyme Kinetic Constants
4.5. Dynamic Light Scattering (DLS) Measurements
4.6. Low-Volume Differential Scanning Fluorimetry (nanoDSF)
4.7. Analytical Ultracentrifugation Experiments (AUC)
4.8. Enzyme Secondary Structure by Circular Dichroism (CD)
4.9. Enzyme Crystallization, Data Collection, and 3D Structure Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, M.; Hou, Z.; Liu, L.; Xuan, Y.; Chen, X.; Fan, L.; Li, Z.; Xu, B. Progress, applications, challenges and prospects of protein purification technology. Front. Bioeng. Biotechnol. 2022, 10, 1028691. [Google Scholar] [CrossRef]
- Ki, M.-R.; Pil Pack, S. Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 2020, 104, 2411–2425. [Google Scholar] [CrossRef]
- Remans, K.; Lebendiker, M.; Abreu, C.; Maffei, M.; Sellathurai, S.; May, M.M.; Vaněk, O.; de Marco, A. Protein purification strategies must consider downstream applications and individual biological characteristics. Microb. Cell Factories 2022, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Hochuli, E.; Bannwarth, W.; Dobeli, H.; Gentz, R.; Stuber, D. Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. Nat. Biotechnol. 1988, 6, 1321–1325. [Google Scholar] [CrossRef]
- Gaberc-Porekar, V.; Menart, V. Potential for using histidine tags in purification of proteins at large scale. Chem. Eng. Technol. 2005, 28, 1306–1314. [Google Scholar] [CrossRef]
- Falke, J.J.; Corbin, J.A. Affinity tags for protein purification. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Daniel Lane, M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 61–65. ISBN 9780123786319. [Google Scholar] [CrossRef]
- Kosobokova, E.N.; Skrypnik, K.A.; Kosorukov, V.S. Overview of fusion tags for recombinant proteins. Biochem. Mosc. 2016, 81, 187–200. [Google Scholar] [CrossRef]
- Gaberc-Porekar, V.; Menart, V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 2001, 49, 335–360. [Google Scholar] [CrossRef] [PubMed]
- Booth, W.T.; Schlachter, C.R.; Pote, S.; Ussin, N.; Mank, N.J.; Klapper, V.; Offermann, L.R.; Tang, C.; Hurlburt, B.K.; Chruszcz, M. Impact of an N-terminal polyhistidine tag on protein thermal stability. ACS Omega 2018, 3, 760–768. [Google Scholar] [CrossRef]
- Ledent, P.; Duez, C.; Vanhove, M.; Lejeune, A.; Fonzé, E.; Charlier, P.; Rhazi-Filali, F.; Thamm, I.; Guillaume, G.; Samyn, B.; et al. Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett. 1997, 413, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Marques de Almeida, J.; Rotuno Moure, V.; Müller-Santos, M.; Maltempi de Souza, E.; Oliveira Pedrosa, F.; Mitchell, D.A.; Kriegerde, N. Tailoring recombinant lipases: Keeping the His-tag favors esterification reactions, removing it favors hydrolysis reactions. Sci. Rep. 2018, 8, 10000. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Camargo, M.C.; El-Omar, E.; Liou, J.-M.; Peek, R.; Schulz, C.; Smith, S.I.; Suerbaum, S. Helicobacter pylori infection. Nat. Rev. Dis. Primers 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Hadzhiyski, P.; Gergova, R.; Markovska, R. Evolution of Helicobacter pylori resistance to antibiotics: A topic of increasing concern. Antibiotics 2023, 12, 332. [Google Scholar] [CrossRef] [PubMed]
- Srisuphanunt, M.; Wilairatana, P.; Kooltheat, N.; Duangchan, T.; Katzenmeier, G.; Rose, J.B. Molecular mechanisms of antibiotic resistance and novel treatment strategies for Helicobacter pylori infections. Trop. Med. Infect. Dis. 2023, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.M.; Fraser, J.A. Surveying purine biosynthesis across the domains of life unveils promising drug targets in pathogens. Immunol. Cell Biol. 2020, 98, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Liechti, G.; Goldberg, J.B. Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J. Bacteriol. 2012, 194, 839–854. [Google Scholar] [CrossRef] [PubMed]
- Bubić, A.; Mrnjavac, N.; Stuparević, I.; Łyczek, M.; Wielgus-Kutrowska, B.; Bzowska, A.; Luić, M.; Leščić Ašler, I. In the quest for new targets for pathogen eradication: The adenylosuccinate synthetase from the bacterium Helicobacter pylori. J. Enzym. Inhib. Med. Chem. 2018, 33, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Bubić, A.; Narczyk, M.; Petek, A.; Wojtyś, M.I.; Maksymiuk, W.; Wielgus-Kutrowska, B.; Winiewska-Szajewska, M.; Pavkov-Keller, T.; Bertoša, B.; Štefanić, Z.; et al. The pursuit of new alternative ways to eradicate Helicobacter pylori continues: Detailed characterization of interactions in the adenylosuccinate synthetase active site. Int. J. Biol. Macromol. 2023, 226, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Honzatko, R.B.; Stayton, M.M.; Fromm, H.J. Adenylosuccinate synthetase: Recent developments. Adv. Enzymol. Relat. Areas Mol. Biol. 1999, 73, 57–102. [Google Scholar] [PubMed]
- Ortega, A.; Amoros, D.; García de la Torre, J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic and residue-level models. Biophys. J. 2011, 101, 892–898. [Google Scholar] [CrossRef]
- Schuck, P.; Zhao, H.; Brautigam, C.A.; Ghirlando, R. Basic Principles of Analytical Ultracentrifugation; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.; Murvai, N.; Lee, Y.-H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; et al. BeStSel: Webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 2022, 50W1, W90–W98. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2005, 372, 774–797. [Google Scholar] [CrossRef]
- Wang, W.; Gorrell, A.; Honzatko, R.; Fromm, H.J. A study of Escherichia coli adenylosuccinate synthetase association states and the interface residues of the homodimer. J. Biol. Chem. 1997, 272, 7078–7084. [Google Scholar] [CrossRef]
- Jayalakshmi, R.; Sumathy, K.; Balaram, H. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. Protein Expr. Purif. 2002, 25, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-F.; Feng, L.; Hou, Y.-J.; Liu, W. The expression, purification and crystallization of a ubiquitin-conjugating enzyme E2 from Agrocybe aegerita underscore the impact of His-tag location on recombinant protein properties. Acta Crystallogr. 2013, F69, 153–157. [Google Scholar] [CrossRef]
- Parshin, P.D.; Pometun, A.A.; Martysuk, U.A.; Kleymenov, S.Y.; Atroshenko, D.L.; Pometun, E.V.; Savin, S.S.; Tishkov, V.I. Effect of His6-tag position on the expression and properties of phenylacetone monooxygenase from Thermobifida fusca. Biochem. Mosc. 2020, 85, 575–582. [Google Scholar] [CrossRef]
- Mahler, H.C.; Friess, W.; Grauschopf, U.; Kiese, S. Protein aggregation: Pathways, induction factors and analysis. J. Pharm. Sci. 2009, 98, 2909–2934. [Google Scholar] [CrossRef]
- Khodabandehloo, A.; Da Yong Chen, D. Particle sizing methods for the detection of protein aggregates in biopharmaceuticals. Bioanalysis 2017, 9, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Stayton, M.M.; Rudolph, F.B.; Fromm, H.J. Regulation, genetics, and properties of adenylosuccinate synthetase: A review. Curr. Top. Cell. Regul. 1983, 22, 103–141. [Google Scholar] [CrossRef]
- Dalziel, K. Physical significance of Michaelis constants. Nature 1962, 196, 1203–1205. [Google Scholar] [CrossRef]
- Given, F.M.; Moran, F.; Johns, A.S.; Titterington, J.A.; Allison, T.M.; Crittendena, D.L.; Johnston, J.M. The structure of His-tagged Geobacillus stearothermophilus purine nucleoside phosphorylase reveals a ‘spanner in the works’. Acta Cryst. 2022, F78, 416–422. [Google Scholar] [CrossRef]
- Soans, C.; Fromm, H.J. Studies of ligand binding to Escherichia coli adenylosuccinate synthetase. Arch. Biochem. Biophys. 1991, 291, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Blundell, R.D.; Williams, S.J.; Arras, S.D.M.; Chitty, J.L.; Blake, K.L.; Ericsson, D.J.; Tibrewal, N.; Rohr, J.; Koh, Y.Q.A.E.; Kappler, U.; et al. Disruption of de novo adenosine triphosphate (ATP) biosynthesis abolishes virulence in Cryptococcus neoformans. ACS Infect. Dis. 2016, 2, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, F.B.; Fromm, H.J. Initial rate studies of adenylosuccinate synthetase with product and competitive inhibitors. J. Biol. Chem. 1969, 244, 3832–3839. [Google Scholar] [CrossRef] [PubMed]
- Britton, H.T.K.; Robinson, R.A. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1931, 1456–1462. [Google Scholar] [CrossRef]
- Hayes, D.; Laue, T.; Philo, J. Program SEDNTERP: Sedimentation Interpretation Program; Alliance Protein Laboratories: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000, 78, 1606–1619. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. XDS. Acta Crystallogr. 2010, D66, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Vagin, A.; Teplyakov, A. MOLREP: An Automated Program for Molecular Replacement. J. Appl. Cryst. 1997, 30, 1022–1025. [Google Scholar] [CrossRef]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. 2019, D75, 861–877. [Google Scholar] [CrossRef]
Enzyme Variant | N-His-AdSS | C-His-AdSS | WT AdSS |
---|---|---|---|
Addition to the sequence | MGSSHHHHHHSSGLVPRGSH- | -LEHHHHHH | - |
Number of residues | 431 | 419 | 411 |
Molecular weight (MW) | 47,906.04 | 46,807.84 | 45,742.72 |
Isoelectric point (pI) | 7.94 | 7.22 | 7.53 |
Extinction coefficient (M−1 cm−1, at 280 nm) | 38,850 | 38,850 | 38,850 |
Instability index | 28.66 | 28.02 | 28.55 |
NaCl (mM) | Protein Concentration Range (µM) | WT AdSS | C-His-AdSS | N-His-AdSS | |||
---|---|---|---|---|---|---|---|
Tm (°C) | Tturbidity (°C) | Tm (°C) | Tturbidity (°C) | Tm (°C) | Tturbidity (°C) | ||
0 | 1–3 | 39.2 ± 1.6 | 36.2 ± 2.8 | 32.0 ± 0.7 | 30.9 ± 0.7 | 33.1 ± 1.1 | 29.9 ± 1.4 |
0 | 8–10 | 40.9 ± 1.7 | 35.8 ± 1.6 | 36.0 ± 0.3 | 31.1 ± 0.7 | 38.9 ± 1.6 | 27.5 ± 1.6 |
150 | 1–20 | 48.7 ± 0.2 | 42.0 ± 1.6 | 46.9 ± 0.3 | 42.4 ± 1.3 | 47.1 ± 0.5 | 39.9 ± 2.3 |
300 | 1–20 | 50.7 ± 0.2 | 43.3 ± 3.0 | 49.0 ± 0.2 | 44.8 ± 2.0 | 49.3 ± 0.4 | 43.2 ± 1.6 |
NaCl (mM) | Protein (µM) | WT AdSS | C-His-AdSS | N-His-AdSS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
s20,w a (S) | MW b (kDa) | c(s) | s20,w a (S) | MW b (kDa) | c(s) | s20,w a (S) | MW b (kDa) | c(s) | ||
0 | 1.30–1.53 | 3.79 | 41.4 | 0.07 | 3.78 | 42.5 | 0.15 | ---- | ---- | ---- |
5.53 | 73.0 | 0.33 | 5.80 | 80.8 | 0.24 | 5.70 | 94.6 | 0.13 | ||
150 | 1.30–1.53 | 4.08 | 42.3 | 0.30 | 3.92 | 31.2 | 0.09 | ---- | ---- | ---- |
---- | ---- | ---- | ---- | ---- | ---- | 5.54 | 88.4 | 0.15 | ||
0 | 2.73–5.98 | 3.88 | 42.2 | 0.06 | 3.94 | 36.9 | 0.30 | 3.82 | 40.2 | 0.05 |
5.70 | 75.2 | 0.67 | 5.55 | 61.6 | 0.60 | 5.73 | 73.7 | 0.31 | ||
150 | 2.73–5.98 | 3.94 | 43.2 | 0.19 | 4.10 | 70.6 | 0.63 | 3.54 | 36.6 | 0.01 |
5.32 | 67.7 | 0.74 | ---- | ---- | ---- | 5.97 | 79.9 | 0.51 |
Variable Substrate | Km (µM) | Vmax (U/mg) | |
---|---|---|---|
N-His-AdSS | Asp | 90.1 ± 13.0 | 0.331 ± 0.014 |
IMP | 21.7 ± 2.4 | 0.421 ± 0.014 | |
GTP | 11.9 ± 1.3 | 0.391 ± 0.011 | |
C-His-AdSS | Asp | 176.3 ± 18.9 | 0.894 ± 0.030 |
IMP | 35.9 ± 4.6 | 0.956 ± 0.040 | |
GTP | 15.6 ± 1.9 | 1.103 ± 0.040 | |
WT AdSS | Asp | 125.4 ± 7.7 | 1.103 ± 0.016 |
IMP | 40.1 ± 2.9 | 1.456 ± 0.036 | |
GTP | 8.7 ± 0.6 | 1.418 ± 0.023 |
Secondary Structure Element/% | Protein Variant | ||
---|---|---|---|
WT AdSS | C-His-AdSS | N-His-AdSS | |
α-helix | 25.4 | 27.0 | 26.4 |
β-strand—antiparallel | 16.6 | 11.7 | 14.5 |
β-strand—parallel | 9.3 | 7.1 | 8.0 |
Turn | 9.9 | 10.4 | 11.7 |
Other | 38.9 | 43.7 | 39.4 |
N-His-AdSS | |
---|---|
Wavelength (Å) | 1.0 |
Resolution range (Å) | 44.12–1.7 (1.761–1.7) † |
Space group | P21 |
Unit cell (Å) | 69.15 122.7 70.15 90 113.355 90 |
Total reflections | 763,453 (73,588) |
Unique reflections | 117,404 (11,577) |
Multiplicity | 6.5 (6.4) |
Completeness (%) | 99.70 (98.59) |
Mean I/sigma (I) | 13.26 (1.14) |
Wilson B-factor | 24.46 |
Rmerge | 0.09438 (1.654) |
Rmeas | 0.1027 (1.803) |
Rpim | 0.04001 (0.7073) |
CC1/2 | 0.999 (0.585) |
CC* | 1 (0.859) |
Reflections used in refinement | 117,305 (11,551) |
Reflections used for Rfree | 5721 (550) |
Rwork | 0.1777 (0.3225) |
Rfree | 0.2093 (0.3590) |
CC (work) | 0.971 (0.774) |
CC (free) | 0.959 (0.710) |
Number of non-hydrogen atoms | 7460 |
Macromolecules | 6498 |
Ligands | 127 |
Solvent | 835 |
Protein residues | 826 |
RMS (bonds) | 0.010 |
RMS (angles) | 1.03 |
Ramachandran favored (%) | 97.08 |
Ramachandran allowed (%) | 2.55 |
Ramachandran outliers (%) | 0.36 |
Rotamer outliers (%) | 0.71 |
Clashscore | 4.83 |
Average B-factor | 32.73 |
Macromolecules | 31.69 |
Ligands | 35.87 |
Solvent | 40.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mišković, M.Z.; Wojtyś, M.; Winiewska-Szajewska, M.; Wielgus-Kutrowska, B.; Matković, M.; Domazet Jurašin, D.; Štefanić, Z.; Bzowska, A.; Leščić Ašler, I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. Int. J. Mol. Sci. 2024, 25, 7613. https://doi.org/10.3390/ijms25147613
Mišković MZ, Wojtyś M, Winiewska-Szajewska M, Wielgus-Kutrowska B, Matković M, Domazet Jurašin D, Štefanić Z, Bzowska A, Leščić Ašler I. Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori. International Journal of Molecular Sciences. 2024; 25(14):7613. https://doi.org/10.3390/ijms25147613
Chicago/Turabian StyleMišković, Marija Zora, Marta Wojtyś, Maria Winiewska-Szajewska, Beata Wielgus-Kutrowska, Marija Matković, Darija Domazet Jurašin, Zoran Štefanić, Agnieszka Bzowska, and Ivana Leščić Ašler. 2024. "Location Is Everything: Influence of His-Tag Fusion Site on Properties of Adenylosuccinate Synthetase from Helicobacter pylori" International Journal of Molecular Sciences 25, no. 14: 7613. https://doi.org/10.3390/ijms25147613