Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = differential difference amplifier (DDA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2923 KiB  
Article
Programmable Gain Amplifier with Programmable Bandwidth for Ultrasound Imaging Application
by István Kovács, Paul Coste and Marius Neag
Electronics 2025, 14(6), 1186; https://doi.org/10.3390/electronics14061186 - 18 Mar 2025
Viewed by 705
Abstract
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing [...] Read more.
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing strategy provides orthogonal control over gain and bandwidth. The PGA was designed using a standard 180 nm CMOS process. The gain value can be set between −18 dB and +20 dB in 2 dB steps; the bandwidth can be programmed independently of gain, to values from 5 MHz to 20 MHz, in 5 MHz steps; it draws 600 µA from a 1.8 V supply line. It achieves a differential output swing of 0.8 V peak-to-peak differential with no more than 1.7% total harmonic distortion (THD) and an input-referred noise density of 22 nV/√Hz at 10 MHz, measured at the gain of 20 dB. The PGA exhibits high input impedance and low output resistance for easy integration within the AFE signal chain. The digitally controlled gain and bandwidth make this PGA suitable for ultrasound imaging applications requiring precise time gain compensation and adjustable frequency response and/or additional anti-aliasing filtering. Full article
Show Figures

Figure 1

20 pages, 8551 KiB  
Article
Design of a 0.5 V Chopper-Stabilized Differential Difference Amplifier for Analog Signal Processing Applications
by Xinlan Fan, Feifan Gao and Pak Kwong Chan
Sensors 2023, 23(24), 9808; https://doi.org/10.3390/s23249808 - 13 Dec 2023
Cited by 2 | Viewed by 2508
Abstract
This paper presents a low-voltage low-power chopper-stabilized differential difference amplifier (DDA) realized using 40 nm CMOS technology. Operating with a supply voltage of 0.5 V, a three-stage DDA has been employed to achieve an open-loop gain of 89 dB, while consuming just 0.74 [...] Read more.
This paper presents a low-voltage low-power chopper-stabilized differential difference amplifier (DDA) realized using 40 nm CMOS technology. Operating with a supply voltage of 0.5 V, a three-stage DDA has been employed to achieve an open-loop gain of 89 dB, while consuming just 0.74 μW of power. The proposed DDA incorporates feed-forward frequency compensation and a Type II compensator to achieve pole-zero cancellation and damping factor control. The DDA has a unity-gain bandwidth (UGB) of 170 kHz, a phase margin (PM) of 63.98°, and a common-mode rejection ratio (CMRR) of up to 100 dB. This circuit can effectively drive a 50 pF capacitor in parallel with a 300 kΩ resistor. The use of the chopper stabilization technique effectively mitigates the offset and 1/f noise. The chopping frequency of the chopper modulator is 5 kHz. The input noise is 245 nV/sqrt (Hz) at 1 kHz, and the input-referred offset under Monte Carlo cases is only 0.26 mV. Such a low-voltage chopper-stabilized DDA will be very useful for analog signal processing applications. Compared to the reported chopper DDA counterparts, the proposed DDA is regarded as that with one of the lowest supply voltages. The proposed DDA has demonstrated its effectiveness in tradeoff design when dealing with multiple parameters pertaining to power consumption, noise, and bandwidth. Full article
(This article belongs to the Special Issue Advanced Interface Circuits for Sensor Systems (Volume II))
Show Figures

Figure 1

21 pages, 7576 KiB  
Article
1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter
by Montree Kumngern, Pichai Suksaibul, Fabian Khateb and Tomasz Kulej
Sensors 2022, 22(9), 3535; https://doi.org/10.3390/s22093535 - 6 May 2022
Cited by 12 | Viewed by 3069
Abstract
This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations [...] Read more.
This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations of second-order transfer functions into a single topology, namely, voltage-mode (VM), current-mode (CM), transadmittance-mode (TAM), and transimpedance-mode (TIM) transfer functions. Each operation mode offers five standard filtering responses; therefore, at least twenty filtering transfer functions can be obtained. For the filtering transfer functions, the matching conditions for the input and passive component are absent. The natural frequency and the quality factor can be set orthogonally and electronically controlled. The performance of the proposed topology was evaluated by PSPICE simulator using the 0.18 µm CMOS technology from the Taiwan Semiconductor Manufacturing Company (TSMC). The voltage supply was 1.2 V and the power dissipation of the DDTA was 66 µW. The workability of the filter was confirmed through experimental test by DDTA-based LM13600 discrete-component integrated circuits. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 7478 KiB  
Article
A CMOS PSR Enhancer with 87.3 mV PVT-Insensitive Dropout Voltage for Sensor Circuits
by Jianyu Zhang and Pak Kwong Chan
Sensors 2021, 21(23), 7856; https://doi.org/10.3390/s21237856 - 25 Nov 2021
Cited by 2 | Viewed by 2985
Abstract
A new power supply rejection (PSR) based enhancer with small and stable dropout voltage is presented in this work. It is implemented using TSMC-40 nm process technology and powered by 1.2 V supply voltage. A number of circuit techniques are proposed in this [...] Read more.
A new power supply rejection (PSR) based enhancer with small and stable dropout voltage is presented in this work. It is implemented using TSMC-40 nm process technology and powered by 1.2 V supply voltage. A number of circuit techniques are proposed in this work. These include the temperature compensation for Level-Shifted Flipped Voltage Follower (LSFVF) and the Complementary-To-Absolute Temperature (CTAT) current reference. The typical output voltage and dropout voltage of the enhancer is 1.1127 V and 87.3 mV, respectively. The Monte-Carlo simulation of this output voltage yields a mean T.C. of 29.4 ppm/°C from −20 °C and 80 °C. Besides, the dropout voltage has been verified with good immunity against Process, Temperature and Process (PVT) variation through the worst-case simulation. Consuming only 4.75 μA, the circuit can drive load up to 500 μA to yield additional PSR improvement of 36 dB and 20 dB of PSR at 1 Hz and 1 MHz, respectively for the sensor circuit of interest. This is demonstrated through the application of an enhancer on the instrumentation Differential Difference Amplifier (DDA) for sensing floating bridge sensor signal. The comparative Monte-Carlo simulation results on a respective DDA circuit have revealed that the process sensitivity of output voltage of this work has achieved 14 times reduction in transient metrics with respect to that of the conventional counterpart over the operation temperature range in typical operation condition. Due to simplicity without voltage reference and operational amplifier(s), low power and small consumption of supply voltage headroom, the proposed work is very useful for supply noise sensitive analog or sensor circuit applications. Full article
(This article belongs to the Special Issue Advanced Interface Circuits for Sensor Systems)
Show Figures

Figure 1

15 pages, 3795 KiB  
Article
A High Speed CMOS Image Sensor with a Novel Digital Correlated Double Sampling and a Differential Difference Amplifier
by Daehyeok Kim, Jaeyoung Bae and Minkyu Song
Sensors 2015, 15(3), 5081-5095; https://doi.org/10.3390/s150305081 - 2 Mar 2015
Cited by 8 | Viewed by 12624
Abstract
In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the [...] Read more.
In order to increase the operating speed of a CMOS image sensor (CIS), a new technique of digital correlated double sampling (CDS) is described. In general, the fixed pattern noise (FPN) of a CIS has been reduced with the subtraction algorithm between the reset signal and pixel signal. This is because a single-slope analog-to-digital converter (ADC) has been normally adopted in the conventional digital CDS with the reset ramp and signal ramp. Thus, the operating speed of a digital CDS is much slower than that of an analog CDS. In order to improve the operating speed, we propose a novel digital CDS based on a differential difference amplifier (DDA) that compares the reset signal and the pixel signal using only one ramp. The prototype CIS has been fabricated with 0.13 µm CIS technology and it has the VGA resolution of 640 × 480. The measured conversion time is 16 µs, and a high frame rate of 131 fps is achieved at the VGA resolution. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop