Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation
Abstract
:1. Introduction
- A new robot designed to move on human limbs featuring an open grasping mechanism with a spring linkage. One side has a pivoting differential drive base (PDDB) with two actuated spherical rollers, and the other side has an actuated roller for grasping and stabilization.
- The kinematic analysis of the proposed robot configuration estimates the circumcenter coordinate, the current limb radius, and the actual roller contact points from the joint angle measurements. These values are necessary for estimating the actual differential drive wheel distance for motion control.
- A cascade control system, combined with the passive spring linkage, allows for adaptation to varying limb diameters. The outer loop ensures stable grasping, while the inner loop adjusts the trajectory using PDDB roller velocities. A Lyapunov stability analysis is also provided.
2. On-Limb Mobile Robot Design
2.1. Design Overview
2.2. Grasp Model
2.3. Stability of Grasp and Alignment Error
3. Kinematics
3.1. Limb Radii and Differential Wheel Distance Estimation
3.2. Longitudinal Model
3.3. Heading Error
4. Control Strategy
4.1. Central Alignment Control
4.2. Heading Control
4.3. Velocity Control
4.4. Stability Analysis
5. Experiments and Results
5.1. Simulation Parameters
5.2. Boundary Proximity Condition
5.3. Simulation Results
5.3.1. Cascade Control Performance
5.3.2. Effect of Different Limb Sizes
5.3.3. Drift Compensation in Heading Estimation
5.4. 3D Visualization of Robot Locomotion
5.5. Link Length Design
5.6. Developed Prototype
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOF | Degrees of freedom |
PDDB | Pivoting differential drive base |
References
- Park, S.; Jayaraman, S. Wearables: Fundamentals, advancements, and a roadmap for the future. In Wearable Sensors, 2nd ed.; Academic Press: Oxford, UK, 2021; Chapter 1; pp. 3–27. [Google Scholar] [CrossRef]
- Shtarbanov, A.; Zhu, M.; Colonnese, N.; Hajiagha Memar, A. SleeveIO: Modular and Reconfigurable Platform for Multimodal Wearable Haptic Feedback Interactions. In Proceedings of the Annual ACM Symposium on User Interface Software and Technology, San Francisco, CA, USA, 29 October–1 November 2023. [Google Scholar] [CrossRef]
- Minaoglou, P.; Efkolidis, N.; Manavis, A.; Kyratsis, P. A Review on Wearable Product Design and Applications. Machines 2024, 12, 62. [Google Scholar] [CrossRef]
- Pons, J. Wearable Robots: Biomechatronic Exoskeletons; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Pitzalis, R.F.; Park, D.; Caldwell, D.G.; Berselli, G.; Ortiz, J. State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices. Machines 2024, 12, 21. [Google Scholar] [CrossRef]
- Chinello, F.; Malvezzi, M.; Pacchierotti, C.; Prattichizzo, D. Design and development of a 3RRS wearable fingertip cutaneous device. In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Busan, Republic of Korea, 7–11 July 2015; pp. 293–298. [Google Scholar] [CrossRef]
- Mete, M.; Paik, J. Closed-Loop Position Control of a Self-Sensing 3-DoF Origami Module With Pneumatic Actuators. IEEE Robot. Autom. Lett. 2021, 6, 8213–8220. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, J. Review of Research and Development of Supernumerary Robotic Limbs. IEEE CAA J. Autom. Sin. 2021, 8, 929–952. [Google Scholar] [CrossRef]
- Rahman, A.; Azim, M.A.R.; Heo, S. Take My Hand: Automated Hand-Based Spatial Guidance for the Visually Impaired. In Proceedings of the Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023. [Google Scholar] [CrossRef]
- Dementyev, A. Dynamic Wearable Technology: Designing and Deploying Small Climbing Robots for Sensing and Actuation on the Human Body. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2019. [Google Scholar]
- Dementyev, A.; Jitosho, R.; Paradiso, J.A. Mechanical imaging of soft tissues with miniature climbing robots. IEEE Trans. Biomed. Eng. 2021, 68, 3142–3150. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, J.; Zhou, Y.; Lv, Q.; Hu, C. Movement Control and Attitude Adjustment of Climbing Robot on Flexible Surfaces. IEEE Trans. Ind. Electron. 2018, 65, 2618–2628. [Google Scholar] [CrossRef]
- Dobbelstein, D.; Stemasov, E.; Besserer, D.; Stenske, I.; Rukzio, E. Movelet: A self-actuated movable bracelet for positional haptic feedback on the user’s forearm. In Proceedings of the ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018. [Google Scholar] [CrossRef]
- Sathya, A.; Li, J.; Rahman, T.; Gao, G.; Peng, H. Calico: Relocatable On-cloth Wearables with Fast, Reliable, and Precise Locomotion. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–32. [Google Scholar] [CrossRef]
- Kao, H.L.; Ajilo, D.; Anilionyte, O.; Dementyev, A.; Choi, I.; Follmer, S.; Schmandt, C. Exploring interactions and perceptions of kinetic wearables. In Proceedings of the Conference on Designing Interactive Systems, Edinburgh, UK, 10–14 June 2017; pp. 391–396. [Google Scholar] [CrossRef]
- Kimura, K.; Tanaka, F. Development of a Wearable Robot that Moves on the User’s Arm to Provide Calming Interactions. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Stockholm, Sweden, 13–16 March 2023; pp. 311–313. [Google Scholar] [CrossRef]
- Liu, F.; Patil, V.; Erickson, Z.; Temel, Z. Characterization of a Meso-Scale Wearable Robot for Bathing Assistance. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China, 5–9 December 2022; pp. 2146–2152. [Google Scholar] [CrossRef]
- Sikdar, S.; Rahman, M.H.; Siddaiah, A.; Menezes, P.L. Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. Robotics 2022, 11, 143. [Google Scholar] [CrossRef]
- Fang, G.; Cheng, J. Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review. Biomimetics 2023, 8, 47. [Google Scholar] [CrossRef]
- Jamšek, M.; Sajko, G.; Krpan, J.; Babič, J. Design and Control of a Climbing Robot for Autonomous Vertical Gardening. Machines 2024, 12, 141. [Google Scholar] [CrossRef]
- Dementyev, A.; Hernandez, J.; Choi, I.; Follmer, S.; Paradiso, J. Epidermal Robots: Wearable Sensors that Climb on the Skin. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–22. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Qian, H.; Zheng, D.; Sun, J.; Xu, Y. System and design of clothbot: A robot for flexible clothes climbing. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; pp. 1200–1205. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Fu, R.; Sun, J.; Wu, X.; Xu, Y. Rubbot: Rubbing on flexible loose surfaces. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2303–2308. [Google Scholar] [CrossRef]
- Dementyev, A.; Kao, C.H.L.; Choi, I.; Ajilo, D.; Xu, M.; Paradiso, J.; Schmandt, C.; Follmer, S. Rovables: Miniature On-Body Robots as Mobile Wearables. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 111–120. [Google Scholar] [CrossRef]
- Birkmeyer, P.; Gillies, A.G.; Fearing, R.S. CLASH: Climbing vertical loose cloth. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5087–5093. [Google Scholar] [CrossRef]
- Saga, T.; Munekata, N.; Ono, T. Daily support robots that move on me. In Proceedings of the SIGGRAPH Asia 2014 Emerging Technologies, Singapore, 28 November–1 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Kim, J.H.H.; Patil, S.D.; Matson, S.; Conroy, M.; Kao, C.H.L. KnitSkin: Machine-Knitted Scaled Skin for Locomotion. In Proceedings of the Conference on Human Factors in Computing Systems, Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar] [CrossRef]
- Liu, J.H.; Padrigalan, K.E. The kinematic analysis of a wind turbine climbing robot mechanism. Appl. Sci. 2022, 12, 1210. [Google Scholar] [CrossRef]
- Shah, D.; Dave, J.; Majithiya, A.; Patel, Y. Conceptual design and analysis of pipe climbing robot. J. Phys. Conf. Ser. 2021, 2115, 012004. [Google Scholar] [CrossRef]
- Li, J.; Huang, F.; Tu, C.; Tian, M.; Wang, X. Elastic Obstacle-Surmounting Pipeline-Climbing Robot with Composite Wheels. Machines 2022, 10, 874. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhang, B. Development and Experiment of Clamp Type Submarine Cable Inspection Robot. Machines 2023, 11, 627. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, W.; Fu, X.; Hazken, S.; Hu, X.; Chen, H.; Luo, J.; Ding, N. CCRobot-IV: An obstacle-free split-type quad-ducted propeller-driven bridge stay cable-climbing robot. IEEE Robot. Autom. Lett. 2021, 7, 11751–11758. [Google Scholar] [CrossRef]
- Wan, J.; Sun, L.; Du, T. Design and applications of soft actuators based on Digital Light Processing (DLP) 3D printing. IEEE Access 2023, 11, 86227–86242. [Google Scholar] [CrossRef]
- Mendoza, N.; Haghshenas-Jaryani, M. Combined Soft Grasping and Crawling Locomotor Robot for Exterior Navigation of Tubular Structures. Machines 2024, 12, 157. [Google Scholar] [CrossRef]
- Xie, D.; Liu, J.; Kang, R.; Zuo, S. Fully 3D-printed modular pipe-climbing robot. IEEE Robot. Autom. Lett. 2020, 6, 462–469. [Google Scholar] [CrossRef]
- Yuan, S.; Shao, L.; Yako, C.L.; Gruebele, A.; Salisbury, J.K. Design and control of roller grasper V2 for in-hand manipulation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 9151–9158. [Google Scholar] [CrossRef]
- Backus, S.B.; Dollar, A.M. An Adaptive Three-Fingered Prismatic Gripper with Passive Rotational Joints. IEEE Robot. Autom. Lett. 2016, 1, 668–675. [Google Scholar] [CrossRef]
- Tafrishi, S.A.; Svinin, M.; Yamamoto, M.; Hirata, Y. A geometric motion planning for a spin-rolling sphere on a plane. Appl. Math. Model. 2023, 121, 542–561. [Google Scholar] [CrossRef]
- Rimon, E.; Burdick, J. Towards planning with force constraints: On the mobility of bodies in contact. In Proceedings of the 1993 Proceedings IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 1, pp. 994–1000. [Google Scholar] [CrossRef]
- Poonwattanachai, K.; Niparnan, N.; Sudsang, A. Computation of Three-Finger Grasping Plane. In Proceedings of the 2018 22nd International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 21–24 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Schünke, M.; Schulte, E.; Schumacher, U.; Voll, M.; Wesker, K. LernAtlas der Anatomie; 2022. Available online: http://www.ciando.com/img/books/extract/3132420840_lp.pdf (accessed on 1 July 2024).
- Preedy, V.R. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Pastor, F.; Lin-Yang, D.H.; Gómez-de Gabriel, J.M.; García-Cerezo, A.J. Dataset with Tactile and Kinesthetic Information from a Human Forearm and Its Application to Deep Learning. Sensors 2022, 22, 8752. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruiz, F.J.; Urdiales, C.; Gómez-de Gabriel, J.M. Estimation of the Interaction Forces in a Compliant pHRI Gripper. Machines 2022, 10, 1128. [Google Scholar] [CrossRef]
Parameter | Symbol |
---|---|
Roller radii | |
Link length | , |
Distance between differential-drive wheel centers | |
Angle between and axis |
Variable Description | Symbol |
---|---|
Limb (cylinder) radius | |
Effective left and right roller radii | |
Effective grasping roller radius | |
Effective differential wheel distance (between differential-drive contact points) | |
Roller contact points | , , |
Circumcenter of the triangle defined by | C |
Length of the segment | |
Angle between segment and | |
Pivoting joint angle | |
Spring joint angle | |
Alignment error (Angle between segment and Y axis) |
Size | |||||||||
---|---|---|---|---|---|---|---|---|---|
(mm) | 40.00 | 44.00 | 48.00 | 40.00 | 44.00 | 48.00 | 40.00 | 44.00 | 48.00 |
(mm) | 22.00 | 22.00 | 22.00 | 24.00 | 24.00 | 24.00 | 28.00 | 28.00 | 28.00 |
(mm) | 42.00 | 42.00 | 42.00 | 44.00 | 44.00 | 44.00 | 50.00 | 50.00 | 50.00 |
(rad) | 0.4608 | 0.4604 | 0.4531 | 0.4888 | 0.4833 | 0.4811 | 0.5204 | 0.5170 | 0.5153 |
(mm) | 78.14 | 77.14 | 77.14 | 86.04 | 86.04 | 86.04 | 99.89 | 99.89 | 98.88 |
(s) | 7.90 | 7.80 | 7.80 | 8.70 | 8.70 | 8.70 | 10.10 | 10.10 | 10.10 |
(mm) | (mm) | (mm) |
---|---|---|
40.00 | 16.00 | 50.48 |
40.00 | 20.00 | 48.10 |
40.00 | 24.00 | 45.78 |
44.00 | 16.00 | 50.61 |
44.00 | 20.00 | 48.35 |
44.00 | 24.00 | 45.92 |
48.00 | 16.00 | 50.92 |
48.00 | 20.00 | 48.53 |
48.00 | 24.00 | 46.18 |
Parts | Weight |
---|---|
3 Wheels with motors | 78 |
Links and | 124 |
PDDB without motors | 16 |
Grasp wheel base | 9 |
Spring | 9 |
2 Brackets | 4 |
Mechanical and fastening components | 10 |
Total | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobar-Subía-Contento, L.M.; Mandow, A.; Gómez-de-Gabriel, J.M. Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation. Machines 2024, 12, 455. https://doi.org/10.3390/machines12070455
Tobar-Subía-Contento LM, Mandow A, Gómez-de-Gabriel JM. Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation. Machines. 2024; 12(7):455. https://doi.org/10.3390/machines12070455
Chicago/Turabian StyleTobar-Subía-Contento, Luz M., Anthony Mandow, and Jesús M. Gómez-de-Gabriel. 2024. "Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation" Machines 12, no. 7: 455. https://doi.org/10.3390/machines12070455
APA StyleTobar-Subía-Contento, L. M., Mandow, A., & Gómez-de-Gabriel, J. M. (2024). Open On-Limb Robot Locomotion Mechanism with Spherical Rollers and Diameter Adaptation. Machines, 12(7), 455. https://doi.org/10.3390/machines12070455