Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = differential drive kinematics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1100 KB  
Article
Generalized Kinematic Modeling of Wheeled Mobile Robots: A Unified Framework for Heterogeneous Architectures
by Jesús Said Pantoja-García, Alejandro Rodríguez-Molina, Miguel Gabriel Villarreal-Cervantes, Andrés Abraham Palma-Huerta, Mario Aldape-Pérez and Jacobo Sandoval-Gutiérrez
Mathematics 2026, 14(3), 415; https://doi.org/10.3390/math14030415 - 25 Jan 2026
Viewed by 126
Abstract
The increasing heterogeneity of wheeled mobile robot (WMR) architectures, including differential-drive, Ackermann, omnidirectional, and reconfigurable platforms, poses a major challenge for defining a unified, scalable kinematic representation. Most existing formulations are tailored to specific mechanical layouts, limiting analytical coherence, cross-platform interoperability, and the [...] Read more.
The increasing heterogeneity of wheeled mobile robot (WMR) architectures, including differential-drive, Ackermann, omnidirectional, and reconfigurable platforms, poses a major challenge for defining a unified, scalable kinematic representation. Most existing formulations are tailored to specific mechanical layouts, limiting analytical coherence, cross-platform interoperability, and the systematic reuse of modeling, odometry, and motion-related algorithms. This work introduces a generalized kinematic modeling framework that provides a mathematically consistent formulation applicable to arbitrary WMR configurations. Wheel–ground velocity relationships and non-holonomic constraints are expressed through a concise vector formulation that maps wheel motions to chassis velocities, ensuring consistency with established models while remaining independent of the underlying mechanical structure. A parameterized wheel descriptor encodes all relevant geometric and kinematic properties, enabling the modular assembly of complete robot models by aggregating wheel-level relations. The framework is evaluated through numerical simulations on four structurally distinct platforms: differential-drive, Ackermann, three-wheel omnidirectional (3,0), and 4WD. Results show that the proposed formulation accurately reproduces the expected kinematic behavior across these fundamentally different architectures and provides a coherent and consistent representation of their motion. The unified representation further provides a common kinematic backbone that is directly compatible with odometry, motion-control, and simulation pipelines, facilitating the systematic retargeting of algorithms across heterogeneous robot platforms without architecture-specific reformulation. Additional simulation studies under realistic physics-based conditions show that the proposed formulation preserves coherent kinematic behavior during complex trajectory execution and supports the explicit incorporation of geometric imperfections, such as wheel mounting misalignments, when such parameters are available. By consolidating traditionally separate derivations into a single coherent formulation, this work establishes a rigorous, scalable, and architecture-agnostic foundation for unified kinematic modeling of wheeled mobile robots, with particular relevance for modular, reconfigurable, and cross-architecture robotic systems. Full article
(This article belongs to the Special Issue Mathematical Modelling and Applied Statistics)
18 pages, 9029 KB  
Article
Fuel Dilution in Hybrid Engine Oils: Correlation Between Viscosity Loss and FTIR Spectral Shifts in Modern Combustion Systems
by Artur Wolak and Grzegorz Zając
Energies 2026, 19(1), 50; https://doi.org/10.3390/en19010050 - 22 Dec 2025
Viewed by 588
Abstract
This study investigates fuel-induced oil dilution in hybrid powertrains using a combined assessment of kinematic viscosity and FTIR differential spectroscopy. Ten oil samples collected from hybrid vehicles operating under diverse real-world driving patterns were examined to determine how hybrid-specific operating conditions—such as frequent [...] Read more.
This study investigates fuel-induced oil dilution in hybrid powertrains using a combined assessment of kinematic viscosity and FTIR differential spectroscopy. Ten oil samples collected from hybrid vehicles operating under diverse real-world driving patterns were examined to determine how hybrid-specific operating conditions—such as frequent cold starts, extended start–stop phases and short, thermally unstable trips—influence lubricant ageing and, consequently, the energy efficiency of the combustion subsystem. In eight of the ten cases, a clear reduction in kinematic viscosity was observed, indicating the presence of volatile fuel fractions and confirming that fuel dilution is a dominant mechanism shaping the early stages of oil degradation in hybrid engines. FTIR analysis consistently revealed spectral shifts related to oxidation, nitration, sulfonation and additive depletion, together with hydrocarbon enrichment characteristic of fuel contamination. The co-occurrence of viscosity loss and FTIR band evolution demonstrates a strong and reproducible relationship between mechanical thinning of the lubricant and chemically driven transformation pathways, both of which can negatively affect frictional losses and energetic performance. Paper-based blot testing was used only as a supplementary qualitative tool and provided visual confirmation for samples exhibiting the strongest fuel-related FTIR signatures and viscosity changes. Although not mechanistically specific, the method reinforced the laboratory findings in cases of pronounced degradation. Overall, the results highlight the diagnostic value of combining viscosity data with FTIR spectral analysis to characterise fuel dilution and associated ageing mechanisms in hybrid combustion systems. This study contributes to a more comprehensive understanding of lubricant deterioration under real hybrid driving conditions and supports the development of practical monitoring strategies aimed at safeguarding both engine durability and the energy efficiency of hybrid powertrains. Full article
(This article belongs to the Special Issue Combustion Systems for Advanced Engines)
Show Figures

Figure 1

25 pages, 3724 KB  
Article
Research on Trajectory Tracking Control Method for Wheeled Robots Based on Seabed Soft Slopes on GPSO-MPC
by Dewei Li, Zizhong Zheng, Zhongjun Ding, Jichao Yang and Lei Yang
Sensors 2025, 25(16), 4882; https://doi.org/10.3390/s25164882 - 8 Aug 2025
Viewed by 1107
Abstract
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from [...] Read more.
With advances in underwater exploration and intelligent ocean technologies, wheeled underwater mobile robots are increasingly used for seabed surveying, engineering, and environmental monitoring. However, complex terrains centered on seabed soft slopes—characterized by wheel slippage due to soil deformability and force imbalance arising from slope variations—pose challenges to the accuracy and robustness of trajectory tracking control systems. Model predictive control (MPC), known for predictive optimization and constraint handling, is commonly used in such tasks. Yet, its performance relies on manually tuned parameters and lacks adaptability to dynamic changes. This study introduces a hybrid grey wolf-particle swarm optimization (GPSO) algorithm, combining the exploratory ability of a grey wolf optimizer with the rapid convergence of particle swarm optimization. The GPSO algorithm adaptively tunes MPC parameters online to improve control. A kinematic model of a four-wheeled differential-drive robot is developed, and an MPC controller using error-state linearization is implemented. GPSO integrates hierarchical leadership and chaotic disturbance strategies to enhance global search and local convergence. Simulation experiments on circular and double-lane-change trajectories show that GPSO-MPC outperforms standard MPC and PSO-MPC in tracking accuracy, heading stability, and control smoothness. The results confirm the improved adaptability and robustness of the proposed method, supporting its effectiveness in dynamic underwater environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 7016 KB  
Article
Design, Analysis and Control of Tracked Mobile Robot with Passive Suspension on Rugged Terrain
by Junfeng Gao, Yi Li, Jingfu Jin, Zhicheng Jia and Chao Wei
Actuators 2025, 14(8), 389; https://doi.org/10.3390/act14080389 - 6 Aug 2025
Viewed by 2225
Abstract
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a [...] Read more.
With the application of tracked mobile robots in detection and rescue, how to improve their stability and trafficability has become the research focus. In order to improve the driving ability and trafficability of tracked mobile robots in rugged terrain, this paper proposes a new type of tracked mobile robot using passive suspension. By adding a connecting rod differential mechanism between the left and right track mechanisms, the contact stability between the track and terrain is enhanced. The kinematics model and attitude relationship of the suspension are analyzed and established, and the rationality of the passive suspension scheme is verified by dynamic simulation. The simulation results show that the tracked robot with passive suspension shows good obstacle surmounting performance, but there will be a heading deflection problem. Therefore, a track drive speed of the driving state compensation control is proposed based on the driving scene, which can effectively solve the problem of slip and heading deflection. Through the field test of the robot prototype, the effectiveness of the suspension scheme and control system is verified, which provides a useful reference for the scheme design and performance improvement of the tracked mobile robot in complex field scenes. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

33 pages, 4686 KB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 825
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

19 pages, 1583 KB  
Article
Modeling, Validation, and Controllability Degradation Analysis of a 2(P-(2PRU–PRPR)-2R) Hybrid Parallel Mechanism Using Co-Simulation
by Qing Gu, Zeqi Wu, Yongquan Li, Huo Tao, Boyu Li and Wen Li
Dynamics 2025, 5(3), 30; https://doi.org/10.3390/dynamics5030030 - 11 Jul 2025
Viewed by 680
Abstract
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the [...] Read more.
This work systematically addresses the dual challenges of non-inertial dynamic coupling and kinematic constraint redundancy encountered in dynamic modeling of serial–parallel–serial hybrid robotic mechanisms, and proposes an improved Newton–Euler modeling method with constraint compensation. Taking the Skiing Simulation Platform with 6-DOF as the research mechanism, the inverse kinematic model of the closed-chain mechanism is established through GF set theory, with explicit analytical expressions derived for the motion parameters of limb mass centers. Introducing a principal inertial coordinate system into the dynamics equations, a recursive algorithm incorporating force/moment coupling terms is developed. Numerical simulations reveal a 9.25% periodic deviation in joint moments using conventional methods. Through analysis of the mechanism’s intrinsic properties, it is identified that the lack of angular momentum conservation constraints on the end-effector in non-inertial frames leads to system controllability degradation. Accordingly, a constraint compensation strategy is proposed: establishing linearly independent differential algebraic equations supplemented with momentum/angular momentum balance equations for the end platform. Co-Simulation results demonstrate that the optimized model reduces the maximum relative error of actuator joint moments to 0.98%, and maintains numerical stability across the entire configuration space. The constraint compensation framework provides a universal solution for dynamics modeling of complex closed-chain mechanisms, validated through applications in flight simulators and automotive driving simulators. Full article
Show Figures

Figure 1

50 pages, 23293 KB  
Article
Optimal Dimensional Synthesis of Ackermann and Watt-I Six-Bar Steering Mechanisms for Two-Axle Four-Wheeled Vehicles
by Yaw-Hong Kang, Da-Chen Pang and Dong-Han Zheng
Machines 2025, 13(7), 589; https://doi.org/10.3390/machines13070589 - 7 Jul 2025
Viewed by 1353
Abstract
This study investigates the dimensional synthesis of steering mechanisms for front-wheel-drive, two-axle, four-wheeled vehicles using two metaheuristic optimization algorithms: Differential Evolution with golden ratio (DE-gr) and Improved Particle Swarm Optimization (IPSO). The vehicle under consideration has a track-to-wheelbase ratio of 0.5 and an [...] Read more.
This study investigates the dimensional synthesis of steering mechanisms for front-wheel-drive, two-axle, four-wheeled vehicles using two metaheuristic optimization algorithms: Differential Evolution with golden ratio (DE-gr) and Improved Particle Swarm Optimization (IPSO). The vehicle under consideration has a track-to-wheelbase ratio of 0.5 and an inner wheel steering angle of 70 degrees. The mechanisms synthesized include the Ackermann steering mechanism and two variants (Type I and Type II) of the Watt-I six-bar steering mechanisms, also known as central-lever steering mechanisms. To ensure accurate steering and minimize tire wear during cornering, adherence to the Ackermann steering condition is enforced. The objective function combines the mean squared structural error at selected steering positions with a penalty term for violations of the Grashoff inequality constraint. Each optimization run involved 100 or 200 iterations, with numerical experiments repeated 100 times to ensure robustness. Kinematic simulations were conducted in ADAMS v2015 to visualize and validate the synthesized mechanisms. Performance was evaluated based on maximum structural error (steering accuracy) and mechanical advantage (transmission efficiency). The results indicate that the optimized Watt-I six-bar steering mechanisms outperform the Ackermann mechanism in terms of steering accuracy. Among the Watt-I variants, the Type II designs demonstrated superior performance and convergence precision compared to the Type I designs, as well as improved results compared to prior studies. Additionally, the optimal Type I-2 and Type II-2 mechanisms consist of two symmetric Grashof mechanisms, can be classified as non-Ackermann-like steering mechanisms. Both optimization methods proved easy to implement and showed reliable, efficient convergence. The DE-gr algorithm exhibited slightly superior overall performance, achieving optimal solutions in seven cases compared to four for the IPSO method. Full article
(This article belongs to the Special Issue The Kinematics and Dynamics of Mechanisms and Robots)
Show Figures

Figure 1

20 pages, 2791 KB  
Article
Assessment of Affordable Real-Time PPP Solutions for Transportation Applications
by Mohamed Abdelazeem, Amgad Abazeed, Abdulmajeed Alsultan and Amr M. Wahaballa
Algorithms 2025, 18(7), 390; https://doi.org/10.3390/a18070390 - 26 Jun 2025
Cited by 1 | Viewed by 1097
Abstract
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time [...] Read more.
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time kinematic (RTK), and PPP-RTK solutions in both post-processing and real-time modes; however, these receivers are costly. Therefore, this research aims to assess the accuracy of a cost-effective multi-GNSS real-time PPP solution for transportation applications. For this purpose, the U-blox ZED-F9P module is utilized to collect dual-frequency multi-GNSS observations through a moving vehicle in a suburban area in New Aswan City, Egypt; thereafter, datasets involving different multi-GNSS combination scenarios are processed, including GPS, GPS/GLONASS, GPS/Galileo, and GPS/GLONASS/Galileo, using both RT-PPP and RTK solutions. For the RT-PPP solution, the satellite clock and orbit correction products from Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales (CNES), and the GNSS research center of Wuhan University (WHU) are applied to account for the real-time mode. Moreover, GNSS datasets from two geodetic-grade Trimble R4s receivers are collected; hence, the datasets are processed using the traditional kinematic differential solution to provide a reference solution. The results indicate that this cost-effective multi-GNSS RT-PPP solution can attain positioning accuracy within 1–3 dm, and is thus suitable for a variety of transportation applications, including intelligent transportation system (ITS), self-driving cars, and automobile navigation applications. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

24 pages, 2020 KB  
Article
Optimization of Smooth Trajectories for Two-Wheel Differential Robots Under Kinematic Constraints Using Clothoid Curves
by Wei Zeng, Tifan Xiong and Chao Wang
Sensors 2025, 25(10), 3143; https://doi.org/10.3390/s25103143 - 15 May 2025
Cited by 1 | Viewed by 1210
Abstract
Navigation is a fundamental technology for mobile robots. However, many trajectory planning methods suffer from curvature discontinuities, leading to instability during robot operation. To address this challenge, this paper proposes a navigation scheme that adheres to the kinematic constraints of a two-wheeled differential-drive [...] Read more.
Navigation is a fundamental technology for mobile robots. However, many trajectory planning methods suffer from curvature discontinuities, leading to instability during robot operation. To address this challenge, this paper proposes a navigation scheme that adheres to the kinematic constraints of a two-wheeled differential-drive robot. An improved and efficient RRT algorithm is employed for global navigation, while an adaptive clothoid curve is utilized for local trajectory smoothing. Simulation results demonstrate that the proposed method effectively eliminates curvature discontinuities and enhances operational efficiency. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

19 pages, 2433 KB  
Article
Design and Analysis of an MPC-PID-Based Double-Loop Trajectory Tracking Algorithm for Intelligent Sweeping Vehicles
by Zhijun Guo, Mingtian Pang, Shiwen Ye and Yangyang Geng
World Electr. Veh. J. 2025, 16(5), 251; https://doi.org/10.3390/wevj16050251 - 28 Apr 2025
Cited by 1 | Viewed by 1119
Abstract
To enhance the precision and real-time performance of trajectory tracking control in differential-steering intelligent sweeping robots and to improve the adaptability of the control algorithm to errors caused by sensor noise, tire slip, and skid, an MPC-PID (Model Predictive Control–Proportional-Integral-Derivative) dual closed-loop control [...] Read more.
To enhance the precision and real-time performance of trajectory tracking control in differential-steering intelligent sweeping robots and to improve the adaptability of the control algorithm to errors caused by sensor noise, tire slip, and skid, an MPC-PID (Model Predictive Control–Proportional-Integral-Derivative) dual closed-loop control strategy was proposed. This strategy integrates a Kalman filter-based state estimator and a sliding compensation module. Based on the kinematic model of the intelligent sweeping robot, a model predictive controller (MPC) was designed to regulate the vehicle’s pose, while a PID controller was used to adjust the longitudinal speed, forming a dual closed-loop control algorithm. A Kalman filter was employed for state estimation, and a sliding compensation module was introduced to mitigate wheel slip and lateral drift, thereby improving the stability of the control system. Simulation results demonstrated that, compared to traditional MPC control, the maximum lateral deviation, maximum heading angle deviation, and speed response time were reduced by 50.83%, 53.65%, and 7.10%, respectively, during sweeping operations. In normal driving conditions, these parameters were improved by 41.58%, 45.54%, and 24.17%, respectively. Experimental validation on an intelligent sweeper platform demonstrates that the proposed algorithm achieves a 16.48% reduction in maximum lateral deviation and 9.52% faster speed response time compared to traditional MPC, effectively validating its enhanced tracking effectiveness in intelligent cleaning operations. Full article
Show Figures

Figure 1

17 pages, 9345 KB  
Article
Iterative Learning Control Design for a Class of Mobile Robots
by Dominik Zaborniak, Piotr Balik, Kacper Woźniak, Bartłomiej Sulikowski and Marcin Witczak
Electronics 2025, 14(3), 531; https://doi.org/10.3390/electronics14030531 - 28 Jan 2025
Cited by 1 | Viewed by 2132
Abstract
The paper presents the design of iterative learning control for a class of mobile robots. This control strategy allows driving the considered system, which executes the same control task in trials, to the predefined reference within the consecutive iterations by improving the control [...] Read more.
The paper presents the design of iterative learning control for a class of mobile robots. This control strategy allows driving the considered system, which executes the same control task in trials, to the predefined reference within the consecutive iterations by improving the control signal gradually. The control problem being stated concerns a mobile robot, and hence, its kinematic model is presented. The considered model is nonlinear as it is related to the robot orientation angle. Thus, the linearization strategy is introduced by dividing the range of possible orientation angles to four quarters and then deriving a linear parameter-varying system. As a distinct research topic, the feasible/optimal number selection of polytope vertices of each LPV submodel are considered. Next, for the resulting bank of models, the switched iterative control scheme is transformed into closed-loop differential linear repetitive processes. Subsequently, based on the fact that ensuring the so-called stability along the trial is equivalent to the convergence of the original model output to the predefined reference, an appropriate stabilization condition is applied in order to compute the feedback controller gains. The overall effectiveness and performance of the proposed methodology are evaluated through comprehensive simulation examples. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

33 pages, 14639 KB  
Article
Multi-Sensor Fusion for Wheel-Inertial-Visual Systems Using a Fuzzification-Assisted Iterated Error State Kalman Filter
by Guohao Huang, Haibin Huang, Yaning Zhai, Guohao Tang, Ling Zhang, Xingyu Gao, Yang Huang and Guoping Ge
Sensors 2024, 24(23), 7619; https://doi.org/10.3390/s24237619 - 28 Nov 2024
Cited by 6 | Viewed by 5471
Abstract
This paper investigates the odometry drift problem in differential-drive indoor mobile robots and proposes a multi-sensor fusion approach utilizing a Fuzzy Inference System (FIS) within a Wheel-Inertial-Visual Odometry (WIVO) framework to optimize the 6-DoF localization of the robot in unstructured scenes. The structure [...] Read more.
This paper investigates the odometry drift problem in differential-drive indoor mobile robots and proposes a multi-sensor fusion approach utilizing a Fuzzy Inference System (FIS) within a Wheel-Inertial-Visual Odometry (WIVO) framework to optimize the 6-DoF localization of the robot in unstructured scenes. The structure and principles of the multi-sensor fusion system are developed, incorporating an Iterated Error State Kalman Filter (IESKF) for enhanced accuracy. An FIS is integrated with the IESKF to address the limitations of traditional fixed covariance matrices in process and observation noise, which fail to adapt effectively to complex kinematic characteristics and visual observation challenges such as varying lighting conditions and unstructured scenes in dynamic environments. The fusion filter gains in FIS-IESKF are adaptively adjusted for noise predictions, optimizing the rule parameters of the fuzzy inference process. Experimental results demonstrate that the proposed method effectively enhances the localization accuracy and system robustness of differential-drive indoor mobile robots in dynamically changing movements and environments. Full article
Show Figures

Figure 1

13 pages, 5557 KB  
Article
Second-Order Terminal Sliding Mode Control for Trajectory Tracking of a Differential Drive Robot
by Tuan Ngoc Tran Cao, Binh Thanh Pham, No Tan Nguyen, Duc-Lung Vu and Nguyen-Vu Truong
Mathematics 2024, 12(17), 2657; https://doi.org/10.3390/math12172657 - 27 Aug 2024
Cited by 5 | Viewed by 2156
Abstract
This paper proposes a second-order terminal sliding mode (2TSM) approach to the trajectory tracking of the differential drive mobile robot (DDMR). Within this cascaded control scheme, the 2TSM dynamic controller, at the innermost loop, tracks the robot’s velocity quantities while a kinematic controller, [...] Read more.
This paper proposes a second-order terminal sliding mode (2TSM) approach to the trajectory tracking of the differential drive mobile robot (DDMR). Within this cascaded control scheme, the 2TSM dynamic controller, at the innermost loop, tracks the robot’s velocity quantities while a kinematic controller, at the outermost loop, regulates the robot’s positions. In this manner, chattering is greatly attenuated, and finite-time convergence is guaranteed by the second-order TSM manifold, which involves higher-order derivatives of the state variables, resulting in an inherently robust as well as fast and better tracking precision. The simulation results demonstrate the merit of the proposed control methods. Full article
(This article belongs to the Special Issue Modeling and Simulation in Engineering, 3rd Edition)
Show Figures

Figure 1

26 pages, 8740 KB  
Article
Optimal Control-Based Algorithm Design and Application for Trajectory Tracking of a Mobile Robot with Four Independently Steered and Four Independently Actuated Wheels
by Branimir Ćaran, Vladimir Milić, Marko Švaco and Bojan Jerbić
Actuators 2024, 13(8), 279; https://doi.org/10.3390/act13080279 - 25 Jul 2024
Cited by 3 | Viewed by 2544
Abstract
This paper deals with the synthesis and implementation of a controller for asymptotic tracking of the desired trajectory of a mobile robot. The mobile robot used for the experimental validation has eight motors with an inner control loop. Four steering actuators are controlled [...] Read more.
This paper deals with the synthesis and implementation of a controller for asymptotic tracking of the desired trajectory of a mobile robot. The mobile robot used for the experimental validation has eight motors with an inner control loop. Four steering actuators are controlled using position controllers and four driving actuators are controlled using velocity controllers. A complex robot kinematic model is converted into a control-oriented linear time-varying system, which is then used to design a time-varying control law that minimizes the quadratic optimality criterion. In contrast to conventional methodologies for solving the corresponding Riccati differential equations, a computational approach that explicitly determines the time-varying controller matrix by employing recurrent matrix computations is proposed. Mobile robot control inputs (linear velocity, steering angles and steering velocities) are forwarded to the steering and driving actuators with properly tuned position and velocity controllers using an inverse kinematic model of the mobile robot. The obtained control law is evaluated on an experimental set-up of a real mobile robot system. The controller is implemented using the Robot Operating System. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

19 pages, 4156 KB  
Article
Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation
by Luz M. Tobar-Subía-Contento, Anthony Mandow and Jesús M. Gómez-de-Gabriel
Machines 2024, 12(7), 455; https://doi.org/10.3390/machines12070455 - 4 Jul 2024
Cited by 1 | Viewed by 3738
Abstract
The rapid development of wearable technologies is increasing research interest in on-body robotics, where relocatable robots can serve as haptic interfaces, support healthcare measurements, or assist with daily activities. However, on-body mobile robotics poses challenges in aspects such as stable locomotion and control. [...] Read more.
The rapid development of wearable technologies is increasing research interest in on-body robotics, where relocatable robots can serve as haptic interfaces, support healthcare measurements, or assist with daily activities. However, on-body mobile robotics poses challenges in aspects such as stable locomotion and control. This article proposes a novel small robot design for moving on human limbs that consists of an open grasping mechanism with a spring linkage, where one side holds a pivoting differential drive base (PDDB) with two spherical rollers, and the other side holds an actuated roller for grasping and stabilization. The spherical rollers maintain contact at three points on the limb, optimizing stability with a minimal number of rollers and integrating DC motors within. The PDDB wheels (spherical rollers) enable directional changes on limb surfaces. The combination of the open mechanism, the PDDB, and the spherical rollers allows adaptability to diameter variations along the limb. Furthermore, the mechanism can be easily put on or removed at any point along the limb, eliminating the need to slip the robot over the hand or foot. The kinematic model for the proposed mechanism has been developed. A cascade control strategy is proposed with an outer loop for stable grasping and an inner loop for trajectory adjustments using PDDB roller velocities. An on-limb robot prototype has been built to test its applicability to human arms. Simulation and experimental results validate the design. Full article
(This article belongs to the Special Issue Design and Control of Advanced Mechatronics Systems, Volume II)
Show Figures

Figure 1

Back to TopTop